搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向感存算一体化的光电忆阻器件研究进展

单旋宇 王中强 谢君 郑嘉慧 徐海阳 刘益春

引用本文:
Citation:

面向感存算一体化的光电忆阻器件研究进展

单旋宇, 王中强, 谢君, 郑嘉慧, 徐海阳, 刘益春

Recent progress in optoelectronic memristive devices for in-sensor computing

Shan Xuan-Yu, Wang Zhong-Qiang, Xie Jun, Zheng Jia-Hui, Xu Hai-Yang, Liu Yi-Chun
PDF
HTML
导出引用
  • 脑启发神经形态计算系统有望从根本上突破传统冯·诺依曼计算机系统架构瓶颈, 极大程度地提升数据处理速度和能效. 新型神经形态器件是构建高能效神经形态计算的重要硬件基础. 光电忆阻器作为新兴的纳米智能器件, 因具备整合光学感知、信息存储和逻辑计算等功能特性, 被认为是发展类脑视觉系统的重要备选. 本文将综述面向感存算功能一体化的光电忆阻器研究进展, 包括光电忆阻材料与机制、光电忆阻器件与特性、感存算一体化功能及应用等. 具体将根据机制分类介绍光子-离子耦合型和光子-电子耦合型光电忆阻材料, 根据光电忆阻特性调节方式介绍光电调制型和全光调制型光电忆阻器件, 根据感存算一体化功能介绍其在认知功能模拟、光电逻辑运算、神经形态视觉功能、动态探测与识别等方面的应用. 最后总结光电忆阻器的主要优势以及所面临的挑战, 并展望光电忆阻器的未来发展.
    Neuromorphic computing system, inspired by human brain, has the capability of breaking through the bottlenecks of conventional von Neumann architecture, which can improve the energy efficiency of data processing. Novel neuromorphic electronic components are the hardware foundation of efficient neuromorphic computation. Optoelectronic memristive device integrates the functions of sensing, memorizing and computing and is considered as a promising hardware candidate for neuromorphic vision. Herein, the recent research progress of optoelectronic memristive device for in-sensor computing are reviewed, including optoelectronic materials and mechanism, optoelectronic memristive device/characteristics as well as functionality and application of in-sensor computing. We first review the optoelectronic materials and corresponding memristive mechanism, including photon-ion coupling and photon-electron coupling type. Then optoelelctronic and all-optical modulated memristive device are introduced according to the modulation mode. Moreover, we exhibit the applications of optoelectronic device in cognitive function simulation, optoelectronic logic operation, neuromorphic vision, object tracking, etc. Finally, we summarize the advantages/challenges of optoelectronic memristor and prospect the future development.
      通信作者: 王中强, wangzq752@nenu.edu.cn
    • 基金项目: 科技部国际科技合作重点专项(批准号: 2018YFE0118300) 和国家自然科学基金(批准号: 11974072, U19A2091)资助的课题.
      Corresponding author: Wang Zhong-Qiang, wangzq752@nenu.edu.cn
    • Funds: Project supported by the fund from the Ministry of Science and Technology of China (Grant No. 2018YFE0118300) and the National Natural Science Foundation of China (Grant Nos. 11974072, U19A2091).
    [1]

    Hasegawa T, Terabe K, Tsuruoka T, Aono M 2012 Adv. Mater. 24 252Google Scholar

    [2]

    Lee J, Lu W D 2018 Adv. Mater. 30 1702770Google Scholar

    [3]

    Cheng Z G, Rios C, Pernice W H P, Wright C D, Bhaskaran H 2017 Sci. Adv. 3 e1700160Google Scholar

    [4]

    Xu W T, Cho H, Kim Y H, Kim Y T, Wolf C, Park C G, Lee T W 2016 Adv. Mater. 28 5916Google Scholar

    [5]

    Gholipour B, Bastock P, Craig C, Khan K, Hewak D, Soci C 2015 Adv. Optical Mater. 3 635Google Scholar

    [6]

    Mao J Y, Zhou L, Zhu X, Zhou Y, HanS T 2019 Adv. Optical Mater. 7 1900766Google Scholar

    [7]

    Chua L 1971 IEEE Trans. Circuit Theory 18 507Google Scholar

    [8]

    Wang Z, Zeng T, Ren Y, Lin Y, Xu H, Zhao X, Liu Y, Ielmini D 2020 Nat. Commun. 11 1510Google Scholar

    [9]

    Jo S, Chang T, Ebong I, Bhadviya B B, Mazumder P, Lu W 2010 Nano Lett. 10 1297Google Scholar

    [10]

    Sun L F, Wang Z R, Jiang J, Kim Y, Joo B, Zheng S, Lee S, Yu W J, Kong B S, Yang H 2021 Sci. Adv. 7 eabg1455Google Scholar

    [11]

    Lin Y, Zhang X, Shan X, Zeng T, Zhao X, Wang Z, Kang Z, Xu H, Liu Y 2020 J. Mater. Chem. C 8 14789Google Scholar

    [12]

    Kim S J, Kim S B, Jang H W 2021 Iscience 24 101889Google Scholar

    [13]

    Milo V, Malavena G, Monzio Compagnoni C, Ielmini D 2020 Material 13 166Google Scholar

    [14]

    Tan H, Liu G, Yang H, Yi X, Pan L, Shang J, Long S, Liu M, Wu Y, Li R 2017 ACS Nano 11 11298Google Scholar

    [15]

    Gao S, Liu G, Yang H L, Hu C, Chen Q, Gong G, Xue W, Yi X, Shang J, Li R 2019 ACS Nano 13 2634Google Scholar

    [16]

    Zhao X, Wang Z, Xie Y, Xu H, Zhu J, Zhang X, Liu W, Yang G, Ma J, Liu Y 2018 Small 14 1801325Google Scholar

    [17]

    Jaafar A H, Gray R J, Verrelli E, O’Neill M, Kelly S M, Kemp N T 2017 Nanoscale 9 17091Google Scholar

    [18]

    Zhao X, Wang Z, Li W, Sun S, Xu H, Zhou P, Xu J, Lin Y, Liu Y 2020 Adv. Funct. Mater. 30 1910151Google Scholar

    [19]

    Ahmed T, Tahir M, Low M X, Ren Y, Tawfik S, Mayes E, Kuriakose S, Nawaz S, Spencer S, Chen H, Bhaskaran M, Sriram S, Walia S 2021 Adv. Mater. 33 2004207Google Scholar

    [20]

    Wang Z, Xu H, Li X, Yu H, Liu Y, Zhu X 2012 Adv. Funct. Mater. 22 2759Google Scholar

    [21]

    Mu B, Guo L, Liao J, Xie P, Ding G, Lv Z, Zhou Y, Han S, YanY 2021 Small 17 2103837Google Scholar

    [22]

    Ohno T, Hasegawa T, Tsuruoka T, Terabe K, Gimzewski J K, Aono M 2011 Nat. Mater. 10 591Google Scholar

    [23]

    Wan C, Zhu L, Liu Y, Feng P, Liu Z, Cao H, Xiao P, Shi Y, Wan Q 2016 Adv. Mater. 28 3557Google Scholar

    [24]

    Zidan M A, Strachan J P, Lu W D 2018 Nat. Electron. 1 22Google Scholar

    [25]

    Hu D, Yang R, Jiang L, Guo X 2018 ACS Appl. Mater. Interfaces 10 6463Google Scholar

    [26]

    Chen S, Lou Z, Chen D, Shen G 2018 Adv. Mater. 30 1705400Google Scholar

    [27]

    Sun F, Lu Q, Feng S, Zhang T 2021 ACS Nano 15 3875Google Scholar

    [28]

    Ji X, Zhao X, Tan M C, Zhao R 2020 Adv. Intell. Syst. 2 1900118Google Scholar

    [29]

    Carrara S 2021 IEEE Sens. J 21 12370Google Scholar

    [30]

    Zhou F, Zhou Z, Chen J, Choy T, Wang J, Zhang N, Lin Z, Yu S, Kang J, Wong H, Chai Y 2019 Nat. Nanotechnol. 14 776Google Scholar

    [31]

    Zhou Z, Pei Y, Zhao J, Fu G, Yan X 2021 Appl. Phys. Lett. 118 191103Google Scholar

    [32]

    Ling H, Tan K, Fang Q, Xu X, Chen H, Li W, Liu Y, Wang L, Yi M, Huang R, Qian Y, Xie L, Huang W 2017 Adv. Electron. Mater. 3 1600416Google Scholar

    [33]

    Wang S, Fan W, Liu Z, Yu A, Jiang X 2018 J. Mater. Chem. C 6 191Google Scholar

    [34]

    Tsuruoka T, Terabe K, Hasegawa T, Valov I, Waser R, Aono M 2012 Adv. Funct. Mater. 22 70Google Scholar

    [35]

    Deb S, Chopoorian J 1966 J. Appl. Phys. 37 4818Google Scholar

    [36]

    Natansohn A, Rochon P 2002 Chem. Rev. 102 4139Google Scholar

    [37]

    Tsai H, Asadpour R, Blancon J, Stoumpos C, Durand O, Strzalka J, Chen B, Verduzco R, Ajayan P, Tretiak S, Even J, Alam M, Kanatzidis M, Nie W, Mohite A 2018 Science 360 67Google Scholar

    [38]

    Liu Y, Ievlev A V, Collins L, Borodinov N, Belianinov A, Keum J K, Wang M, Ahmadi M, Jesse S, Xiao K, Sumpter B G, Hu B, Kalinin S V, Ovchinnikova O S 2019 Adv. Opt. Mater. 7 1901451Google Scholar

    [39]

    Hossain A, Bandyopadhyay P, Karmakar A, Ullah A, Manavalan R, Sakthipandi K, Alhokbany K, Alshehri S, Ahmed J 2021 Ceram. Int. 48 7325

    [40]

    Walsh A, Stranks S D 2018 ACS Energy Lett. 3 1983Google Scholar

    [41]

    Guan X, Hu W, Haque Md A, Wei N, Liu Z, Chen A, Wu T 2018 Adv. Funct. Mater. 28 1704665Google Scholar

    [42]

    Yang J M, Kim S G, Seo J Y, Cuhadar C, Son D Y, Lee D, Park N G 2018 Adv. Electron. Mater 4 1800190Google Scholar

    [43]

    Yang K, Li F, Veeramalai C P, Guo T 2017 Appl. Phys. Lett. 110 083102Google Scholar

    [44]

    Zhao X, Xu H, Wang Z, Lin Y, Liu Y 2019 InfoMat 1 183

    [45]

    Ahmadi M, Wu T, Hu B 2017 Adv. Mater. 29 1605242Google Scholar

    [46]

    Hu J, Yan L, You W 2018 Adv. Mater. 30 1802041Google Scholar

    [47]

    Choi J, Han J S, Hong K, Kim S Y, Jang H W 2018 Adv Mater. 30 1870317Google Scholar

    [48]

    Manjappa M, Srivastava Y K, Solanki A, Kumar A, Sum T C, Singh R 2017 Adv. Mater. 29 1605881Google Scholar

    [49]

    Zhu X, Lu W D 2018 ACS Nano 12 1242

    [50]

    Zhu X, Lee J, Lu W D 2017 Adv. Mater. 29 1700527Google Scholar

    [51]

    Ham S, Choi S, Cho H, Na S, Wang G 2019 Adv. Funct. Mater. 29 1806646Google Scholar

    [52]

    Skorodumova N, Simak S, Lundqvist B, Abrikosov I, Johansson B 2002 Phys. Rev. Lett. 89 166601Google Scholar

    [53]

    Pan Z, Peng W, Li F, He Y 2018 Adv. Funct. Mater. 28 1706897Google Scholar

    [54]

    Tan H, Ni Z, Peng W, Du S, Liu X, Zhao S, Li W, Ye Z, Xu M, Xu Y, Pi X, Yang D 2018 Nano Energy 52 422Google Scholar

    [55]

    Ma F, Zhu Y, Xu Z, Liu Y, Zheng X, Ju S, Li Q, Ni Z, Hu H, Chai Y, Wu C, Kim T W, Li F 2020 Adv. Funct. Mater. 30 1908901Google Scholar

    [56]

    He H, Yang R, Zhou W, Huang H-M, Xiong J, Gan L, Zhai T, Guo X 2018 Small 14 1800079Google Scholar

    [57]

    Yang J, Pickett M, Li X, Ohlberg D, Stewart D, Williams R 2008 Nat. Nanotechnol. 3 429Google Scholar

    [58]

    You T, Du N, Slesazeck S, Mikolajick T, Li G, Burger D, Skorupa I, Stocker H, Abendroth B, Beyer A, Volz K, Schmidt O, Schmidt H 2014 ACS Appl. Mater. Interfaces 6 19758Google Scholar

    [59]

    Zhai Y, Yang X, Wang F, Li Z, Ding G, Qiu Z, Wang Y, Zhou Y, Han S T 2018 Adv. Mater. 30 1803563Google Scholar

    [60]

    Yang R, Huang H, Hong Q, Yin X, Tan Z, Shi T, Zhou Y, Miao X, Wang X, Mi S 2018 Adv. Funct. Mater. 28 1704455Google Scholar

    [61]

    Tan H, Liu G, Zhu X, Yang H, Chen B, Chen X, Shang J, Lu W D, Wu Y, Li R 2015 Adv. Mater. 27 2797Google Scholar

    [62]

    Zhou S, Ni Z, Ding Y, Sugaya M, Pi X, Nozaki T 2016 ACS Photonics 3 415Google Scholar

    [63]

    Ni Z, Ma L, Du S, Xu Y, Yuan M, Fang H, Wang Z, Xu M, Li D, Yang J, Hu W, Pi X, Yang D 2017 ACS Nano 11 9854Google Scholar

    [64]

    Ni Z, Pi X, Zhou S, Nozaki T, Grandidier B, Yang D 2016 Adv. Opt. Mater. 4 700Google Scholar

    [65]

    Ge R, Wu X, Kim M, Shi J, Sonde S, Tao L, Zhang Y, Lee J, Akinwande D 2018 Nano Lett. 18 434Google Scholar

    [66]

    Zhou Y, Liu D, Wang J, Cheng Z, Liu L, Yang N, Liu Y, Xia T, Liu X, Zhang X, Ye C, Xu Z, Xiong W, Chu P, Yu X 2020 ACS Appl. Mater. Interface 12 25108Google Scholar

    [67]

    Xiang D, Liu T, Xu J, Tan J, Hu Z, Lei B, Zheng Y, Wu J, Neto A, Liu L, Chen W 2018 Nat. Commun. 9 2966Google Scholar

    [68]

    Tran M D, Kim H, Kim J S, Doan M H, Chau T K, Vu Q A, Kim J H, Lee Y H 2019 Adv. Mater. 31 807075

    [69]

    Pei F, Yan L, Wu Z, Lu J, Zhao J, Chen J Liu Q, Yan X 2021 ACS Nano 15 17319Google Scholar

    [70]

    Wang Q S, Wen Y, Cai K M, Cheng R Q, Yin L, Zhang Y, Li J, Wang Z X, Wang F, Wang F M, Shifa T A, Jiang C, Yang H, He J 2018 Sci. Adv. 4 eaap7916Google Scholar

    [71]

    Lee J, Pak S, Lee Y W, Cho Y, Hong J, Giraud P, Shin H S, Morris S M, Sohn J I, Cha S, Kim J M 2017 Nat. Commun. 8 14734Google Scholar

    [72]

    Miller D A B 2009 Proc. IEEE 97 1166Google Scholar

    [73]

    Lin Y, Wang Z, Zhang X, Zeng T, Bai L, Kang Z, Wang C, Zhao X, Xu H, Liu Y. 2020 NPG Asia Mater. 12 1Google Scholar

    [74]

    Hu L X, Yang J, Wang J R, Cheng P H, O. Chua L, Zhuge F 2020 Adv. Funct. Mater. 31 2005582

    [75]

    Ahmed T, Balendhran S, Karim M N, Mayes E L H, Field M R, Ramanathan R, Singh M, Bansal V, Sriram S, Bhaskaran M, Walia S 2017 NPJ 2 D Mater. Appl. 1 18Google Scholar

    [76]

    Walia S, Sabri Y, Ahmed T, Field M R, Ramanathan R, Arash A, Bhargava S K, Sriram S, Bhaskaran M, Bansal V, Balendhran S 2017 2 D Mater. 4 015025

    [77]

    Favron A, Gaufres E, Fossard F, Phaneuf-L'Heureux A L, Tang N Y W, Levesque P L, Loiseau A, Leonelli R, Francoeur S, Martel R 2015 Nat. Mater. 14 826Google Scholar

    [78]

    Kuriakose S, Ahmed T, Balendhran S, Bansal V, Sriram S, Bhaskaran M, Walia S 2018 2D Mater. 5 032001Google Scholar

    [79]

    Utt K L, Rivero P, Mehboudi M, Harriss E O, Borunda M F, SanJuan A A P, Barraza-Lopez S. 2015 ACS Cent. Sci. 1 320Google Scholar

    [80]

    Wood J D, Wells S A, Jariwala D, Chen K S, Cho E, Sangwan V K, Liu X, Lauhon L J, Marks T. J, Hersam M C 2014 Nano Lett. 14 6964Google Scholar

    [81]

    Ahmed T, Kuriakose S, Abbas S, Spencer M J S, Rahman M A, Tahir M, Lu Y R, Sonar P, Bansal V, Bhaskaran M, Sriram S, Walia S 2019 Adv. Funct. Mater. 29 1901991Google Scholar

    [82]

    Shan X Y, Zhao C Y, Wang X N, Wang Z Q, Lin Y, Zeng T, Zhao X N, Xu H Y, Zhang X T, Liu Y C 2021 Adv. Sci. 8 2104632

    [83]

    Colton R J, Guzman A M, Rabalais J W 1978 ACC Chem. Res. 11 170Google Scholar

    [84]

    Zhu Y, Wu C, Xu Z, Liu Y, Hu H, Guo T, Kim T, Chai Y, Li F 2021 Nano Lett. 21 14

    [85]

    Shan X, Wang Z, Lin Y, Zeng T, Zhao X, Xu H, Liu Y 2020 Adv. Electron. Mater. 6 2000536Google Scholar

    [86]

    Wang W, Gao S, Li Y, Yue W, Kan H, Zhang C, Lou Z, Wang L, Shen G 2021 Adv. Funct. Mater. 31 2101201Google Scholar

    [87]

    Yang L, Singh M, Shen S, Chih K, Liu S, Wu C, Chu C, Lin H 2020 Adv. Funct. Mater. 31 2008259

    [88]

    Fanselow M, Poulos A A 2005 Rev. Psychol. 56 207Google Scholar

    [89]

    Liu L, Cheng Z Q, Jiang B, Liu Y X, Zhang Y L, Yang F, Wang J H, Yu X F, Chu P K, Ye C 2021 ACS Appl. Mater. Interfaces 13 30797Google Scholar

    [90]

    Li Y, Long S, Liu Q, Lv H, Liu M 2017 Small 13 1604306Google Scholar

    [91]

    Zhang K, Meng D, Bai F, Zhai J, Wang Z L 2020 Adv. Funct. Mater. 30 2002945Google Scholar

    [92]

    Li Y, Zhong Y P, Deng Y F, Zhou Y X, Xu L, Miao X S 2013 J. Appl. Phys. 114 234503Google Scholar

    [93]

    Nguyen D A, Jo Y, Tran T U, Jeong M S, Kim H, Im H 2021 Small Methods 5 2101303Google Scholar

    [94]

    Shepherd R K, Shivdasani M N, Nayagam D A, Williams C E, Blamey P J 2013 Trends Biotechnol. 31 562Google Scholar

    [95]

    Kolb H 2003 Am. Sci. 91 28Google Scholar

    [96]

    Brady T F, Konkle T, Alvarez G A, Oliva A 2008 Proc. Natl Acad. Sci. USA 105 14325Google Scholar

    [97]

    Wang G, Wang R, Kong W and Zhang J 2018 Analysis. Cogn. Neurodyn. 12 615Google Scholar

    [98]

    Zhou F, Chen J, Tao X, Wang, X and Chai Y 2019 Research 2019 9490413

    [99]

    Radovic A, Williams M, Rousseau D, Kagan M, Bonacorsi D, Himmel A, Aurisano A, Terao K, Wongjirad T 2018 Nature 560 41Google Scholar

    [100]

    Sze V, Then Y, Emer J, Suleiman A, Zhang Z 2017 IEEE Custom Integrated Circuits Conference (CICC) 1

    [101]

    Xiang D, Liu T, Xu J, Tan J, Hu Z, Lei B, Zheng Y, Wu J, Neto A, Liu L, Chen W 2018 Nat. Commun. 9 1Google Scholar

    [102]

    Choi C, Leem J, Kim M S, Taqieddin A, Cho C, Cho K W, Lee G J, Seung H, Bae H J, Song Y M, Hyeon T, Aluru N R, Nam S W, Kim D H 2020 Nat. Commun. 11 1Google Scholar

    [103]

    McCollough C 1965 Science 149 1115Google Scholar

    [104]

    Huang X, Li Q Y, Shi W, Liu K, Zhang Y P, Liu Y W, Wei X F, Zhao Z Y, Guo Y L, Liu Y Q 2021 Small 17 2102820Google Scholar

    [105]

    Yuan J, Zhang Y, Zhou L, Zhang G, Yip H L, Lau T K, Lu X, Zhu C, Peng H, Johnson P A, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y 2019 Joule 3 1140Google Scholar

    [106]

    Seo S, Jo S H, Kim S, Shim J, Oh S, Kim J H, Heo K, Choi J W, Choi C, Oh S, Kuzum D, Wong H P, Park J H 2018 Nat. Commun. 9 5106Google Scholar

    [107]

    Wang S, Wang C Y, Wang P F, Wang C, Li Z A, Pan C, Dai1 Y T, Gao A Y, Liu C, Liu J, Yang H F, Liu X W, Cheng B, Chen K J, Wang Z L, Watanabe K J, Taniguchi T, Liang S J, Miao F 2020 Natl. Sci. Rev. 7 1Google Scholar

    [108]

    Euler T, Haverkamp S and Schubert T 2014 Nat. Rev. Neurosci. 15 507Google Scholar

    [109]

    van Hateren J H, Lamb T D 2006 Neuroscience 7 34

    [110]

    Wang Z, Li C, Lin P, Rao M Y, Nie Y Y, Song W H, Qiu Q R, Li Y N, Yan P, Strachan J P, Ge N, McDonald N, Wu Q, Hu M, Wu H Q, Williams R S, Xia Q F, Yang J J 2019 Nat. Mach. Intell. 1 434Google Scholar

    [111]

    Moon J, Ma W, Shin J H, Cai F X, Du C, Lee S H, Lu W D 2019 Nat. Electron. 2 480Google Scholar

    [112]

    Du C, Cai F, Zidan M A, Ma W, Lee S H, Lu W D 2017 Nat. Commun. 8 2204Google Scholar

    [113]

    Zhang Z H, Wang S Y, Liu C S, Xie R Z, Hu W D, Zhou P 2021 Nat. Nanotechnol. 17 27

    [114]

    Qin S, Wang F, Liu Y, Wan Q, Wang X, Xu Y, Shi Y, Wang X, Zhang R 2017 2 D Mater. 4 035022

    [115]

    Ahn J, Ko K, Kyhm J H, Ra H S, Bae H, Hong S, Kim D Y, Jang J S, Kim T W, Choi S, Kang J H, Kwon N, Park S, Ju B K, Poon T C, Park M C, Im S, Hwang D K 2021 ACS nano 15 17917Google Scholar

    [116]

    Xie D D, Yin K, Yang Z J, Huang H, Li X H, Shu Z W, Duan H G, He J, Jiang J 2022 Materials Horizons, 9 1448-1459

  • 图 1  综述框架示意图, 主要包括光电忆阻材料与机制, 忆阻器件与特性、功能与应用三部分[14,19,30,41,44,64,72,95,96]

    Fig. 1.  Schematic illustration of optoelectronic memristor in terms of materials and mechanism, device and characteristics, functions and applications[14,19,30,41,44,64,72, 95,96].

    图 2  (a) MoOx光电阻变式存储器的结构示意图; (b) Pd/MoOx/ITO器件的脉冲开关特性; (c)器件阻变机制示意图[30]; (d)基于PDR1A材料光学忆阻器结构示意图; (e) ITO/ZnO/PDR1 A/Al结构器件的可逆电阻调制过程; (f) PDR1A分子化学结构的示意图[32]

    Fig. 2.  (a) Structural illustration of the MoOx ORRAM; (b) pulse-switching characteristics of Pd/MoOx/ITO device; (c) schematic of switching mechanism[30]; (d) schematic of PDR1A based optical memristor; (e) conductance modulation of ITO/ZnO/PDR1A/Al device; (f) schematic of the PDR1A molecules[32].

    图 3  (a) 基于MAPbI3材料的平面结构器件示意图; (b) 光照抑制VI·/VI×形成加速VI·/VI×湮灭[49]; (c) MAPbI3忆阻器结构图; (d), (e) 光照强度对MAPbI3器件开启电压和过充电流的影响[18]; (f) Ag/CH3NH3PbI3 (OHP)/ITO结构光突触器件示意图; (g) 器件在光电脉冲刺激下的响应; (h) 响应幅值随照射时间、频率和强度的变化[51]

    Fig. 3.  (a) Schematic of MAPBI3 based planar device; (b) light illumination inhibits the formation and accelerate the annihilation of VI·/VI× [49]; (c) structural illustration of MAPbI3 based memristor; (d), (e) the variations of VForming and IOV (overshoot current) with light intensity[18]; (f) structural illustration of Ag/CH3NH3PbI3 (OHP)/ITO optoelectronic memristor; (g) current response under the stimulation of electrical and optical pulse; (h) current response depending on exposure time, frequency and intensity[51].

    图 4  (a) ITO/CeO2–x/AlOy/Al结构光电突触示意图; (b) 器件阻变特性机制图[14]; (c) 生物突触和硅纳米晶器件结构图; (d) 硅纳米晶能带结构和载流子输运示意图[54]; (e) 光调制BP@PS忆阻器示意图; (f) BP@PS器件阻变机制的能带模型[66]; (g) 基于单层MoS2的忆阻突触器件; (h) MoS2/p-Si结阻变示意图[56]

    Fig. 4.  (a) Schematic diagram of optoelectronic synapse with ITO/CeO2–x/AlOy/Al structure; (b) schematic energy band diagram demonstrating memristive characteristics[14]; (c) schematic of biological synapse and Si-NC-based device; (d) schematic illustration of the band structure and charge carrier transport of Si NCs[54]; (e) schematic of light modulation BP@PS memristor; (f) energy band diagram explaining RS mechanism[66]; (g) schematic of memristive synapse based on monolayer MoS2; (h) schematic illustration of the resistive switching[56].

    图 5  (a) 全无机钙钛矿基光电忆阻突触器件示意图; (b) 器件在紫外光下的光开关特性; (c) 器件在电学脉冲信号下的电导调制[55]; (d) Al/GO-TiO2/ITO存储器件结构图; (e) 紫外光照射对器件电初始化和阻变的影响; (f) 紫外照射时间对开关电压的调节[16]; (g) 生物突触及RGO/GO-NCQDs/石墨烯全碳器件示意图; (h) GO-NCQD复合材料的光致还原过程[73]

    Fig. 5.  (a) Structural diagram of all-inorganic perovskite optoelectronic synapses; (b) optical switching characteristics under UV light; (c) potentiation and depression behaviors under electrical stimulation[55]; (d) schematic illustration of Al/GO-TiO2/ITO memory device; (e), (f) the effect of UV irradiation time on forming (e) and switching voltages[16] (f); (g) schematic illustration of biological synapse and RGO/GO-NCQDs/graphene memristor; (h) photo-reduction process of GO-NCQDs film[73].

    图 6  (a) Au/OD-IGZO/OR-IGZO/Pt结构的全光调控忆阻器件; (b)不同波长光照射下IGZO器件响应电流; (c) 光照强度对光关闭过程影响; (d) 光开启和光关闭特性; (e) 全光调制过程机制图[74]; (f) 基于BP材料的光电晶体管; (g), (h) 器件在280 nm和365 nm光脉冲下的响应电流; (i) 器件的长时增强和抑制特性[19]

    Fig. 6.  (a) Schematic diagram of the Au/OD-IGZO/OR-IGZO/Pt device structure; (b) current response depending on light of various wavelengths; (c) effect of power density on optical reset behavior; (d) reversible modulation of device conductance; (e) schematic illustrations of all-optically controlled device[74]; (f) schematic of BP based device; (g), (h) transient photocurrent under 280 nm and 365 nm illumination; (i) LTP and LTD behaviors under consecutive pulse[19].

    图 7  (a) 基于Ag-TiO2材料的全光调控忆阻器件; (b), (c) 可见光和紫外光脉冲刺激下器件的电流响应; (d), (e) 光照强度和时间对器件电流的影响; (f) 全光可逆调制过程; (g), (h) 器件在光电信号刺激下的运行机制[82]

    Fig. 7.  (a) Fully light-modulated memristor based on Ag-TiO2 nanocomposite; (b), (c) transient photocurrent under the illumination of visible and UV light; (d), (e) the response current depending on irradiation time and intensity; (f) fully light-modulated behaviors; (g), (h) operating mechanism of the Ag-TiO2 based optoelectronic device[82].

    图 8  (a) TiNxO2–x/MoS2异质结光电突触器件; (b) 单个光脉冲引起的增强过程; (c) 对脉冲促进(PPF)功能; (d), (e)不同光照强度和时间下器件的电导响应; (f) 连续光脉冲引起的电导变化[86]

    Fig. 8.  (a) Structural illustration of TiNxO2–x/MoS2 heterostructure-based optoelectronic synapse; (b) optical potentiation process; (c) paired pulse facilitation function; (d), (e) conductance response depending on the illumination intensity and duration; (f) transient response under consecutive optical pulses[86].

    图 9  (a) Al/TiS3/ITO器件结构示意图; (b) 不同波长光照射下的电流-电压曲线; (c) 光电信号下的器件电导变化; (d) 巴普洛夫狗实验中经典条件反射模拟[89]

    Fig. 9.  (a) Sandwich-like structure of the Al/TiS3/ITO memristor; (b) RS behaviors modulated by different wavelengths; (c) conductance change under optical and electric signals; (d) simulation of classical conditioning in Pavlov’s dog experiment[89].

    图 10  (a) 与门或门逻辑运算转换示意图; (b) 可重构与门、或门输出结果; (c) 真值表及输出电流值[14]

    Fig. 10.  (a) Logic operation switching of “AND” and “OR” gates; (b) reprogrammable outputs of memlogic “AND” and “OR”; (c) truth table and output current of “AND” and “OR” gate[14].

    图 11  (a) 基于光电忆阻器的图像记忆及预处理功能; (b) 神经形态视觉系统图像识别模拟[30]; (c) 突触光电晶体管光照示意图; (d) 未知彩色光识别功能[104]

    Fig. 11.  (a) Image memorization and preprocessing functions based on optoelectronic memristor; (b) simulation of image recognition in artificial neural network[30]; (c) device structure of 2D perovskite/organic heterojunction synaptic phototransistor; (d) simulating the recognition of unknow light[104].

    图 12  (a) 人类视觉神经系统及h-BN/WSe2基突触器件示意图; (b) 不同光照条件下的长时增强和抑制行为; (c) 人工视觉神经网络训练测试实例; (d) 不同训练次数后的识别率[106]

    Fig. 12.  (a) Schematic illustration of the human optical nerve system; (b) schematic illustration of the human optical nerve system; (c) dataset consisted of colored and color-mixed number for training and testing; (d) dependence of recognition rate on training epochs[106].

    图 13  (a) 基于WSe2/h-BN/Al2O3异质结的视网膜拟态传感器件; (b) 异质结器件相应的开关光响应; (c)—(e) 基于神经形态视觉系统实现目标追踪[107]

    Fig. 13.  (a) Retinomorphic sensor based on WSe2/h-BN/Al2O3 heterostructure device; (b) the On and Off photo response of heterostructure device; (c)–(e) object tracking of neuromorphic vision system[107].

    图 14  (a) 多功能视网膜形态器件结构示意图; (b) 不同电压信号调节下的电流响应; (c) 基于二维神经形态器件的动态探测示意图[113]

    Fig. 14.  (a) All-in-one retinomorphic device; (b) current response under various drain voltage modulation; (c) motion detection based on 2 D retinomorphic device[113].

  • [1]

    Hasegawa T, Terabe K, Tsuruoka T, Aono M 2012 Adv. Mater. 24 252Google Scholar

    [2]

    Lee J, Lu W D 2018 Adv. Mater. 30 1702770Google Scholar

    [3]

    Cheng Z G, Rios C, Pernice W H P, Wright C D, Bhaskaran H 2017 Sci. Adv. 3 e1700160Google Scholar

    [4]

    Xu W T, Cho H, Kim Y H, Kim Y T, Wolf C, Park C G, Lee T W 2016 Adv. Mater. 28 5916Google Scholar

    [5]

    Gholipour B, Bastock P, Craig C, Khan K, Hewak D, Soci C 2015 Adv. Optical Mater. 3 635Google Scholar

    [6]

    Mao J Y, Zhou L, Zhu X, Zhou Y, HanS T 2019 Adv. Optical Mater. 7 1900766Google Scholar

    [7]

    Chua L 1971 IEEE Trans. Circuit Theory 18 507Google Scholar

    [8]

    Wang Z, Zeng T, Ren Y, Lin Y, Xu H, Zhao X, Liu Y, Ielmini D 2020 Nat. Commun. 11 1510Google Scholar

    [9]

    Jo S, Chang T, Ebong I, Bhadviya B B, Mazumder P, Lu W 2010 Nano Lett. 10 1297Google Scholar

    [10]

    Sun L F, Wang Z R, Jiang J, Kim Y, Joo B, Zheng S, Lee S, Yu W J, Kong B S, Yang H 2021 Sci. Adv. 7 eabg1455Google Scholar

    [11]

    Lin Y, Zhang X, Shan X, Zeng T, Zhao X, Wang Z, Kang Z, Xu H, Liu Y 2020 J. Mater. Chem. C 8 14789Google Scholar

    [12]

    Kim S J, Kim S B, Jang H W 2021 Iscience 24 101889Google Scholar

    [13]

    Milo V, Malavena G, Monzio Compagnoni C, Ielmini D 2020 Material 13 166Google Scholar

    [14]

    Tan H, Liu G, Yang H, Yi X, Pan L, Shang J, Long S, Liu M, Wu Y, Li R 2017 ACS Nano 11 11298Google Scholar

    [15]

    Gao S, Liu G, Yang H L, Hu C, Chen Q, Gong G, Xue W, Yi X, Shang J, Li R 2019 ACS Nano 13 2634Google Scholar

    [16]

    Zhao X, Wang Z, Xie Y, Xu H, Zhu J, Zhang X, Liu W, Yang G, Ma J, Liu Y 2018 Small 14 1801325Google Scholar

    [17]

    Jaafar A H, Gray R J, Verrelli E, O’Neill M, Kelly S M, Kemp N T 2017 Nanoscale 9 17091Google Scholar

    [18]

    Zhao X, Wang Z, Li W, Sun S, Xu H, Zhou P, Xu J, Lin Y, Liu Y 2020 Adv. Funct. Mater. 30 1910151Google Scholar

    [19]

    Ahmed T, Tahir M, Low M X, Ren Y, Tawfik S, Mayes E, Kuriakose S, Nawaz S, Spencer S, Chen H, Bhaskaran M, Sriram S, Walia S 2021 Adv. Mater. 33 2004207Google Scholar

    [20]

    Wang Z, Xu H, Li X, Yu H, Liu Y, Zhu X 2012 Adv. Funct. Mater. 22 2759Google Scholar

    [21]

    Mu B, Guo L, Liao J, Xie P, Ding G, Lv Z, Zhou Y, Han S, YanY 2021 Small 17 2103837Google Scholar

    [22]

    Ohno T, Hasegawa T, Tsuruoka T, Terabe K, Gimzewski J K, Aono M 2011 Nat. Mater. 10 591Google Scholar

    [23]

    Wan C, Zhu L, Liu Y, Feng P, Liu Z, Cao H, Xiao P, Shi Y, Wan Q 2016 Adv. Mater. 28 3557Google Scholar

    [24]

    Zidan M A, Strachan J P, Lu W D 2018 Nat. Electron. 1 22Google Scholar

    [25]

    Hu D, Yang R, Jiang L, Guo X 2018 ACS Appl. Mater. Interfaces 10 6463Google Scholar

    [26]

    Chen S, Lou Z, Chen D, Shen G 2018 Adv. Mater. 30 1705400Google Scholar

    [27]

    Sun F, Lu Q, Feng S, Zhang T 2021 ACS Nano 15 3875Google Scholar

    [28]

    Ji X, Zhao X, Tan M C, Zhao R 2020 Adv. Intell. Syst. 2 1900118Google Scholar

    [29]

    Carrara S 2021 IEEE Sens. J 21 12370Google Scholar

    [30]

    Zhou F, Zhou Z, Chen J, Choy T, Wang J, Zhang N, Lin Z, Yu S, Kang J, Wong H, Chai Y 2019 Nat. Nanotechnol. 14 776Google Scholar

    [31]

    Zhou Z, Pei Y, Zhao J, Fu G, Yan X 2021 Appl. Phys. Lett. 118 191103Google Scholar

    [32]

    Ling H, Tan K, Fang Q, Xu X, Chen H, Li W, Liu Y, Wang L, Yi M, Huang R, Qian Y, Xie L, Huang W 2017 Adv. Electron. Mater. 3 1600416Google Scholar

    [33]

    Wang S, Fan W, Liu Z, Yu A, Jiang X 2018 J. Mater. Chem. C 6 191Google Scholar

    [34]

    Tsuruoka T, Terabe K, Hasegawa T, Valov I, Waser R, Aono M 2012 Adv. Funct. Mater. 22 70Google Scholar

    [35]

    Deb S, Chopoorian J 1966 J. Appl. Phys. 37 4818Google Scholar

    [36]

    Natansohn A, Rochon P 2002 Chem. Rev. 102 4139Google Scholar

    [37]

    Tsai H, Asadpour R, Blancon J, Stoumpos C, Durand O, Strzalka J, Chen B, Verduzco R, Ajayan P, Tretiak S, Even J, Alam M, Kanatzidis M, Nie W, Mohite A 2018 Science 360 67Google Scholar

    [38]

    Liu Y, Ievlev A V, Collins L, Borodinov N, Belianinov A, Keum J K, Wang M, Ahmadi M, Jesse S, Xiao K, Sumpter B G, Hu B, Kalinin S V, Ovchinnikova O S 2019 Adv. Opt. Mater. 7 1901451Google Scholar

    [39]

    Hossain A, Bandyopadhyay P, Karmakar A, Ullah A, Manavalan R, Sakthipandi K, Alhokbany K, Alshehri S, Ahmed J 2021 Ceram. Int. 48 7325

    [40]

    Walsh A, Stranks S D 2018 ACS Energy Lett. 3 1983Google Scholar

    [41]

    Guan X, Hu W, Haque Md A, Wei N, Liu Z, Chen A, Wu T 2018 Adv. Funct. Mater. 28 1704665Google Scholar

    [42]

    Yang J M, Kim S G, Seo J Y, Cuhadar C, Son D Y, Lee D, Park N G 2018 Adv. Electron. Mater 4 1800190Google Scholar

    [43]

    Yang K, Li F, Veeramalai C P, Guo T 2017 Appl. Phys. Lett. 110 083102Google Scholar

    [44]

    Zhao X, Xu H, Wang Z, Lin Y, Liu Y 2019 InfoMat 1 183

    [45]

    Ahmadi M, Wu T, Hu B 2017 Adv. Mater. 29 1605242Google Scholar

    [46]

    Hu J, Yan L, You W 2018 Adv. Mater. 30 1802041Google Scholar

    [47]

    Choi J, Han J S, Hong K, Kim S Y, Jang H W 2018 Adv Mater. 30 1870317Google Scholar

    [48]

    Manjappa M, Srivastava Y K, Solanki A, Kumar A, Sum T C, Singh R 2017 Adv. Mater. 29 1605881Google Scholar

    [49]

    Zhu X, Lu W D 2018 ACS Nano 12 1242

    [50]

    Zhu X, Lee J, Lu W D 2017 Adv. Mater. 29 1700527Google Scholar

    [51]

    Ham S, Choi S, Cho H, Na S, Wang G 2019 Adv. Funct. Mater. 29 1806646Google Scholar

    [52]

    Skorodumova N, Simak S, Lundqvist B, Abrikosov I, Johansson B 2002 Phys. Rev. Lett. 89 166601Google Scholar

    [53]

    Pan Z, Peng W, Li F, He Y 2018 Adv. Funct. Mater. 28 1706897Google Scholar

    [54]

    Tan H, Ni Z, Peng W, Du S, Liu X, Zhao S, Li W, Ye Z, Xu M, Xu Y, Pi X, Yang D 2018 Nano Energy 52 422Google Scholar

    [55]

    Ma F, Zhu Y, Xu Z, Liu Y, Zheng X, Ju S, Li Q, Ni Z, Hu H, Chai Y, Wu C, Kim T W, Li F 2020 Adv. Funct. Mater. 30 1908901Google Scholar

    [56]

    He H, Yang R, Zhou W, Huang H-M, Xiong J, Gan L, Zhai T, Guo X 2018 Small 14 1800079Google Scholar

    [57]

    Yang J, Pickett M, Li X, Ohlberg D, Stewart D, Williams R 2008 Nat. Nanotechnol. 3 429Google Scholar

    [58]

    You T, Du N, Slesazeck S, Mikolajick T, Li G, Burger D, Skorupa I, Stocker H, Abendroth B, Beyer A, Volz K, Schmidt O, Schmidt H 2014 ACS Appl. Mater. Interfaces 6 19758Google Scholar

    [59]

    Zhai Y, Yang X, Wang F, Li Z, Ding G, Qiu Z, Wang Y, Zhou Y, Han S T 2018 Adv. Mater. 30 1803563Google Scholar

    [60]

    Yang R, Huang H, Hong Q, Yin X, Tan Z, Shi T, Zhou Y, Miao X, Wang X, Mi S 2018 Adv. Funct. Mater. 28 1704455Google Scholar

    [61]

    Tan H, Liu G, Zhu X, Yang H, Chen B, Chen X, Shang J, Lu W D, Wu Y, Li R 2015 Adv. Mater. 27 2797Google Scholar

    [62]

    Zhou S, Ni Z, Ding Y, Sugaya M, Pi X, Nozaki T 2016 ACS Photonics 3 415Google Scholar

    [63]

    Ni Z, Ma L, Du S, Xu Y, Yuan M, Fang H, Wang Z, Xu M, Li D, Yang J, Hu W, Pi X, Yang D 2017 ACS Nano 11 9854Google Scholar

    [64]

    Ni Z, Pi X, Zhou S, Nozaki T, Grandidier B, Yang D 2016 Adv. Opt. Mater. 4 700Google Scholar

    [65]

    Ge R, Wu X, Kim M, Shi J, Sonde S, Tao L, Zhang Y, Lee J, Akinwande D 2018 Nano Lett. 18 434Google Scholar

    [66]

    Zhou Y, Liu D, Wang J, Cheng Z, Liu L, Yang N, Liu Y, Xia T, Liu X, Zhang X, Ye C, Xu Z, Xiong W, Chu P, Yu X 2020 ACS Appl. Mater. Interface 12 25108Google Scholar

    [67]

    Xiang D, Liu T, Xu J, Tan J, Hu Z, Lei B, Zheng Y, Wu J, Neto A, Liu L, Chen W 2018 Nat. Commun. 9 2966Google Scholar

    [68]

    Tran M D, Kim H, Kim J S, Doan M H, Chau T K, Vu Q A, Kim J H, Lee Y H 2019 Adv. Mater. 31 807075

    [69]

    Pei F, Yan L, Wu Z, Lu J, Zhao J, Chen J Liu Q, Yan X 2021 ACS Nano 15 17319Google Scholar

    [70]

    Wang Q S, Wen Y, Cai K M, Cheng R Q, Yin L, Zhang Y, Li J, Wang Z X, Wang F, Wang F M, Shifa T A, Jiang C, Yang H, He J 2018 Sci. Adv. 4 eaap7916Google Scholar

    [71]

    Lee J, Pak S, Lee Y W, Cho Y, Hong J, Giraud P, Shin H S, Morris S M, Sohn J I, Cha S, Kim J M 2017 Nat. Commun. 8 14734Google Scholar

    [72]

    Miller D A B 2009 Proc. IEEE 97 1166Google Scholar

    [73]

    Lin Y, Wang Z, Zhang X, Zeng T, Bai L, Kang Z, Wang C, Zhao X, Xu H, Liu Y. 2020 NPG Asia Mater. 12 1Google Scholar

    [74]

    Hu L X, Yang J, Wang J R, Cheng P H, O. Chua L, Zhuge F 2020 Adv. Funct. Mater. 31 2005582

    [75]

    Ahmed T, Balendhran S, Karim M N, Mayes E L H, Field M R, Ramanathan R, Singh M, Bansal V, Sriram S, Bhaskaran M, Walia S 2017 NPJ 2 D Mater. Appl. 1 18Google Scholar

    [76]

    Walia S, Sabri Y, Ahmed T, Field M R, Ramanathan R, Arash A, Bhargava S K, Sriram S, Bhaskaran M, Bansal V, Balendhran S 2017 2 D Mater. 4 015025

    [77]

    Favron A, Gaufres E, Fossard F, Phaneuf-L'Heureux A L, Tang N Y W, Levesque P L, Loiseau A, Leonelli R, Francoeur S, Martel R 2015 Nat. Mater. 14 826Google Scholar

    [78]

    Kuriakose S, Ahmed T, Balendhran S, Bansal V, Sriram S, Bhaskaran M, Walia S 2018 2D Mater. 5 032001Google Scholar

    [79]

    Utt K L, Rivero P, Mehboudi M, Harriss E O, Borunda M F, SanJuan A A P, Barraza-Lopez S. 2015 ACS Cent. Sci. 1 320Google Scholar

    [80]

    Wood J D, Wells S A, Jariwala D, Chen K S, Cho E, Sangwan V K, Liu X, Lauhon L J, Marks T. J, Hersam M C 2014 Nano Lett. 14 6964Google Scholar

    [81]

    Ahmed T, Kuriakose S, Abbas S, Spencer M J S, Rahman M A, Tahir M, Lu Y R, Sonar P, Bansal V, Bhaskaran M, Sriram S, Walia S 2019 Adv. Funct. Mater. 29 1901991Google Scholar

    [82]

    Shan X Y, Zhao C Y, Wang X N, Wang Z Q, Lin Y, Zeng T, Zhao X N, Xu H Y, Zhang X T, Liu Y C 2021 Adv. Sci. 8 2104632

    [83]

    Colton R J, Guzman A M, Rabalais J W 1978 ACC Chem. Res. 11 170Google Scholar

    [84]

    Zhu Y, Wu C, Xu Z, Liu Y, Hu H, Guo T, Kim T, Chai Y, Li F 2021 Nano Lett. 21 14

    [85]

    Shan X, Wang Z, Lin Y, Zeng T, Zhao X, Xu H, Liu Y 2020 Adv. Electron. Mater. 6 2000536Google Scholar

    [86]

    Wang W, Gao S, Li Y, Yue W, Kan H, Zhang C, Lou Z, Wang L, Shen G 2021 Adv. Funct. Mater. 31 2101201Google Scholar

    [87]

    Yang L, Singh M, Shen S, Chih K, Liu S, Wu C, Chu C, Lin H 2020 Adv. Funct. Mater. 31 2008259

    [88]

    Fanselow M, Poulos A A 2005 Rev. Psychol. 56 207Google Scholar

    [89]

    Liu L, Cheng Z Q, Jiang B, Liu Y X, Zhang Y L, Yang F, Wang J H, Yu X F, Chu P K, Ye C 2021 ACS Appl. Mater. Interfaces 13 30797Google Scholar

    [90]

    Li Y, Long S, Liu Q, Lv H, Liu M 2017 Small 13 1604306Google Scholar

    [91]

    Zhang K, Meng D, Bai F, Zhai J, Wang Z L 2020 Adv. Funct. Mater. 30 2002945Google Scholar

    [92]

    Li Y, Zhong Y P, Deng Y F, Zhou Y X, Xu L, Miao X S 2013 J. Appl. Phys. 114 234503Google Scholar

    [93]

    Nguyen D A, Jo Y, Tran T U, Jeong M S, Kim H, Im H 2021 Small Methods 5 2101303Google Scholar

    [94]

    Shepherd R K, Shivdasani M N, Nayagam D A, Williams C E, Blamey P J 2013 Trends Biotechnol. 31 562Google Scholar

    [95]

    Kolb H 2003 Am. Sci. 91 28Google Scholar

    [96]

    Brady T F, Konkle T, Alvarez G A, Oliva A 2008 Proc. Natl Acad. Sci. USA 105 14325Google Scholar

    [97]

    Wang G, Wang R, Kong W and Zhang J 2018 Analysis. Cogn. Neurodyn. 12 615Google Scholar

    [98]

    Zhou F, Chen J, Tao X, Wang, X and Chai Y 2019 Research 2019 9490413

    [99]

    Radovic A, Williams M, Rousseau D, Kagan M, Bonacorsi D, Himmel A, Aurisano A, Terao K, Wongjirad T 2018 Nature 560 41Google Scholar

    [100]

    Sze V, Then Y, Emer J, Suleiman A, Zhang Z 2017 IEEE Custom Integrated Circuits Conference (CICC) 1

    [101]

    Xiang D, Liu T, Xu J, Tan J, Hu Z, Lei B, Zheng Y, Wu J, Neto A, Liu L, Chen W 2018 Nat. Commun. 9 1Google Scholar

    [102]

    Choi C, Leem J, Kim M S, Taqieddin A, Cho C, Cho K W, Lee G J, Seung H, Bae H J, Song Y M, Hyeon T, Aluru N R, Nam S W, Kim D H 2020 Nat. Commun. 11 1Google Scholar

    [103]

    McCollough C 1965 Science 149 1115Google Scholar

    [104]

    Huang X, Li Q Y, Shi W, Liu K, Zhang Y P, Liu Y W, Wei X F, Zhao Z Y, Guo Y L, Liu Y Q 2021 Small 17 2102820Google Scholar

    [105]

    Yuan J, Zhang Y, Zhou L, Zhang G, Yip H L, Lau T K, Lu X, Zhu C, Peng H, Johnson P A, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y 2019 Joule 3 1140Google Scholar

    [106]

    Seo S, Jo S H, Kim S, Shim J, Oh S, Kim J H, Heo K, Choi J W, Choi C, Oh S, Kuzum D, Wong H P, Park J H 2018 Nat. Commun. 9 5106Google Scholar

    [107]

    Wang S, Wang C Y, Wang P F, Wang C, Li Z A, Pan C, Dai1 Y T, Gao A Y, Liu C, Liu J, Yang H F, Liu X W, Cheng B, Chen K J, Wang Z L, Watanabe K J, Taniguchi T, Liang S J, Miao F 2020 Natl. Sci. Rev. 7 1Google Scholar

    [108]

    Euler T, Haverkamp S and Schubert T 2014 Nat. Rev. Neurosci. 15 507Google Scholar

    [109]

    van Hateren J H, Lamb T D 2006 Neuroscience 7 34

    [110]

    Wang Z, Li C, Lin P, Rao M Y, Nie Y Y, Song W H, Qiu Q R, Li Y N, Yan P, Strachan J P, Ge N, McDonald N, Wu Q, Hu M, Wu H Q, Williams R S, Xia Q F, Yang J J 2019 Nat. Mach. Intell. 1 434Google Scholar

    [111]

    Moon J, Ma W, Shin J H, Cai F X, Du C, Lee S H, Lu W D 2019 Nat. Electron. 2 480Google Scholar

    [112]

    Du C, Cai F, Zidan M A, Ma W, Lee S H, Lu W D 2017 Nat. Commun. 8 2204Google Scholar

    [113]

    Zhang Z H, Wang S Y, Liu C S, Xie R Z, Hu W D, Zhou P 2021 Nat. Nanotechnol. 17 27

    [114]

    Qin S, Wang F, Liu Y, Wan Q, Wang X, Xu Y, Shi Y, Wang X, Zhang R 2017 2 D Mater. 4 035022

    [115]

    Ahn J, Ko K, Kyhm J H, Ra H S, Bae H, Hong S, Kim D Y, Jang J S, Kim T W, Choi S, Kang J H, Kwon N, Park S, Ju B K, Poon T C, Park M C, Im S, Hwang D K 2021 ACS nano 15 17917Google Scholar

    [116]

    Xie D D, Yin K, Yang Z J, Huang H, Li X H, Shu Z W, Duan H G, He J, Jiang J 2022 Materials Horizons, 9 1448-1459

  • [1] 王梦蛟, 杨琛, 贺少波, 李志军. 一种新型复合指数型局部有源忆阻器耦合的Hopfield神经网络. 物理学报, 2024, 73(13): 130501. doi: 10.7498/aps.73.20231888
    [2] 魏巍, 管峰, 方鑫. 基于带隙阻波隔振的超材料梁吸隔振一体化设计方法. 物理学报, 2024, 73(22): 1-13. doi: 10.7498/aps.73.20241135
    [3] 郭慧朦, 梁燕, 董玉姣, 王光义. 蔡氏结型忆阻器的简化及其神经元电路的硬件实现. 物理学报, 2023, 72(7): 070501. doi: 10.7498/aps.72.20222013
    [4] 江碧怡, 周菲迟, 柴扬. 神经形态阻变器件在图像处理中的应用. 物理学报, 2022, 71(14): 148504. doi: 10.7498/aps.71.20220463
    [5] 武长春, 周莆钧, 王俊杰, 李国, 胡绍刚, 于奇, 刘洋. 基于忆阻器的脉冲神经网络硬件加速器架构设计. 物理学报, 2022, 71(14): 148401. doi: 10.7498/aps.71.20220098
    [6] 任宽, 张握瑜, 王菲, 郭泽钰, 尚大山. 基于忆阻器阵列的下一代储池计算. 物理学报, 2022, 71(14): 140701. doi: 10.7498/aps.71.20220082
    [7] 王世场, 卢振洲, 梁燕, 王光义. N型局部有源忆阻器的神经形态行为. 物理学报, 2022, 71(5): 050502. doi: 10.7498/aps.71.20212017
    [8] 朱佳雪, 张续猛, 王睿, 刘琦. 面向神经形态感知和计算的柔性忆阻器基脉冲神经元. 物理学报, 2022, 71(14): 148503. doi: 10.7498/aps.71.20212323
    [9] 王童, 温娟, 吕康, 陈健中, 汪亮, 郭新. 仿生生物感官的感存算一体化系统. 物理学报, 2022, 71(14): 148702. doi: 10.7498/aps.71.20220281
    [10] 陈阳洋, 何毓辉, 缪向水, 杨道虹. 基于3D-NAND的神经形态计算. 物理学报, 2022, 71(21): 210702. doi: 10.7498/aps.71.20220974
    [11] 温新宇, 王亚赛, 何毓辉, 缪向水. 忆阻类脑计算. 物理学报, 2022, 71(14): 140501. doi: 10.7498/aps.71.20220666
    [12] 沈柳枫, 胡令祥, 康逢文, 叶羽敏, 诸葛飞. 光电神经形态器件及其应用. 物理学报, 2022, 71(14): 148505. doi: 10.7498/aps.71.20220111
    [13] 张宇琦, 王俊杰, 吕子玉, 韩素婷. 应用于感存算一体化系统的多模调控忆阻器. 物理学报, 2022, 71(14): 148502. doi: 10.7498/aps.71.20220226
    [14] 胡炜, 廖建彬, 杜永乾. 一种适用于大规模忆阻网络的忆阻器单元解析建模策略. 物理学报, 2021, 70(17): 178505. doi: 10.7498/aps.70.20210116
    [15] 朱玮, 郭恬恬, 刘兰, 周荣荣. 铝基薄膜忆阻器作为感觉神经系统的习惯化特性. 物理学报, 2021, 70(6): 068502. doi: 10.7498/aps.70.20201961
    [16] 任宽, 张珂嘉, 秦溪子, 任焕鑫, 朱守辉, 杨峰, 孙柏, 赵勇, 张勇. 基于忆容器件的神经形态计算研究进展. 物理学报, 2021, 70(7): 078701. doi: 10.7498/aps.70.20201632
    [17] 朱雷杰, 王发强. 基于Knowm忆阻器的新型忆感器模型的设计与分析. 物理学报, 2019, 68(19): 198501. doi: 10.7498/aps.68.20190793
    [18] 徐威, 王钰琪, 李岳峰, 高斐, 张缪城, 连晓娟, 万相, 肖建, 童祎. 新型忆阻器神经形态电路的设计及其在条件反射行为中的应用. 物理学报, 2019, 68(23): 238501. doi: 10.7498/aps.68.20191023
    [19] 王晓媛, 俞军, 王光义. 忆阻器、忆容器和忆感器的Simulink建模及其特性分析. 物理学报, 2018, 67(9): 098501. doi: 10.7498/aps.67.20172674
    [20] 孙健, 刘伟强. 高超声速飞行器热管冷却前缘结构一体化建模分析. 物理学报, 2013, 62(7): 074401. doi: 10.7498/aps.62.074401
计量
  • 文章访问数:  15116
  • PDF下载量:  1225
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-28
  • 修回日期:  2022-03-28
  • 上网日期:  2022-07-14
  • 刊出日期:  2022-07-20

/

返回文章
返回