搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

N型局部有源忆阻器的神经形态行为

王世场 卢振洲 梁燕 王光义

引用本文:
Citation:

N型局部有源忆阻器的神经形态行为

王世场, 卢振洲, 梁燕, 王光义

Neuromorphic behaviors of N-type locally-active memristor

Wang Shi-Chang, Lu Zhen-Zhou, Liang Yan, Wang Guang-Yi
PDF
HTML
导出引用
  • 局部有源忆阻器(locally-active memristor, LAM)凭借其高集成度、低功耗和局部有源特性等优点, 在神经形态计算领域显示出巨大的潜力. 本文提出了一种简单的N型LAM数学模型, 通过揭示其非线性动力特性, 设计了N型LAM神经元电路. 采用Hopf分岔、数值分析等方法定量研究了该电路的动力学行为, 成功模拟了多种神经形态行为, 包括全或无行为、尖峰、簇发、周期振荡等. 并利用该神经元电路结构模拟了生物触觉神经元的频率特性. 仿真结果表明: 当输入信号幅值低于阈值时, 神经元电路输出信号的振荡频率与输入信号强度呈正相关(即兴奋状态), 并在阈值处达到最大值. 随后, 继续增大激励强度, 振荡频率则逐渐降低(即保护性抑制状态). 最后, 设计了N型LAM硬件仿真器, 并完成了人工神经元电路的硬件实现, 实验结果与仿真结果、理论分析相一致, 验证了该N型LAM具备的神经形态行为.
    Owing to the advantages of high integration, low power consumption and locally active characteristics, locally-active memristor (LAM) has shown great potential applications in neuromorphic computing. To further investigate the neuromorphic dynamics of LAMs, a simple N-type LAM mathematical model is proposed in this work. By analyzing its voltage-current characteristic and small-signal equivalent circuit, a neuron circuit based on the N-type LAM is designed, where a variety of neuromorphic behaviors are successfully simulated, such as “all-or-nothing” behavior, spikes, bursting, periodic oscillation, etc. Moreover, Hopf bifurcation theory and numerical analysis method are used to study the dynamics of the circuit quantitatively. Then, an artificial tactile neuron and its frequency characteristics are presented by using the proposed neuron circuit topology. The simulation results show that when the amplitude of the input signal is lower than the threshold, the oscillation frequency of the output signal of the artificial neuron circuit is positively correlated with the intensity of the input signal, and reaches a maximum value at the threshold. The above frequency characteristics are consistent with those of the exciting state of biological sensory system. Subsequently, if the incentive intensity continues to increase, the oscillation frequency will gradually decrease, corresponding to the protective inhibition behavior. Finally, the physical circuit of the N-type LAM, and artificialneuron circuit are realized. The experimental results accord well with the simulation results and theoreticalanalyses, manifesting the practicability of the N-type LAM model and the feasibility of artificial neuron circuit.
      通信作者: 卢振洲, luzhz@hdu.edu.cn
    • 基金项目: 浙江省自然科学基金(批准号: LY20F010008)和国家自然科学基金(批准号: 62171173)资助的课题.
      Corresponding author: Lu Zhen-Zhou, luzhz@hdu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Zhejiang Pvovince, China (Grant No. LY20F010008) and the National Natural Science Foundation of China (Grant No. 62171173)
    [1]

    Moore G E 1998 Proc. IEEE 86 82Google Scholar

    [2]

    Backus J 1978 Commun. ACM. 21 613Google Scholar

    [3]

    Zhao Y, Liu B, Yang J, He J, Jiang J 2020 Chin. Phys. Lett. 37 088501Google Scholar

    [4]

    Chen Y-B, Yang X-K, Yan T, Wei B, Cui H-Q, Li C, Cai L 2020 Chin. Phys. Lett. 37 078501Google Scholar

    [5]

    Kumar S, Williams R S, Wang Z 2020 Nature 585 518

    [6]

    Maass W 1997 Neural. Netw. 10 659Google Scholar

    [7]

    Merolla P A, Arthur J V, Alvarez-Icaza R, et al. 2014 Science 345 668Google Scholar

    [8]

    Davies M, Srinivasa N, Lin T H, et al. 2018 IEEE Micro. 38 82Google Scholar

    [9]

    Indiveri G, Linares-Barranco B, Hamilton T J, et al. 2011 Front. Neurosci. 5 73Google Scholar

    [10]

    Kim H, Hwang S, Park J, Yun S, Lee J H, Park B G 2018 IEEE Electron. Device Lett. 39 630Google Scholar

    [11]

    Wang W, Pedretti G, Milo V, Carboni R, Calderoni A, Ramaswamy N, Spinelli A S, Ielmini D 2018 Sci. Adv. 4 eaat4752Google Scholar

    [12]

    Prezioso M, Mahmoodi M R, Bayat F M, Nili H, Kim H, Vincent A, Strukov D B 2018 Nat. Commun. 9 5311Google Scholar

    [13]

    Wang Z, Joshi S, Savel’ev S, et al. 2018 Nat. Electron. 1 137Google Scholar

    [14]

    Roy K, Jaiswal A, Panda P 2019 Nature 575 607Google Scholar

    [15]

    Wang M, Cai S, Pan C, Wang C, Lian X, Zhuo Y, Xu K, Cao T, Pan X, Wang B, Liang S J, Yang J J, Wang P, Miao F 2018 Nat. Electron. 1 130Google Scholar

    [16]

    Pickett M D, Williams R S 2012 Nanotechnology 23 215202Google Scholar

    [17]

    Choi S, Tan S H., Li Z, Kim Y, Choi C, Chen P Y, Yeon H, Yu S, Kim J 2018 Nat. Mater. 17 335Google Scholar

    [18]

    Li C, Hu M, Li Y, et al. 2018 Nat. Electron. 1 52Google Scholar

    [19]

    Hu M, Graves C E, Li C, Li Y, Ge N, Montgomery E, Davila N, Jiang H, Williams R S, Yang J J, Xia Q, Strachan J P 2018 Adv. Mater. 30 1705914Google Scholar

    [20]

    Valov I, Linn E, Tappertzhofen S, Schmelzer S, van den Hurk J, Lentz F, Waser R 2013 Nat. Commun. 4 1771Google Scholar

    [21]

    Wang Z, Rao M, Han J W, et al. 2018 Nat. Commun. 9 3208Google Scholar

    [22]

    Yang Y, Gao P, Li L, Pan X, Tappertzhofen S, Choi S, Waser R, valov I, Lu W D. 2014 Nat. Commun. 5 4232Google Scholar

    [23]

    Liang Y, Wang G, Chen G, Dong Y, Yu D, Iu H H C 2020 IEEE Trans. Circuits. Syst. I. Regul. Pap. 67 5139Google Scholar

    [24]

    Li C, Wang Z, Rao M, Belkin D, Song W, Jiang H, Yan P, Li Y, Lin P, Hu M, Ge N, Stranchan J P, Barnell M, Wu Q, Williams R S, Yang J J, Xia Q 2019 Nat. Mach. Intell. 1 49Google Scholar

    [25]

    Li C, Belkin D, Li Y, Yan P, Hu M, Ge N, Jiang H, Montgomery E, Lin P, Wang Z, Song W, Strachan J P, Barnell M, Wu Q, Williams R S, Yang J J, Xia Q 2018 Nat. Commun. 9 2385Google Scholar

    [26]

    Zhang C, Chen Y, Yi M, Zhu Y, Li T, Liu L, Wang L, Xie L, Huang W 2018 Sci. Sin. Inform. 48 115Google Scholar

    [27]

    Chua L O 2005 Int. J. Bifurcat. Chaos. 15 3435Google Scholar

    [28]

    Mainzer K, Chua L O 2013 Local Activity Principle (London: Imperial College Press)

    [29]

    Midya R, Wang Z, Asapu S, Joshi S, Li Y, Zhuo Y, Song W, Jiang H, Upadhay N, Rao M, Lin P, Li C, Xia Q, Yang J J 2019 Adv. Electron. Mater. 5 1900060Google Scholar

    [30]

    Zhu J, Wu Z, Zhang X, Wang Y, Lu J, Chen P, Cheng L, Shi T, Liu Q 2021 5th IEEE Electron Devices Technology & Manufacturing Conference Chengdu, China, March 9–12, 2021 pp1–3

    [31]

    Al-Shedivat M, Naous R, Cauwenberghs G, Salama K N 2015 IEEE J. Emerg. Sel. Topic. Power Electon. 5 242Google Scholar

    [32]

    Zhang X, Zhuo Y, Luo Q, Wu Z, Midya R, Wang Z, Song W, Wang R, Upadhyay N K, Fang Y, Kiani F, Rao M, Yang Y, Xia Q, Liu Q, Liu M, Yang J J 2020 Nat. Commun. 11 51Google Scholar

    [33]

    Chua L O 2011 Appl. Phys. A 102 765Google Scholar

    [34]

    Liang Y, Lu Z, Wang G, Dong Y, Yu D, Iu H H C 2020 IEEE Access 8 75571Google Scholar

  • 图 1  N型LAM不同频率下的捏滞回环曲线

    Fig. 1.  Pinch hysteresis loop curves of the N-type LAM under different frequencies.

    图 2  N型LAM电学特性曲线

    Fig. 2.  N-type LAM electrical characteristic curves.

    图 3  N型LAM小信号等效电路

    Fig. 3.  N-type LAM small-signal equivalent circuit.

    图 4  基于N型LAM的神经元电路

    Fig. 4.  Neuron circuit based on the N-type LAM.

    图 5  (a) 在VD = 3 V且30 mH ≤ L ≤ 600 mH范围下, 雅可比矩阵特征值的轨迹; (b) 逐步增大电感, 人工神经元电路可振荡条件下, VD范围变化趋势

    Fig. 5.  (a) The trajectory of the Jacobian matrix eigenvalues with VD = 3 V and 30 mH ≤ L ≤ 600 mH; (b) with the artificial neuron circuit can oscillate, the VD range changes trend whereas the inductance increase gradually.

    图 6  不同直流激励选择下, 逐步增大电感时振荡频率变化曲线 (a) VD = 2.5 V; (b) VD = 2.8 V; (c) VD = 3.0 V; (d) VD = 3.5 V

    Fig. 6.  The oscillation frequency change curves when the inductance is gradually increased under different DC excitations: (a) VD = 2.5 V; (b) VD = 2.8 V; (c) VD = 3.0 V; (d) VD = 3.5 V.

    图 7  N型LAM神经元电路的“全或无”行为

    Fig. 7.  The “all-or-nothing” behavior of N-type LAM neuron circuit.

    图 8  不同占空比的脉冲激励下, 神经元电路的发放行为波形 (a)占空比 = 0.01; (b)占空比 = 0.1; (c)占空比 = 0.4; (d)占空比 = 0.6; (e)占空比 = 0.8; (f)占空比 = 1.0

    Fig. 8.  The firing behavior waveforms of the neuron circuit under pulse excitation with different duty ratios: (a) Duty ratio = 0.01; (b) duty ratio = 0. 1; (c) duty ratio = 0.4; (d) duty ratio = 0.6; (e) duty ratio = 0.8; (f) duty ratio = 1.0.

    图 9  (a)生物感受系统结构示意图; (b)基于N型LAM的人工触觉神经元结构图

    Fig. 9.  (a) Schematic diagram of the biological sensor system; (b) the structure diagram of the artificial tactile neuron based on the N-type LAM.

    图 10  L = 300 mH时, 不同直流激励下人工神经元电路中N型LAM两端电压v的瞬时时域波形

    Fig. 10.  The instantaneous time-domain waveforms of the voltage across the N-type LAM in the artificial neuron circuit under different DC excitations with L = 300 mH.

    图 11  不同电感下, 递增直流电压下振荡频率变化曲线 (a) L = 300 mH; (b) L = 500 mH

    Fig. 11.  Oscillation frequency varies as a function of DC voltage under different inductances: (a) L = 300 mH; (b) L = 500 mH.

    图 12  (a) 基于N型LAM的硬件仿真器原理图; (b) 实验设备图

    Fig. 12.  (a) Schematic diagram of hardware emulatorof the N-type LAM; (b) diagram of experimental equipments.

    图 13  (a) 实验测量N型LAM硬件仿真器的DC V-I特性曲线; (b) 实验测量N型LAM硬件仿真器电导变化曲线

    Fig. 13.  (a) Experimental measurement of the DC V-I characteristics curve of the N-type LAM hardware emulator; (b) experimental measurement of the conductance change curve of the N-type LAM hardware emulator.

    图 14  人工神经元仿真器电路结构图

    Fig. 14.  Circuit structure diagram of artificial neuron emulator.

    图 15  实验测量得到人工神经元的“全或无”行为

    Fig. 15.  Experimentally measured the “all-or-nothing” behavior of artificial neuron emulator.

    图 16  增大脉冲宽度, 实验测得神经元的发放行为波形 (a)占空比为0.15; (b)占空比为0.40; (c)占空比为0.65; (d)占空比为0.85

    Fig. 16.  Increasing the pulse width, the experimentally measured neuron firing behavior waveforms: (a) Duty ratio is 0.15; (b) duty ratio is 0.40; (c) duty ratio is 0.65; (d) duty ratio is 0.85.

    图 17  直流偏置VD = 3 V时, 不同电感选择下实验测得人工神经元电路输出v的瞬时时域波形 (a) L = 30 mH; (b) L = 39 mH; (c) L = 47 mH; (d) L = 100 mH; (e) L = 200 mH; (f) L = 300 mH

    Fig. 17.  The experimentally measured instantaneous time-domain waveforms of the artificial neuron circuit output v under different inductances with the DC bias VD = 3 V: (a) L = 30 mH; (b) L = 39 mH; (c) L = 47 mH ; (d) L = 100 mH; (e) L = 200 mH; (f) L = 300 mH

    图 18  电感L = 300 mH时, 不同直流偏置选择下实验测得N型LAM两端电压v的瞬时时域波形 (a) VD = 2.5 V; (b) VD = 2.8 V; (c) VD = 3.5 V; (d) VD = 4.0 V; (e) VD = 4.4 V; (f) VD = 4.8 V

    Fig. 18.  The instantaneous time-domain waveforms of the voltage v across the N-type LAM measured under different DC bias selections with the inductance L = 300 mH: (a) VD = 2.5 V; (b) VD = 2.8 V; (c) VD = 3.5 V; (d) VD = 4.0 V; (e) VD = 4.4 V; (f) VD = 4.8 V

    图 19  两种电感选择下, 递增直流激励实验测得v的频率变化曲线 (a) L = 330 mH; (b) L = 470 mH

    Fig. 19.  The experimentally measured frequency characteristics increasing the DC excitation gradually under two different inductances: (a) L = 330 mH; (b) L = 470 mH.

    表 1  硬件电路参数数值

    Table 1.  Hardware circuit parameter value.

    参数取值 参数取值 参数取值 参数取值
    VCC,Vs/V+15 Ri2/kΩ40 Rd1/kΩ2.5 Rin/kΩ1
    VEE/V–15 Rx/kΩ10 Rd0/kΩ62.5 Ci/nF1
    Ri1/kΩ44.44 Rp/kΩ50 Rw,Rz/kΩ5
    下载: 导出CSV
  • [1]

    Moore G E 1998 Proc. IEEE 86 82Google Scholar

    [2]

    Backus J 1978 Commun. ACM. 21 613Google Scholar

    [3]

    Zhao Y, Liu B, Yang J, He J, Jiang J 2020 Chin. Phys. Lett. 37 088501Google Scholar

    [4]

    Chen Y-B, Yang X-K, Yan T, Wei B, Cui H-Q, Li C, Cai L 2020 Chin. Phys. Lett. 37 078501Google Scholar

    [5]

    Kumar S, Williams R S, Wang Z 2020 Nature 585 518

    [6]

    Maass W 1997 Neural. Netw. 10 659Google Scholar

    [7]

    Merolla P A, Arthur J V, Alvarez-Icaza R, et al. 2014 Science 345 668Google Scholar

    [8]

    Davies M, Srinivasa N, Lin T H, et al. 2018 IEEE Micro. 38 82Google Scholar

    [9]

    Indiveri G, Linares-Barranco B, Hamilton T J, et al. 2011 Front. Neurosci. 5 73Google Scholar

    [10]

    Kim H, Hwang S, Park J, Yun S, Lee J H, Park B G 2018 IEEE Electron. Device Lett. 39 630Google Scholar

    [11]

    Wang W, Pedretti G, Milo V, Carboni R, Calderoni A, Ramaswamy N, Spinelli A S, Ielmini D 2018 Sci. Adv. 4 eaat4752Google Scholar

    [12]

    Prezioso M, Mahmoodi M R, Bayat F M, Nili H, Kim H, Vincent A, Strukov D B 2018 Nat. Commun. 9 5311Google Scholar

    [13]

    Wang Z, Joshi S, Savel’ev S, et al. 2018 Nat. Electron. 1 137Google Scholar

    [14]

    Roy K, Jaiswal A, Panda P 2019 Nature 575 607Google Scholar

    [15]

    Wang M, Cai S, Pan C, Wang C, Lian X, Zhuo Y, Xu K, Cao T, Pan X, Wang B, Liang S J, Yang J J, Wang P, Miao F 2018 Nat. Electron. 1 130Google Scholar

    [16]

    Pickett M D, Williams R S 2012 Nanotechnology 23 215202Google Scholar

    [17]

    Choi S, Tan S H., Li Z, Kim Y, Choi C, Chen P Y, Yeon H, Yu S, Kim J 2018 Nat. Mater. 17 335Google Scholar

    [18]

    Li C, Hu M, Li Y, et al. 2018 Nat. Electron. 1 52Google Scholar

    [19]

    Hu M, Graves C E, Li C, Li Y, Ge N, Montgomery E, Davila N, Jiang H, Williams R S, Yang J J, Xia Q, Strachan J P 2018 Adv. Mater. 30 1705914Google Scholar

    [20]

    Valov I, Linn E, Tappertzhofen S, Schmelzer S, van den Hurk J, Lentz F, Waser R 2013 Nat. Commun. 4 1771Google Scholar

    [21]

    Wang Z, Rao M, Han J W, et al. 2018 Nat. Commun. 9 3208Google Scholar

    [22]

    Yang Y, Gao P, Li L, Pan X, Tappertzhofen S, Choi S, Waser R, valov I, Lu W D. 2014 Nat. Commun. 5 4232Google Scholar

    [23]

    Liang Y, Wang G, Chen G, Dong Y, Yu D, Iu H H C 2020 IEEE Trans. Circuits. Syst. I. Regul. Pap. 67 5139Google Scholar

    [24]

    Li C, Wang Z, Rao M, Belkin D, Song W, Jiang H, Yan P, Li Y, Lin P, Hu M, Ge N, Stranchan J P, Barnell M, Wu Q, Williams R S, Yang J J, Xia Q 2019 Nat. Mach. Intell. 1 49Google Scholar

    [25]

    Li C, Belkin D, Li Y, Yan P, Hu M, Ge N, Jiang H, Montgomery E, Lin P, Wang Z, Song W, Strachan J P, Barnell M, Wu Q, Williams R S, Yang J J, Xia Q 2018 Nat. Commun. 9 2385Google Scholar

    [26]

    Zhang C, Chen Y, Yi M, Zhu Y, Li T, Liu L, Wang L, Xie L, Huang W 2018 Sci. Sin. Inform. 48 115Google Scholar

    [27]

    Chua L O 2005 Int. J. Bifurcat. Chaos. 15 3435Google Scholar

    [28]

    Mainzer K, Chua L O 2013 Local Activity Principle (London: Imperial College Press)

    [29]

    Midya R, Wang Z, Asapu S, Joshi S, Li Y, Zhuo Y, Song W, Jiang H, Upadhay N, Rao M, Lin P, Li C, Xia Q, Yang J J 2019 Adv. Electron. Mater. 5 1900060Google Scholar

    [30]

    Zhu J, Wu Z, Zhang X, Wang Y, Lu J, Chen P, Cheng L, Shi T, Liu Q 2021 5th IEEE Electron Devices Technology & Manufacturing Conference Chengdu, China, March 9–12, 2021 pp1–3

    [31]

    Al-Shedivat M, Naous R, Cauwenberghs G, Salama K N 2015 IEEE J. Emerg. Sel. Topic. Power Electon. 5 242Google Scholar

    [32]

    Zhang X, Zhuo Y, Luo Q, Wu Z, Midya R, Wang Z, Song W, Wang R, Upadhyay N K, Fang Y, Kiani F, Rao M, Yang Y, Xia Q, Liu Q, Liu M, Yang J J 2020 Nat. Commun. 11 51Google Scholar

    [33]

    Chua L O 2011 Appl. Phys. A 102 765Google Scholar

    [34]

    Liang Y, Lu Z, Wang G, Dong Y, Yu D, Iu H H C 2020 IEEE Access 8 75571Google Scholar

  • [1] 郭慧朦, 梁燕, 董玉姣, 王光义. 蔡氏结型忆阻器的简化及其神经元电路的硬件实现. 物理学报, 2023, 72(7): 070501. doi: 10.7498/aps.72.20222013
    [2] 古亚娜, 梁燕, 王光义, 夏晨阳. NbOx忆阻神经元的设计及其在尖峰神经网络中的应用. 物理学报, 2022, 71(11): 110501. doi: 10.7498/aps.71.20220141
    [3] 刘益春, 林亚, 王中强, 徐海阳. 氧化物基忆阻型神经突触器件. 物理学报, 2019, 68(16): 168504. doi: 10.7498/aps.68.20191262
    [4] 邵楠, 张盛兵, 邵舒渊. 具有经验学习特性的忆阻器模型分析. 物理学报, 2019, 68(19): 198502. doi: 10.7498/aps.68.20190808
    [5] 邵楠, 张盛兵, 邵舒渊. 具有感觉记忆的忆阻器模型. 物理学报, 2019, 68(1): 018501. doi: 10.7498/aps.68.20181577
    [6] 徐威, 王钰琪, 李岳峰, 高斐, 张缪城, 连晓娟, 万相, 肖建, 童祎. 新型忆阻器神经形态电路的设计及其在条件反射行为中的应用. 物理学报, 2019, 68(23): 238501. doi: 10.7498/aps.68.20191023
    [7] 陈义豪, 徐威, 王钰琪, 万相, 李岳峰, 梁定康, 陆立群, 刘鑫伟, 连晓娟, 胡二涛, 郭宇锋, 许剑光, 童祎, 肖建. 基于二维材料MXene的仿神经突触忆阻器的制备和长/短时程突触可塑性的实现. 物理学报, 2019, 68(9): 098501. doi: 10.7498/aps.68.20182306
    [8] 吴全潭, 时拓, 赵晓龙, 张续猛, 伍法才, 曹荣荣, 龙世兵, 吕杭炳, 刘琦, 刘明. 基于六角氮化硼二维薄膜的忆阻器. 物理学报, 2017, 66(21): 217304. doi: 10.7498/aps.66.217304
    [9] 邵楠, 张盛兵, 邵舒渊. 具有突触特性忆阻模型的改进与模型经验学习特性机理. 物理学报, 2016, 65(12): 128503. doi: 10.7498/aps.65.128503
    [10] 许雅明, 王丽丹, 段书凯. 磁控二氧化钛忆阻混沌系统及现场可编程逻辑门阵列硬件实现. 物理学报, 2016, 65(12): 120503. doi: 10.7498/aps.65.120503
    [11] 阮静雅, 孙克辉, 牟俊. 基于忆阻器反馈的Lorenz超混沌系统及其电路实现. 物理学报, 2016, 65(19): 190502. doi: 10.7498/aps.65.190502
    [12] 陆金波, 侯晓荣, 罗敏. 一类Hopf分岔系统的通用鲁棒稳定控制器设计方法. 物理学报, 2016, 65(6): 060502. doi: 10.7498/aps.65.060502
    [13] 刘玉东, 王连明. 基于忆阻器的spiking神经网络在图像边缘提取中的应用. 物理学报, 2014, 63(8): 080503. doi: 10.7498/aps.63.080503
    [14] 张玲梅, 张建文, 吴润衡. 具有对应分段系统和指数系统的新混沌系统的Hopf分岔控制研究. 物理学报, 2014, 63(16): 160505. doi: 10.7498/aps.63.160505
    [15] 李志军, 曾以成, 李志斌. 改进型细胞神经网络实现的忆阻器混沌电路. 物理学报, 2014, 63(1): 010502. doi: 10.7498/aps.63.010502
    [16] 赵洪涌, 陈凌, 于小红. 一类惯性神经网络的分岔与控制. 物理学报, 2011, 60(7): 070202. doi: 10.7498/aps.60.070202
    [17] 包伯成, 胡文, 许建平, 刘中, 邹凌. 忆阻混沌电路的分析与实现. 物理学报, 2011, 60(12): 120502. doi: 10.7498/aps.60.120502
    [18] 吴志强, 孙立明. 基于Washout滤波器的Rössler系统Hopf分岔控制. 物理学报, 2011, 60(5): 050504. doi: 10.7498/aps.60.050504
    [19] 马伟, 王明渝, 聂海龙. 单周期控制Boost变换器Hopf分岔控制及电路实现. 物理学报, 2011, 60(10): 100202. doi: 10.7498/aps.60.100202
    [20] 张朝霞, 禹思敏. 基于数字信号处理器的语音无线混沌通信——系统设计与硬件实现. 物理学报, 2010, 59(5): 3017-3026. doi: 10.7498/aps.59.3017
计量
  • 文章访问数:  6035
  • PDF下载量:  189
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-31
  • 修回日期:  2021-11-17
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-03-05

/

返回文章
返回