-
NbOx忆阻器凭借其纳米尺寸、阈值切换及局部有源特性在神经形态计算领域展现出巨大的应用前景. 对NbOx忆阻器动力学特性的深入分析和研究有利于忆阻神经元电路的设计和优化. 本文基于局部有源理论, 采用小信号分析方法对NbOx忆阻器物理模型展开了研究, 定量分析了产生尖峰振荡的区域和条件, 并确定了激励信号幅值和尖峰频率之间的定量关系. 基于上述理论分析, 进一步设计了NbOx忆阻器神经元, 并结合忆阻突触十字交叉阵列, 构建了25×10的尖峰神经网络(spiking neuron network, SNN). 最后, 分别利用频率编码和时间编码两种方式, 有效地实现了数字0到9模式的识别功能.NbOx memristors show great application prospect in neuromorphic computing due to its nanoscale size, threshold switching, and locally active properties. The in-depth analysis and study of NbOx memristors’s dynamic properties are beneficial to the design and optimization of memristive neuron circuits. In this paper, based on the local active theory, the physical model of NbOx memristor is studied by using the small signal analysis method, and the region and conditions of the peak oscillation are quantitatively analyzed, and the quantitative relationship between the excitation signal amplitude and the peak frequency is determined. Based on the above theoretical analysis, NbOx memristor neurons are further designed and combined with the memristive synaptic crisscross array in order to construct a 25×10 spiking neural network (SNN). Finally, the recognitional function of digital 0 to 9 patterns is effectively realized by using frequency coding and time coding respectively.
-
Keywords:
- NbOx memristor /
- local-activity /
- artificial neuron /
- spiking neural network
[1] Chua L O 1971 IEEE Trans. Circuits Syst. 18 5
[2] Williams R S 2008 IEEE Spectr. 45 12
[3] Zhou J, Cai F, Wang Q, Chen B, S Gaba, W D Lu 2016 IEEE Electron Device Lett. 37 4Google Scholar
[4] 王春华, 蔺海荣, 孙晶如, 周玲, 周超, 邓全利 2020 电子与信息学报 42 795Google Scholar
Wang C H, Lin H R, Sun R J, Zhou L, Zhou C, Deng Q L 2020 J. Electron. Inf. Technol. 42 795Google Scholar
[5] Yang J J, Strukov D B, Stewart D R 2013 Nat. Nanotechnol. 8 1Google Scholar
[6] Wu H, Zhou J, Chen M, Xu Q, Bao B 2021 Chaos, Solitons Fractals. 154 2022
[7] Kim S, Du C, Sheridan P, Ma W, Choi S H, Lu W D 2015 ACS Nano 15 3
[8] Weiher M, Herzig M, Tetzlaff R, Ascoli A, Mikolajick T, Slesazeck S 2019 IEEE Trans. Circuits Syst. 66 7
[9] Strukov D B 2016 Appl. Phys. A 122 4Google Scholar
[10] Kvatinsky S, Ramadan M, Friedman E G, Kolodny A 2015 IEEE Trans. Circuits Syst. Express Briefs. 62 8
[11] Chua L O 2005 Int. J. Bifurcation Chaos 15 11
[12] Ruan J Y, Sun K H, Mou J, He S B, Zhang L M 2018 Eur. Phys. J. Plus 133 3Google Scholar
[13] Weiher M, Herzig M, Tetzlaff R, Ascoli A, Mikolajick T, Slesazeck S 2019 IEEE Trans. Circuits Syst. Regul. Pap. 66 7
[14] Liang Y, Wang G Y, Chen G R, Dong Y J, Yu D S, Iu H H C 2020 IEEE Trans Circuits Syst. 67 5139Google Scholar
[15] Mannan Z I, Choi H, Kim H, Chua L O 2016 Int. J. Bifurcation Chaos 26 1630009Google Scholar
[16] Jin P P, Wang G Y, Liang Y, Iu H H C, Chua L O 2021 IEEE Trans. Circuits Syst. 68 11
[17] Yi W, Tsang K K, Lam S K, Bai X, Crowell J A, Flores E A 2018 Nat. Commun. 7 9
[18] Lin H R, Wang C H, Sun Y C, Yao W 2020 Nonlinear Dyn. 100 4
[19] Wei Q M, Tang J S, Li X Y, Zhong Y N, Gao B, Qian H, Wu H Q 2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM) Chengdu, China, April 8–11, 2021 pp1–3
[20] Frank D J, Dennard R H, Nowak E, Solomon P M, Taur Y, Wong H S P 2001 Proc. IEEE. 89 3Google Scholar
[21] Yeo I, Chu M, Gi S, Hwang H, Lee B 2019 IEEE Trans. Electron Devices 66 7Google Scholar
[22] Zhang X M, Wu Z H, Lu J K, et al. 2020 IEEE International Electron Devices Meeting(IEDM) Electr Network, December 12–18, 2020
[23] Wang Z R, Joshi S, Savel’ ev S, et al. 2018 Nat. Electron. 1 2Google Scholar
[24] Sheridan P, Ma W, Lu W 2014 IEEE International Symposium on Circuits and Systems (ISCAS) Melbourne, June 1–5, 2014 pp1078–1081
[25] Kumar S, Strachan J P, Williams R S 2017 Nature 548 7667
[26] Lottermoser T, Lonkai T, Amann U, Hohlwein D, Ihringer J, Fiebig M 2004 Nature 430 6999
[27] Sawicki M, Chiba D, Korbecka A, Nishitani Y, Majewski J A, Matsukura F, Dietl T, Ohno H 2008 Nature 455 7212
[28] Ascoli1 A, Demirkol1 A S, Tetzlaff R, Slesazeck S, Mikolajick T, Chua L O 2021 Front. Neurosci. 15 651452Google Scholar
[29] Liang Y, Zhu Q, Wang G Y, Nath S K, Iu H H C, Nandi S K, Elliman R G 2021 IEEE Trans. Circuits Syst. Regul. Pap. 68 1278Google Scholar
[30] 徐泠风, 李传东, 陈玲 2016 物理学报 65 240701Google Scholar
Xu L F, Li C D, Chen L 2016 Acta Phys. Sin. 65 240701Google Scholar
[31] Zhang Y, Wang X, Li Y, Friedman E G 2017 IEEE Trans. Circuits Syst. Express Briefs. 64 7
[32] 洪庆辉 2019 博士学位论文 (武汉: 华中科技大学)
Hong Q H 2019 Ph.D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)
-
图 4 (a) NbOx-Mott忆阻器在工作点Q (0.008 A, 0.3003 V)处的小信号等效电路模型; (b) Rx对工作点的依赖性; (c) Lx对工作点的依赖性; (d) Ry对工作点的依赖性
Fig. 4. (a) Small-signal equivalent circuit model of NbOx-Mott memristor at the operating point Q (0.008 A, 0.3003 V); (b) the dependence of Rx on the operating point; (c) the dependence of Lx on the operating point; (d) the dependence of Ry on the operating point.
图 8 当I = 0.008 A, C = 0.3 nF时, NbOx LAM的二阶振荡器的仿真结果 (a)电压vm、状态变量T和电流im的瞬态波形; (b)稳定点的im-T相图; 当I = 0.008 A, C = 0.8 nF时, NbOx LAM的二阶振荡器的仿真结果: (c)电压vm、状态变量T和电流im的瞬态波形; (d) 振荡状态的im-T相图
Fig. 8. Simulation results of the NbOx LAM second-order oscillator: (a) The transient waveforms of vm, T and im at I = 0.008 A and C = 0.3 nF; (b) the stable equilibrium on im-T phase plane at I = 0.008 A and C = 0.3 nF; (c) the transient waveforms of vm, T and im at I = 0.008 A and C = 0.8 nF; (d) the limit cycle on the im-T phase plane at I = 0.008 A and C = 0.8 nF.
图 11 (a) 忆阻突触处于ON状态时, Vi1和vm时域图; (b) 忆阻突触处于ON状态时, im时域图; (c) 忆阻突触处于OFF状态时, Vi1和vm时域图; (d) 忆阻突触处于OFF状态时, im时域图
Fig. 11. (a) The time-domain waveforms of Vi1 and vm when the memristive synapse is at ON state; (b) the time-domain waveforms of im at ON state; (c) the time-domain waveforms of Vi1 and vm when the memristive synapse is at OFF state; (d) the time-domain waveforms of im at OFF state.
-
[1] Chua L O 1971 IEEE Trans. Circuits Syst. 18 5
[2] Williams R S 2008 IEEE Spectr. 45 12
[3] Zhou J, Cai F, Wang Q, Chen B, S Gaba, W D Lu 2016 IEEE Electron Device Lett. 37 4Google Scholar
[4] 王春华, 蔺海荣, 孙晶如, 周玲, 周超, 邓全利 2020 电子与信息学报 42 795Google Scholar
Wang C H, Lin H R, Sun R J, Zhou L, Zhou C, Deng Q L 2020 J. Electron. Inf. Technol. 42 795Google Scholar
[5] Yang J J, Strukov D B, Stewart D R 2013 Nat. Nanotechnol. 8 1Google Scholar
[6] Wu H, Zhou J, Chen M, Xu Q, Bao B 2021 Chaos, Solitons Fractals. 154 2022
[7] Kim S, Du C, Sheridan P, Ma W, Choi S H, Lu W D 2015 ACS Nano 15 3
[8] Weiher M, Herzig M, Tetzlaff R, Ascoli A, Mikolajick T, Slesazeck S 2019 IEEE Trans. Circuits Syst. 66 7
[9] Strukov D B 2016 Appl. Phys. A 122 4Google Scholar
[10] Kvatinsky S, Ramadan M, Friedman E G, Kolodny A 2015 IEEE Trans. Circuits Syst. Express Briefs. 62 8
[11] Chua L O 2005 Int. J. Bifurcation Chaos 15 11
[12] Ruan J Y, Sun K H, Mou J, He S B, Zhang L M 2018 Eur. Phys. J. Plus 133 3Google Scholar
[13] Weiher M, Herzig M, Tetzlaff R, Ascoli A, Mikolajick T, Slesazeck S 2019 IEEE Trans. Circuits Syst. Regul. Pap. 66 7
[14] Liang Y, Wang G Y, Chen G R, Dong Y J, Yu D S, Iu H H C 2020 IEEE Trans Circuits Syst. 67 5139Google Scholar
[15] Mannan Z I, Choi H, Kim H, Chua L O 2016 Int. J. Bifurcation Chaos 26 1630009Google Scholar
[16] Jin P P, Wang G Y, Liang Y, Iu H H C, Chua L O 2021 IEEE Trans. Circuits Syst. 68 11
[17] Yi W, Tsang K K, Lam S K, Bai X, Crowell J A, Flores E A 2018 Nat. Commun. 7 9
[18] Lin H R, Wang C H, Sun Y C, Yao W 2020 Nonlinear Dyn. 100 4
[19] Wei Q M, Tang J S, Li X Y, Zhong Y N, Gao B, Qian H, Wu H Q 2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM) Chengdu, China, April 8–11, 2021 pp1–3
[20] Frank D J, Dennard R H, Nowak E, Solomon P M, Taur Y, Wong H S P 2001 Proc. IEEE. 89 3Google Scholar
[21] Yeo I, Chu M, Gi S, Hwang H, Lee B 2019 IEEE Trans. Electron Devices 66 7Google Scholar
[22] Zhang X M, Wu Z H, Lu J K, et al. 2020 IEEE International Electron Devices Meeting(IEDM) Electr Network, December 12–18, 2020
[23] Wang Z R, Joshi S, Savel’ ev S, et al. 2018 Nat. Electron. 1 2Google Scholar
[24] Sheridan P, Ma W, Lu W 2014 IEEE International Symposium on Circuits and Systems (ISCAS) Melbourne, June 1–5, 2014 pp1078–1081
[25] Kumar S, Strachan J P, Williams R S 2017 Nature 548 7667
[26] Lottermoser T, Lonkai T, Amann U, Hohlwein D, Ihringer J, Fiebig M 2004 Nature 430 6999
[27] Sawicki M, Chiba D, Korbecka A, Nishitani Y, Majewski J A, Matsukura F, Dietl T, Ohno H 2008 Nature 455 7212
[28] Ascoli1 A, Demirkol1 A S, Tetzlaff R, Slesazeck S, Mikolajick T, Chua L O 2021 Front. Neurosci. 15 651452Google Scholar
[29] Liang Y, Zhu Q, Wang G Y, Nath S K, Iu H H C, Nandi S K, Elliman R G 2021 IEEE Trans. Circuits Syst. Regul. Pap. 68 1278Google Scholar
[30] 徐泠风, 李传东, 陈玲 2016 物理学报 65 240701Google Scholar
Xu L F, Li C D, Chen L 2016 Acta Phys. Sin. 65 240701Google Scholar
[31] Zhang Y, Wang X, Li Y, Friedman E G 2017 IEEE Trans. Circuits Syst. Express Briefs. 64 7
[32] 洪庆辉 2019 博士学位论文 (武汉: 华中科技大学)
Hong Q H 2019 Ph.D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)
计量
- 文章访问数: 6342
- PDF下载量: 245
- 被引次数: 0