搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蔡氏结型忆阻器的简化及其神经元电路的硬件实现

郭慧朦 梁燕 董玉姣 王光义

引用本文:
Citation:

蔡氏结型忆阻器的简化及其神经元电路的硬件实现

郭慧朦, 梁燕, 董玉姣, 王光义

Simplification of Chua corsage memristor and hardware implementation of its neuron circuit

Guo Hui-Meng, Liang Yan, Dong Yu-Jiao, Wang Guang-Yi
PDF
HTML
导出引用
  • 蔡氏结型忆阻器(Chua corsage memristor, CCM)属于压控型局部有源忆阻器, 具有复杂的动力学行为, 在神经形态计算领域具有潜在的应用价值. 根据静态电压-电流特性曲线, CCM可分为二翼、四翼和六翼型. 本文基于神经形态行为的产生机制, 将CCM的数学模型进行简化, 简化后的模型表达式中无绝对值符号, 且小信号等效电路的导纳函数与简化前完全相同. 进一步采用简化的CCM模型与电容和电感元件相连, 构建了三阶神经元电路. 利用局部有源、混沌边缘、及李雅普诺夫指数等理论分析方法, 预测了该神经元电路产生神经形态行为的参数域. 根据简化的CCM数学模型, 采用运算放大器、乘法器、电阻和电容等常用电路元件构建了该忆阻器的电路仿真器, 并连接电容和电感进一步给出了神经元电路的硬件实现. 实验结果表明该神经元电路可以产生丰富的神经形态行为, 包括静息状态、周期尖峰、混沌状态、双峰响应、周期振荡现象、全或无现象和尖峰簇发现象.
    The Chua corsage memristor (CCM) is a voltage-controlled locally-active memristor, which has complex dynamic behaviors and potential applications in the field of neuromorphic computing. According to the DC V-I plot, the CCM can be classified as two-lobe, four-lobe, and six-lobe type. By analyzing their non-volatility and local activity, it is found that they have the same locally-active region and a common stable equilibrium. The mathematical models of the three CCMs are simplified based on the mechanism of neuromorphic behavior, namely, local activity. After the model simplification, the absolute value operation disappears, but the locally-active domain remains unchanged. For the simplified CCM, its small-signal equivalent circuit at the locally-active operating point is established, which is consistent with CCMs before being simplified. Hence, the model simplification does not change the small-signal characteristics of CCMs.To further investigate the application of voltage-controlled locally-active memristor in modeling the neuromorphic behavior of neurons, the simplified CCM model is used to connect a capacitor and an inductor to construct a third-order neuron circuit. By applying theoretical analysis methods such as local activity, edge of chaos, and Lyapunov exponents, we predict the parameter domains where different neuromorphic behaviors are generated. The distribution of neuromorphic behaviors is described on a dynamic map determined by the parameters of applied voltage VD and external inductance L. When the memristor is biased in the locally-active region, the system response changes among resting state, periodic spiking oscillation, and chaotic behaviors.Finally, according to the simplified CCM mathematical model, the corresponding emulator circuit is designed by using three operational amplifiers, two multipliers, a current conveyor, and several resistors and capacitors. Based on the presented memristor emulator circuit, the hardware implementation of the neuron circuit is given. The experimental results verify the correctness and feasibility of the simplified CCM emulator circuit, and show that the simplified CCM-based neuron circuit can produce a variety of neuromorphic behaviors, including resting state, periodic spiking, chaotic state, bimodal response, periodic oscillation, all-or-nothing phenomenon, and spike clustering phenomenon. We expect that this work is helpful in further studying the mechanism of neuromorphic behaviors of the neuron circuit and its practical applications.
      通信作者: 梁燕, liangyan@hdu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62171173, 61771176)和浙江省自然科学基金(批准号: LY20F010008)资助的课题.
      Corresponding author: Liang Yan, liangyan@hdu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62171173, 61771176), and the Natural Science Foundation of Zhejiang Province, China (Grant No. LY20F010008).
    [1]

    Nawrocki R A, Voyles R M, Shaheen S E 2016 IEEE Trans. Electron Devices 63 3819Google Scholar

    [2]

    Cassidy A S, Georgiou J, Andreou A G 2013 Neural Netw. 45 4Google Scholar

    [3]

    Shrestha A, Fang H W, Mei Z D, Rider D P, Wu Q, Qiu Q R 2022 IEEE Circuits Syst. Mag. 22 6Google Scholar

    [4]

    Shen Z J, Zhao C, Yang L, Zhao C Z 2020 International SoC Design Conference (ISOCC) Yeosu, Korea (South), October 21–24, 2020 p163

    [5]

    Babacan Y, Kaçar F, Gürkan K 2016 Neurocomputing 203 86Google Scholar

    [6]

    Liu Y, Iu H H C, Qian Y H 2021 IEEE Trans. Circuits Syst. Express Briefs 68 2982Google Scholar

    [7]

    Chatterjee D, Kottantharayil A 2019 IEEE Electron Device Lett. 40 1301Google Scholar

    [8]

    Kim S, Du C, Sheridan P, Ma W, Choi S, Lu W D 2015 Nano Lett. 11 2203Google Scholar

    [9]

    Weiher M, Herzig M, Tetzlaff R, Ascoli A, Mikolajick T, Slesazeck S 2019 IEEE Trans. Circuits Syst. Regul. Pap. 66 2627Google Scholar

    [10]

    Chua L O 2013 Nanotechnology 24 383001Google Scholar

    [11]

    Kumar S, Strachan J P, Williams R S 2017 Nature 548 318Google Scholar

    [12]

    Yi W, Tsang K K, Lam S K, Bai X W, Crowell J A, Flores E A 2018 Nat. Commun. 9 4661Google Scholar

    [13]

    李国林 2017 电子电路与系统基础 (北京: 清华大学出版社) 第61页

    Li G L 2017 Foundations of Electronic Circuits and Systems (Beijing: Tsinghua University Press) p61 (in Chinese)

    [14]

    王世场, 卢振洲, 梁燕, 王光义 2022 物理学报 71 050502Google Scholar

    Wang S C, Lu Z Z, Liang Y, Wang G Y 2022 Acta Phys. Sin. 71 050502Google Scholar

    [15]

    Lu Z Z, Liang Y, Dong Y J, Wang S C 2022 Electron. Lett. 58 681Google Scholar

    [16]

    Mannan Z I, Choi H, Kim H 2016 Int. J. Bifurcation Chaos 26 1630009Google Scholar

    [17]

    Mannan Z I, Yang C, Kim H 2018 IEEE Circuits Syst. Mag. 18 14Google Scholar

    [18]

    Mannan Z I, Yang C, Adhikari S P, Kim H 2018 Complexity 2018 8405978Google Scholar

    [19]

    Mannan Z I, Adhikari S P, Kim H, Chua L O 2020 Nonlinear Dyn. 99 3169Google Scholar

    [20]

    Jin P P, Wang G Y, Liang Y, Iu H H C, Chua L O 2021 IEEE Trans. Circuits Syst. Regul. Pap. 68 4419Google Scholar

    [21]

    Dong Y J, Wang G Y, Wang Z R, Iu H H C, Chen L 2022 Int. J. Bifurcation Chaos 32 2250058Google Scholar

    [22]

    Chua L O 2011 Int. J. Bifurcation Chaos 15 3435Google Scholar

    [23]

    Chua L O, Sbitnev V, Kim H 2012 Int. J. Bifurcation Chaos 22 1250098Google Scholar

    [24]

    Ahmer M, Kidwai N R, Yusuf Yasin M 2022 Mater. Today Proc. 51 150Google Scholar

  • 图 1  CCMs的POP (a) 二翼CCM; (b) 四翼CCM; (c) 六翼CCM

    Fig. 1.  POP of CCMs: (a) 2-lobe CCM; (b) 4-lobe CCM; (c) 6-lobe CCM.

    图 2  CCM的DC V-I曲线及其局部有源区的放大图 (a) 二翼CCM; (b) 四翼CCM; (c) 六翼CCM

    Fig. 2.  DC V-I curves of CCM and the magnification of their locally-active region: (a) 2-lobe CCM; (b) 4-lobe CCM; (c) 6-lobe CCM.

    图 3  简化后的CCM电学特性 (a) 滞回曲线; (b) DC V-I曲线

    Fig. 3.  Electrical characteristics of the simplified CCM: (a) Pinched hysteresis loops; (b) DC V-I curve.

    图 4  简化CCM的小信号等效电路

    Fig. 4.  Small-signal equivalent circuit of the simplified CCM

    图 5  基于简化CCM的三阶神经元电路模型

    Fig. 5.  Third-order neuron circuit based on the simplified memristor.

    图 6  李雅普诺夫指数图 (a) L = 0.5 H, C = 68 nF, 分岔参数为VD∈(–3 V, –1 V); (b) VD = –2.6 V, C = 68 nF, 分岔参数为L∈(0 H, 1 H)

    Fig. 6.  Lyapunov exponents diagram: (a) L = 0.5 H, C = 68 nF, the bifurcation parameter VD∈[–3 V, –1 V]; (b) VD = –2.6 V, C = 68 nF, the bifurcation parameter L∈[0 H, 1 H].

    图 7  C = 68 nF时, 三阶电路随参数LVD变化的动力学地图

    Fig. 7.  Dynamic map of the neuron circuit defined by parameters VD and L.

    图 8  基于简化CCM的神经元电路结构框图

    Fig. 8.  Circuit implementation of the neuron circuit based on the simplified CCM.

    图 9  简化CCM的电学特性实测曲线 (a) 忆阻器两端施加正弦电压时vmvI的瞬时波形; (b) 滞回曲线; (c) 忆阻器两端施加三角波信号时vmvI的瞬时波形; (d) 准静态 V-I曲线

    Fig. 9.  Experimentally measured the simplified CCM electrical characteristics: (a) Time-domain waveforms of vm and vI under sine excitation; (b) hysteresis curve; (c) time-domain waveforms of vm and vI under quasi-static state; (d) quasi-static V-I curve.

    图 10  实验设备图

    Fig. 10.  Photo of experimental equipment.

    图 11  VD = –1.2 V时, 实验测量静息状态 (a) voutvx时域图; (b) voutvx相位图

    Fig. 11.  Experimentally measured resting state at VD = –1.2 V: (a) Transient waveforms of vout and vx; (b) phase portrait on the vout-vx plane.

    图 12  实验测量周期尖峰状态 (a) VD = –2.1 V时voutvx时域图; (b) VD = –2.1 V时vout-vx相位图; (c) VD = –2.2 V时voutvx时域图; (d) VD = –2.2 V时vout-vx相位图

    Fig. 12.  Experimentally measured periodic spiking phenomenon: (a) Transient waveforms of vout and vx at VD = –2.1 V; (b) phase portrait on the vout-vx plane at VD = –2.1 V; (c) transient waveforms of vout and vx at VD = –2.2 V; (d) phase portrait on the vout-vx plane at VD = –2.2 V.

    图 13  VD = –2.8 V实验测量的混沌状态 (a) voutvx时域图; (b) voutvx相位图

    Fig. 13.  Experimentally measured chaos state at VD = –2.8 V: (a) Transient waveforms of vout and vx; (b) phase portrait on the vout-vx plane.

    图 14  VD = –2.87 V实验测量的双峰响应 (a) voutvx时域图; (b) voutvx相位图

    Fig. 14.  Experimentally measured bimodal response at VD = –2.87 V: (a) Transient waveforms of vout and vx; (b) phase portrait on the vout-vx plane.

    图 15  VD = –2.9 V实验测量周期振荡 (a) voutvx时域波形; (b) vout-vx相位图

    Fig. 15.  Experimentally measured periodic oscillation at VD = –2.9 V: (a) Transient waveforms of vout and vx; (b) phase portrait on the vout-vx plane.

    图 16  实验测量的全或无现象

    Fig. 16.  Experimentally measured all-or-nothing behavior.

    图 17  实验测量的尖峰簇发现象

    Fig. 17.  Experimentally measured spike clustering behavior.

    表 1  CCM与简化的CCM模型对比

    Table 1.  Comparisons of CCM and simplified CCM model.

    模型种类DC V-I图段数局部有源区间易失/非易失性绝对值符号数目
    简化CCM模型1[–3 V, –1 V]易失型0
    CCM二翼3[–3 V, –1 V]二值型2
    四翼5[–3 V, –1 V]三值型4
    六翼7[–3 V, –1 V]四值型6
    下载: 导出CSV

    表 2  硬件电路参数配置

    Table 2.  Parameter configuration of the hardware circuit.

    参数参数
    VCC+15 VVEE–15 V
    R1, R2, Rin1 kΩR3, R55 kΩ
    R6, R81 kΩR425 kΩ
    R7, R99 kΩC1150 nF
    C68 nFL500 mH
    下载: 导出CSV
  • [1]

    Nawrocki R A, Voyles R M, Shaheen S E 2016 IEEE Trans. Electron Devices 63 3819Google Scholar

    [2]

    Cassidy A S, Georgiou J, Andreou A G 2013 Neural Netw. 45 4Google Scholar

    [3]

    Shrestha A, Fang H W, Mei Z D, Rider D P, Wu Q, Qiu Q R 2022 IEEE Circuits Syst. Mag. 22 6Google Scholar

    [4]

    Shen Z J, Zhao C, Yang L, Zhao C Z 2020 International SoC Design Conference (ISOCC) Yeosu, Korea (South), October 21–24, 2020 p163

    [5]

    Babacan Y, Kaçar F, Gürkan K 2016 Neurocomputing 203 86Google Scholar

    [6]

    Liu Y, Iu H H C, Qian Y H 2021 IEEE Trans. Circuits Syst. Express Briefs 68 2982Google Scholar

    [7]

    Chatterjee D, Kottantharayil A 2019 IEEE Electron Device Lett. 40 1301Google Scholar

    [8]

    Kim S, Du C, Sheridan P, Ma W, Choi S, Lu W D 2015 Nano Lett. 11 2203Google Scholar

    [9]

    Weiher M, Herzig M, Tetzlaff R, Ascoli A, Mikolajick T, Slesazeck S 2019 IEEE Trans. Circuits Syst. Regul. Pap. 66 2627Google Scholar

    [10]

    Chua L O 2013 Nanotechnology 24 383001Google Scholar

    [11]

    Kumar S, Strachan J P, Williams R S 2017 Nature 548 318Google Scholar

    [12]

    Yi W, Tsang K K, Lam S K, Bai X W, Crowell J A, Flores E A 2018 Nat. Commun. 9 4661Google Scholar

    [13]

    李国林 2017 电子电路与系统基础 (北京: 清华大学出版社) 第61页

    Li G L 2017 Foundations of Electronic Circuits and Systems (Beijing: Tsinghua University Press) p61 (in Chinese)

    [14]

    王世场, 卢振洲, 梁燕, 王光义 2022 物理学报 71 050502Google Scholar

    Wang S C, Lu Z Z, Liang Y, Wang G Y 2022 Acta Phys. Sin. 71 050502Google Scholar

    [15]

    Lu Z Z, Liang Y, Dong Y J, Wang S C 2022 Electron. Lett. 58 681Google Scholar

    [16]

    Mannan Z I, Choi H, Kim H 2016 Int. J. Bifurcation Chaos 26 1630009Google Scholar

    [17]

    Mannan Z I, Yang C, Kim H 2018 IEEE Circuits Syst. Mag. 18 14Google Scholar

    [18]

    Mannan Z I, Yang C, Adhikari S P, Kim H 2018 Complexity 2018 8405978Google Scholar

    [19]

    Mannan Z I, Adhikari S P, Kim H, Chua L O 2020 Nonlinear Dyn. 99 3169Google Scholar

    [20]

    Jin P P, Wang G Y, Liang Y, Iu H H C, Chua L O 2021 IEEE Trans. Circuits Syst. Regul. Pap. 68 4419Google Scholar

    [21]

    Dong Y J, Wang G Y, Wang Z R, Iu H H C, Chen L 2022 Int. J. Bifurcation Chaos 32 2250058Google Scholar

    [22]

    Chua L O 2011 Int. J. Bifurcation Chaos 15 3435Google Scholar

    [23]

    Chua L O, Sbitnev V, Kim H 2012 Int. J. Bifurcation Chaos 22 1250098Google Scholar

    [24]

    Ahmer M, Kidwai N R, Yusuf Yasin M 2022 Mater. Today Proc. 51 150Google Scholar

  • [1] 吴朝俊, 方礼熠, 杨宁宁. 含有偏置电压源的非齐次分数阶忆阻混沌电路动力学分析与实验研究. 物理学报, 2024, 73(1): 010501. doi: 10.7498/aps.73.20231211
    [2] 古亚娜, 梁燕, 王光义, 夏晨阳. NbOx忆阻神经元的设计及其在尖峰神经网络中的应用. 物理学报, 2022, 71(11): 110501. doi: 10.7498/aps.71.20220141
    [3] 王世场, 卢振洲, 梁燕, 王光义. N型局部有源忆阻器的神经形态行为. 物理学报, 2022, 71(5): 050502. doi: 10.7498/aps.71.20212017
    [4] 徐威, 王钰琪, 李岳峰, 高斐, 张缪城, 连晓娟, 万相, 肖建, 童祎. 新型忆阻器神经形态电路的设计及其在条件反射行为中的应用. 物理学报, 2019, 68(23): 238501. doi: 10.7498/aps.68.20191023
    [5] 邵楠, 张盛兵, 邵舒渊. 具有感觉记忆的忆阻器模型. 物理学报, 2019, 68(1): 018501. doi: 10.7498/aps.68.20181577
    [6] 邵楠, 张盛兵, 邵舒渊. 具有经验学习特性的忆阻器模型分析. 物理学报, 2019, 68(19): 198502. doi: 10.7498/aps.68.20190808
    [7] 陈义豪, 徐威, 王钰琪, 万相, 李岳峰, 梁定康, 陆立群, 刘鑫伟, 连晓娟, 胡二涛, 郭宇锋, 许剑光, 童祎, 肖建. 基于二维材料MXene的仿神经突触忆阻器的制备和长/短时程突触可塑性的实现. 物理学报, 2019, 68(9): 098501. doi: 10.7498/aps.68.20182306
    [8] 闫登卫, 王丽丹, 段书凯. 基于忆阻器的多涡卷混沌系统及其脉冲同步控制. 物理学报, 2018, 67(11): 110502. doi: 10.7498/aps.67.20180025
    [9] 吴洁宁, 王丽丹, 段书凯. 基于忆阻器的时滞混沌系统及伪随机序列发生器. 物理学报, 2017, 66(3): 030502. doi: 10.7498/aps.66.030502
    [10] 王伟, 曾以成, 孙睿婷. 含三个忆阻器的六阶混沌电路研究. 物理学报, 2017, 66(4): 040502. doi: 10.7498/aps.66.040502
    [11] 许雅明, 王丽丹, 段书凯. 磁控二氧化钛忆阻混沌系统及现场可编程逻辑门阵列硬件实现. 物理学报, 2016, 65(12): 120503. doi: 10.7498/aps.65.120503
    [12] 阮静雅, 孙克辉, 牟俊. 基于忆阻器反馈的Lorenz超混沌系统及其电路实现. 物理学报, 2016, 65(19): 190502. doi: 10.7498/aps.65.190502
    [13] 俞亚娟, 王在华. 一个分数阶忆阻器模型及其简单串联电路的特性. 物理学报, 2015, 64(23): 238401. doi: 10.7498/aps.64.238401
    [14] 刘玉东, 王连明. 基于忆阻器的spiking神经网络在图像边缘提取中的应用. 物理学报, 2014, 63(8): 080503. doi: 10.7498/aps.63.080503
    [15] 洪庆辉, 李志军, 曾金芳, 曾以成. 基于电流反馈运算放大器的忆阻混沌电路设计与仿真. 物理学报, 2014, 63(18): 180502. doi: 10.7498/aps.63.180502
    [16] 杨芳艳, 冷家丽, 李清都. 基于Chua电路的四维超混沌忆阻电路. 物理学报, 2014, 63(8): 080502. doi: 10.7498/aps.63.080502
    [17] 李志军, 曾以成, 李志斌. 改进型细胞神经网络实现的忆阻器混沌电路. 物理学报, 2014, 63(1): 010502. doi: 10.7498/aps.63.010502
    [18] 许碧荣. 一种最简的并行忆阻器混沌系统. 物理学报, 2013, 62(19): 190506. doi: 10.7498/aps.62.190506
    [19] 包伯成, 胡文, 许建平, 刘中, 邹凌. 忆阻混沌电路的分析与实现. 物理学报, 2011, 60(12): 120502. doi: 10.7498/aps.60.120502
    [20] 张朝霞, 禹思敏. 基于数字信号处理器的语音无线混沌通信——系统设计与硬件实现. 物理学报, 2010, 59(5): 3017-3026. doi: 10.7498/aps.59.3017
计量
  • 文章访问数:  6023
  • PDF下载量:  193
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-21
  • 修回日期:  2022-11-15
  • 上网日期:  2023-02-01
  • 刊出日期:  2023-04-05

/

返回文章
返回