搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于局部纳米点调控的类突触a-MoS2/a-TiO2忆阻器

朱媛媛 张云飞 王鑫 张苗 王红军

引用本文:
Citation:

基于局部纳米点调控的类突触a-MoS2/a-TiO2忆阻器

朱媛媛, 张云飞, 王鑫, 张苗, 王红军

A high-stability a-MoS2/a-TiO2 heterojunction structure analog memristor for bio-synaptic emulation and neuromorphic computing

ZHU Yuanyuan, ZHANG Yunfei, WANG Xin, ZHANG Miao, WANG Hongjun
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 忆阻器作为新一代非易失性存储存储器,可应用于神经形态计算等新型计算范式。TiO2材料因其高介电常数与热稳定性被广泛应用于忆阻器的功能层,然而TiO2基忆阻器仍存在稳定性较差及模拟性能欠优等瓶颈。本文引入非晶态的二维材料MoS2((a-MoS2)与非晶态TiO2((a-TiO2)构建了异质结结构,获得了超200次循环、高数据保持时间(>104 s)的模拟忆阻器。此外,W/a-MoS2/a-TiO2/Pt器件可通过控制扫描电压实现多级电导调制功能,通过导电机制拟合分析构建了一种基于局部纳米点诱导的导电细丝形成及断裂的物理开关模型,分析了器件实现多级电导调制的物理机制。最后,本文在W/a-MoS2/a-TiO2/Pt器件上实现了LTP、LTD功能。本文设计构建了W/a-MoS2/a-TiO2/Pt异质结结构,为过渡金属氧化物基忆阻器性能改进与应用提供了有效方案。
    As the field of artificial intelligence continues to evolve, it generates an escalating need for intensive computational resources and novel computing architectures. As a new generation of non-volatile memory, memristors can simulate biological synapses. This makes them ideal for neuromorphic computing, enabling brain-like learning and reasoning to significantly enhance computational capabilities. Current research on memristor dielectric materials primarily focuses on transition of metal oxides, perovskites, and organic polymers. Among these, the transition metal oxide TiO2 is widely used for the switching layer due to its high dielectric constant and excellent thermal stability. However, TiO2-based memristors face challenges including poor stability and inadequate analog performance, which limit their application in neuromorphic computing. This study developed a high-performance analog memristor using an aMoS2/a-TiO2 (amorphous MoS2/ amorphous TiO2) heterostructure, achieving over 200 stable cycles and a long data retention time exceeding 104 seconds. This device demonstrates a lower threshold voltage, higher endurance, and superior data retention, as compared to previously reported TiO2-based heterostructure memristors. Furthermore, various voltage sweep schemes were designed to successfully implement multi-level conductance modulation in the W/a-MoS2/a-TiO2/Pt device. The resistive switching mechanism of the W/a-MoS2/a-TiO2/Pt device was elucidated by combining conductive mechanism fitting with a physical model that attributes the switching to the localized formation and rupture of conductive filaments. Finally, synaptic functions like LTP and LTD were implemented in the device using square-wave pulses. A convolutional neural network leveraging these functions achieved a 95.8% accuracy in handwritten digit recognition. This study developed a W/a-MoS2/a-TiO2/Pt heterostructure that significantly enhances analog memristive performance, providing an effective strategy for improving transition metal oxide-based memristors.
  • [1]

    Shan X Y, Wang Z Q, Xie J, Zheng J H, Xu H Y, Liu Y C 2022 Acta Phys. Sin. 71 148701(in Chinese)[单旋宇, 王中强, 谢君, 郑嘉慧, 徐海阳, 刘益春 2022 物理学报 71 148701]

    [2]

    Guo T, Pan K Q, Jiao Y X, Sun B, Du C, Mills J P, Chen Z L, Zhao X Y, Wei L, Zhou Y N, Wu Y A 2022 Nanoscale Horiz. 7 299

    [3]

    Gu Y N, Liang Y, Wang G Y, Xia C Y 2022 Acta Phys. Sin. 71 110501(in Chinese)[古亚娜, 梁燕, 王光义, 夏晨阳 2022 物理学报 71 110501]

    [4]

    Messaris I, Ascoli A, Demirkol A S, Tetzlaff R 2023 IEEE Trans. Circuits Syst. I, Regul. Pap. 70 566

    [5]

    Liu S X, Sun T, Li Y 2025 Sci. China Mater. 68 2582

    [6]

    Sun K X, Chen J S, Yan X B 2021 Adv. Funct. Mater. 31 2006773

    [7]

    Zhou Z, Huang P, Kang J F 2022 Acta Phys. Sin. 71 148507(in Chinese)[周正, 黄鹏, 康晋锋 2022 物理学报 71 148507]

    [8]

    Zhu Y Y, Zhang Y F, Yang S N, Ma X Y, Lu H B, Liu Y B, Luo D B, Wang Y Q, Zhou J, Wang H J 2025 Appl. Phys. Lett. 126 013507

    [9]

    Cao Z L, Sun B, Mao S S, Zhou G D, Duan X G, Yan W T, Sun S Y, Chen X L, Shao J Y 2023 Mater. Today Phys. 38 101264

    [10]

    Abunahla H, Halawani Y, Alazzam A, Mohammad B 2020 Sci. Rep. 10 9473

    [11]

    Zhou H B, Li S F, Ang K W, Zhang Y W 2024 Nano-Micro Lett. 16 121

    [12]

    Shan F, Guo H B, Kim H S, Lee J Y, Sun H Z, Choi S G, Koh J H, Kim S J 2020 Phys. Status Solidi A 217 1900967

    [13]

    Sun B, Ranjan S, Zhou G, Guo T, Xia Y, Wei L, Zhou Y N, Wu Y A 2021 Mater. Today Adv. 9 100125

    [14]

    Zhu Y Y, Chen M Y, Lu H B, Mi P T, Luo D B, Wang Y Q, Liu Y, Xiong R, Wang H J 2024 Appl. Phys. Lett. 124 063504

    [15]

    Guo Z C, Xiong R, Zhu Y Y, Wang Z Y, Zhou J, Liu Y, Luo D B, Wang Y Q, Wang H J 2023 Appl. Phys. Lett. 122 053502

    [16]

    Yin S F, Sun Q J, Liu L F, Liu S Z, Jiang Y P, Tang X G 2025 Appl. Surf. Sci. 711 164049

    [17]

    Zou Y L, Li X Y, Ghenzi N, Park T, Shin D H, Shin S J, Cho J M, Park T W, Cheong S, Mun S A, Hwang C S 2025 ACS Appl. Mater. Interfaces 17 47207

    [18]

    Kim S, Ji H, Park K, So H, Kim H, Kim S, Choi W Y 2024 ACS Nano 18 25128

    [19]

    Wen X Y, Wang Y S, He Y H, Miao X S 2022 Acta Phys. Sin. 71 140501(in Chinese)[温新宇, 王亚赛, 何毓辉, 缪向水 2022 物理学报 71 140501]

    [20]

    Yu Z Q, Han X, Xu J M, Chen C, Qu X R, Liu B S, Sun Z J, Sun T Y 2023 Sensors-basel 23 3480

    [21]

    Zhu Y Y, Guo Z C, Chen M Y, Zhang P, Shao P, Luo D B, Wang Y Q, Liu Y, Xiong R, Wang H J 2023 Appl. Phys. Lett. 123 083503

    [22]

    Lin Y H, Pan J Y, Zhuang X M, Guo Q K, Li Y 2025 Nano Res. 18 94907660

    [23]

    Qin J J, Sun B, Mao S S, Zhou G D, Liu M N, Rao Z W, Lin W, Yang Y L, Zhao Y 2025 Appl. Mater. Today 44 102696

    [24]

    Liu M R, Chen J B, Tian X H, Jia S J, Liang Y X, Zhang L Z, Ye T, Chen J T, Wang J, Zhao Y, Zhang X Q, Li Y 2025 Mater. Today Commun. 43 111642

    [25]

    So H, Lee J, Mahata C, Kim S, Kim S 2024 Adv. Mater. Technol. 9 2301390

    [26]

    Li D D, Tang X G, Zhong W M, Sun Q J, Yang D P, Jiang Y P, Liu Q X 2024 ACS Sustainable Chem. Eng. 12 13361

    [27]

    Islam R, Shi Y, Silva G V O, Sachdev M, Miao G X 2024 ACS Nano 33 22045

    [28]

    Sun D D, Zhu X D, Chen S C, Fang H T, Zhu G X, Lan G P, He L X, Shi Y Y 2024 Nano Lett.‌ 24 16283

    [29]

    Wang Y, Huang H X, Huang X L, Guo T T 2023 Acta Phys. Sin. 72 197201(in Chinese)[王英, 黄慧香, 黄香林, 郭婷婷 2023 物理学报 72 197201]

    [30]

    Wong H S P, Lee H Y, Yu S M, Chen Y S, Wu Y, Chen P S, Lee B, Chen F, Tsai M J 2012 Proc. IEEE 6 1951

    [31]

    Lee S U, Kim S Y, Lee J H, Baek J H, Lee J W, Jang H W, Park N G 2024 Nano Lett. 24 4869

    [32]

    Chen L, Zhou W H, Li C D, Huang J J 2021 Neurocomputing 456 126

  • [1] 王红军, 张苗, 张云飞, 王鑫, 周静, 朱媛媛. 氧空位浓度梯度分布的a-WO3模拟忆阻器在神经形态计算中的应用. 物理学报, doi: 10.7498/aps.75.20251348
    [2] 贡以纯, 明建宇, 吴思齐, 仪明东, 解令海, 黄维, 凌海峰. 面向类脑计算的低电压忆阻器研究进展. 物理学报, doi: 10.7498/aps.73.20241022
    [3] 王璇, 杜健嵘, 李志军, 马铭磷, 李春来. 串扰忆阻突触异质离散神经网络的共存放电与同步行为. 物理学报, doi: 10.7498/aps.73.20231972
    [4] 郭慧朦, 梁燕, 董玉姣, 王光义. 蔡氏结型忆阻器的简化及其神经元电路的硬件实现. 物理学报, doi: 10.7498/aps.72.20222013
    [5] 沈柳枫, 胡令祥, 康逢文, 叶羽敏, 诸葛飞. 光电神经形态器件及其应用. 物理学报, doi: 10.7498/aps.71.20220111
    [6] 陈阳洋, 何毓辉, 缪向水, 杨道虹. 基于3D-NAND的神经形态计算. 物理学报, doi: 10.7498/aps.71.20220974
    [7] 单旋宇, 王中强, 谢君, 郑嘉慧, 徐海阳, 刘益春. 面向感存算一体化的光电忆阻器件研究进展. 物理学报, doi: 10.7498/aps.71.20220350
    [8] 任宽, 张握瑜, 王菲, 郭泽钰, 尚大山. 基于忆阻器阵列的下一代储池计算. 物理学报, doi: 10.7498/aps.71.20220082
    [9] 王世场, 卢振洲, 梁燕, 王光义. N型局部有源忆阻器的神经形态行为. 物理学报, doi: 10.7498/aps.71.20212017
    [10] 温新宇, 王亚赛, 何毓辉, 缪向水. 忆阻类脑计算. 物理学报, doi: 10.7498/aps.71.20220666
    [11] 邓文, 汪礼胜, 刘嘉宁, 余雪玲, 陈凤翔. 光电协控多层MoS2记忆晶体管的阻变行为与机理研究. 物理学报, doi: 10.7498/aps.70.20210750
    [12] 邵楠, 张盛兵, 邵舒渊. 具有经验学习特性的忆阻器模型分析. 物理学报, doi: 10.7498/aps.68.20190808
    [13] 刘益春, 林亚, 王中强, 徐海阳. 氧化物基忆阻型神经突触器件. 物理学报, doi: 10.7498/aps.68.20191262
    [14] 陈义豪, 徐威, 王钰琪, 万相, 李岳峰, 梁定康, 陆立群, 刘鑫伟, 连晓娟, 胡二涛, 郭宇锋, 许剑光, 童祎, 肖建. 基于二维材料MXene的仿神经突触忆阻器的制备和长/短时程突触可塑性的实现. 物理学报, doi: 10.7498/aps.68.20182306
    [15] 徐威, 王钰琪, 李岳峰, 高斐, 张缪城, 连晓娟, 万相, 肖建, 童祎. 新型忆阻器神经形态电路的设计及其在条件反射行为中的应用. 物理学报, doi: 10.7498/aps.68.20191023
    [16] 余志强, 刘敏丽, 郎建勋, 钱楷, 张昌华. 基于Au/TiO2/FTO结构忆阻器的开关特性与机理研究. 物理学报, doi: 10.7498/aps.67.20180425
    [17] 刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳. 忆阻器及其阻变机理研究进展. 物理学报, doi: 10.7498/aps.63.187301
    [18] 刘玉东, 王连明. 基于忆阻器的spiking神经网络在图像边缘提取中的应用. 物理学报, doi: 10.7498/aps.63.080503
    [19] 李志军, 曾以成, 李志斌. 改进型细胞神经网络实现的忆阻器混沌电路. 物理学报, doi: 10.7498/aps.63.010502
    [20] 刘宁, 张新平, 窦菲. 小分子掺杂高分子半导体薄膜中异质结结构光谱学特性研究. 物理学报, doi: 10.7498/aps.61.027201
计量
  • 文章访问数:  25
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-06

/

返回文章
返回