搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光电协控多层MoS2记忆晶体管的阻变行为与机理研究

邓文 汪礼胜 刘嘉宁 余雪玲 陈凤翔

引用本文:
Citation:

光电协控多层MoS2记忆晶体管的阻变行为与机理研究

邓文, 汪礼胜, 刘嘉宁, 余雪玲, 陈凤翔

Resistive switching behavior and mechanism of multilayer MoS2 memtransistor under control of back gate bias and light illumination

Deng Wen, Wang Li-Sheng, Liu Jia-Ning, Yu Xue-Ling, Chen Feng-Xiang
PDF
HTML
导出引用
  • 记忆晶体管是结合忆阻器和场效应晶体管性能且同时实现存储和信息处理的一种新型多端口器件. 本文采用微机械剥离的多层二硫化钼(MoS2)制备了场效应晶体管结构的背栅记忆晶体管, 并系统研究了器件在电场、光场及其协同调控下的阻变开关特性和阻变机理. 实验结果表明, 多层MoS2记忆晶体管具有优异的双极性阻变行为和良好的循环耐久性. 器件在栅压调控下, 开关比可实现在100—105范围内变化, 最高可达1.56 × 105, 表明器件具有很强的门控效应; 在光场调控下, 器件的阻变特性对光波长有很强的依赖性; 光电协同调控时, 器件表现出极好的四端口调控能力, 开关比达4.8 × 104. 其阻变特性的机理可归因于MoS2与金属电极接触界面电荷俘获状态和肖特基势垒高度的变化, 以及MoS2沟道光生载流子引起的持续光电导效应.
    Memtransistor is a new multi-terminal device which combines the properties of memristor and field effect transistor and simultaneously realizes information storage and processing. In this paper, the multilayer MoS2 is prepared by micromechanical exploration method, then the back gate MoS2 memtransistor with field effect transistor structure is fabricated, and the resistive switching characteristics and mechanism of the device under electric field, light field and their synergistic regulation are systematically studied. The experimental results show that the multilayer MoS2 memtransistor has excellent bipolar resistance behavior and good cycle durability. Under the control of gate voltage, the switching ratio of the device can be tuned in a range of 100-105, up to 1.56 × 105, which indicates that the device has a strong gating effect. Under the control of light illumination, the resistance characteristics of the device are strongly dependent on the incident wavelength. When photoelectric synergistic regulation is performed, the device displays excellent four-terminal control capability, and the switching ratio is enhanced up to 4.8 × 104. The mechanism of resistive switching characteristics can be attributed to the changes of charge capture state and Schottky barrier height at the interface between MoS2 and metal electrodes, and the continuous photoconductance effect caused by photogenerated carriers in MoS2 channel.
      通信作者: 汪礼胜, wang_lesson@whut.edu.cn ; 陈凤翔, phonixchen79@whut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51702245)和中央高校基本科研业务费专项资金(批准号: WUT2020IB010)资助的课题.
      Corresponding author: Wang Li-Sheng, wang_lesson@whut.edu.cn ; Chen Feng-Xiang, phonixchen79@whut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51702245) and the Fundamental Research Funds for the Central Universities, China (Grant No. WUT2020IB010).
    [1]

    Lu H, Seabaugh A 2014 IEEE J. Electron Devices Soc. 2 44Google Scholar

    [2]

    Sangwan V K, Lee H S, Bergeron H, Balla I, Beck M E, Chen K S, Hersam M C 2018 Nature 554 500Google Scholar

    [3]

    Yin S Q, Song C, Sun Y M, Qiao L L, Wang B L, Sun Y F, Liu K, Pan F, Zhang X Z 2019 ACS Appl. Mater. Interfaces 11 43344Google Scholar

    [4]

    Wang L, Liao W G, Wong S L, Yu Z G, Li S F, Lim Y F, Feng X W, Tan W C, Huang X, Chen L, Liu L, Chen J S, Gong X, Zhu C X, Liu X K, Zhang Y W, Chi D Z, Ang K W 2019 Adv. Funct. Mater. 29 1901106Google Scholar

    [5]

    Lee H S, Sangwan V K, Rojas W A G, Bergeron H, Jeong H Y, Yuan J T, Su K, Hersam M C 2020 Adv. Funct. Mater. 30 2003683Google Scholar

    [6]

    Yang Y, Du H Y, Xue Q, Wei X H, Yang Z B, Xu C G, Lin D M, Jie W J, Hao J H 2019 Nano Energy 57 566Google Scholar

    [7]

    Chen G L, Zhang L, Li L Y, Cheng F, Fu X, Li J H, Pan R K, Cao W Q, Chan A S, Panin G N, Wan J X, Zhang H, Liu C 2020 J. Alloys Compd. 823 153697Google Scholar

    [8]

    Park H, Mastro M A, Tadjer M J, Kim J 2019 Adv. Electron. Mater. 5 1900333Google Scholar

    [9]

    Zhao Y, Yu D Z, Liu Z, Li S J, He Z Y 2020 IEEE Access 8 106726Google Scholar

    [10]

    Dragoman M, Dinescu A, Nastase F, Dragoman D 2020 Nanomaterials 10 1404Google Scholar

    [11]

    Yu Y M, Yang F, Mao S S, Zhu S H, Jia Y F, Yuan L, Salmen M, Sun B 2018 Chem. Phys. Lett. 706 477Google Scholar

    [12]

    余志强, 刘敏丽, 郎建勋, 钱楷, 张昌华 2018 物理学报 67 157302Google Scholar

    Yu Z Q, Liu M L, Lang J X, Qian K, Zhang C H 2018 Acta Phys. Sin. 67 157302Google Scholar

    [13]

    孟凡一, 段书凯, 王丽丹, 胡小方, 董哲康 2015 物理学报 64 148501Google Scholar

    Meng F Y, Duan S K, Wang L D, Hu X F, Dong Z K 2015 Acta Phys. Sin. 64 148501Google Scholar

    [14]

    Dongale T D, Mohite S V, Bagade A A, Kamat R K, Rajpure K Y 2017 Microelectron. Eng. 183-184 12

    [15]

    Rajkumari R, Singh N K 2020 ACS Appl. Nano Mater. 3 12087Google Scholar

    [16]

    Rodder M A, Vasishta S, Dodabalapur A 2020 ACS Appl. Mater. Interfaces 12 33926Google Scholar

    [17]

    Xu L P, Duan Z H, Zhang P, Wang X, Zhang J Z, Shang L Y, Jiang K, Li Y W, Zhu L Q, Gong Y J, Hu Z G, Chu J H 2020 ACS Appl. Mater. Interfaces 12 44902Google Scholar

    [18]

    Zhang S Q, Liu Y, Zhou J R, Ma M, Gao A Y, Zheng B J, Li L F, Su X, Han G Q, Zhang J C, Shi Y, Wang X M, Hao Y 2020 Nanoscale Res. Lett. 15 157Google Scholar

    [19]

    Wang Y H, Li D Y, Lai X B, Liu B Y, Chen Y B, Wang F P, Wang R M, Zhang L W 2020 Curr. Appl. Phys. 20 298Google Scholar

    [20]

    Ahmed Z, Shi Q, Ma Z C, Zhang L N, Guo H, Chan M S 2020 IEEE Electron Device Lett. 41 171Google Scholar

    [21]

    Huang X N, Yao Y, Peng S G, Zhang D Y, Shi J Y, Jin Z 2020 Materials 13 2896Google Scholar

    [22]

    Nalwa H S 2020 RCS Adv. 10 30529Google Scholar

    [23]

    孙真昊, 管鸿明, 付雷, 沈波, 唐宁 2021 物理学报 70 027302

    Sun Z H, Guan H M, Fu L, Shen B, Tang N 2021 Acta Phys. Sin. 70 027302

    [24]

    Bao W Z, Cai X H, Kim D, Sridhara K, Fuhrer M S 2013 Appl. Phys. Lett. 102 042104Google Scholar

    [25]

    Zhang J, Yu H, Chen W, Tian X Z, Liu D H, Cheng M, Xie G B, Yang W, Yang R, Bai X D, Shi D X, Zhang G Y 2014 ACS Nano 8 6024Google Scholar

    [26]

    Yu H, Liao M Z, Zhao W J, Liu G D, Zhou X J, Wei Z, Xu X Z, Liu K H, Hu Z H, Deng K, Zhou S Y, Shi J A, Gu L, Shen C, Zhang T T, Du L J, Xie L, Zhu J Q, Chen W, Yang R, Shi D X, Zhang G Y 2017 ACS Nano 11 12001Google Scholar

    [27]

    Li D, Wu B, Zhu X J, Wang J T, Ryu B, Lu W D, Lu W, Liang X G 2018 ACS Nano 12 9240Google Scholar

    [28]

    Kim K S, Ji Y J, Kim K H, Choi S, Kang D H, Heo K, Cho S, Yim S, Lee S, Park J H, Jung Y S, Yeom G Y 2019 Nat. Commun. 10 4701Google Scholar

  • 图 1  多层MoS2记忆晶体管的结构示意图

    Fig. 1.  Schematic diagram of multilayer MoS2 memtransistor

    图 2  多层MoS2记忆晶体管的制备过程示意图

    Fig. 2.  Diagram of the preparation processes of multilayer MoS2 memtransistor.

    图 3  (a) 多层MoS2的AFM图像; (b) 多层MoS2的拉曼光谱

    Fig. 3.  (a) AFM image of multilayer MoS2 ; (b) Raman spectrum of multilayer MoS2.

    图 4  在0 V栅压时多层MoS2记忆晶体管的阻变特性 (a) 5 V至–5 V源漏电压扫描下器件Id-Vds曲线(插图: 器件在源极和漏极交换测试前后的Ids-Vds曲线); (b) 连续125个循环中器件在Vds = 0.6 V时高低阻态的阻值变化; (c)器件在室温下高低阻态保持特性图

    Fig. 4.  Resistance characteristics of multilayer MoS2 memtransistor at Vg = 0 V: (a) Id-Vds characteristic of the device at cyclic sweeping of the Vds from 5 to –5 V (Inset: the Ids-Vds curves of the device before and after the source-drain electrode is exchanged); (b) the resistances of the device in high and low resistance states at Vds = 0.6 V during 125 cycles; (c) switching retention characteristics of the device at room temperature.

    图 5  不同栅压下多层MoS2记忆晶体管的阻变特性 (a) 栅压Vg = –1, –3, –5, –7 V时的Id-Vds曲线; (b) 栅压Vg = 0, 5, 10, 15, 20 V时的Id-Vds曲线

    Fig. 5.  Resistance characteristics of multilayer MoS2 memtransistor under different gate voltages: (a) Id-Vds characteristics of the device at Vg = –1, –3, –5, –7 V; (b) Id-Vds characteristics of the device at Vg = 0, 5, 10, 15, 20 V.

    图 6  光场调控多层MoS2记忆晶体管的阻变特性 (a) 不同波长光照射时器件的Id-Vds曲线; (b) 不同波长光照射时器件的高低阻态阻值及开关比的变化

    Fig. 6.  Resistance characteristics of multilayer MoS2 memtransistor under the control of the light field: (a) Id-Vds characteristics of the device under different wavelength illumination; (b) the resistances of the device in high and low resistance states and the corresponding ON/OFF radio under different wavelength illumination.

    图 7  波长为200 , 400和800 nm光照射时, 器件高低阻态的阻值随栅压的变化(a)和电阻开关比随栅压的变化(b)

    Fig. 7.  For incident light with 200, 400 and 800 nm wavelengths, (a) the resistances of the device versus Vg in high and low resistance states and (b) the ON/OFF radio versus Vg.

    图 8  不同器件之间的性能对比 (a) 器件在不同栅压下开关比的变化; (b) 器件在不同波长下开关比的变化; (c) 器件在200, 400 和800 nm光照射时, 开关比随栅压的变化

    Fig. 8.  Performance comparison between different devices: (a) Switching ratio of the devices under different gate voltages; (b) switching ratio of devices at different wavelengths; (c) switching ratio varies with gate voltages at illumination wavelengths of 200, 400 and 800 nm.

    表 1  不同正栅压下器件的性能参数比较

    Table 1.  Performance parameters of the device at different forward gate voltages.

    栅压 Vg/V057101520
    HRS阻值/Ω1.82×10132.85×10137.40×10121.87×10124.46×10112.72×1011
    LRS阻值/Ω1.08×10102.78×1084.74×1071.25×1074.42×1062.95×106
    开关比1.69×1031.03×1051.56×1051.50×1051.01×1050.92×105
    下载: 导出CSV
  • [1]

    Lu H, Seabaugh A 2014 IEEE J. Electron Devices Soc. 2 44Google Scholar

    [2]

    Sangwan V K, Lee H S, Bergeron H, Balla I, Beck M E, Chen K S, Hersam M C 2018 Nature 554 500Google Scholar

    [3]

    Yin S Q, Song C, Sun Y M, Qiao L L, Wang B L, Sun Y F, Liu K, Pan F, Zhang X Z 2019 ACS Appl. Mater. Interfaces 11 43344Google Scholar

    [4]

    Wang L, Liao W G, Wong S L, Yu Z G, Li S F, Lim Y F, Feng X W, Tan W C, Huang X, Chen L, Liu L, Chen J S, Gong X, Zhu C X, Liu X K, Zhang Y W, Chi D Z, Ang K W 2019 Adv. Funct. Mater. 29 1901106Google Scholar

    [5]

    Lee H S, Sangwan V K, Rojas W A G, Bergeron H, Jeong H Y, Yuan J T, Su K, Hersam M C 2020 Adv. Funct. Mater. 30 2003683Google Scholar

    [6]

    Yang Y, Du H Y, Xue Q, Wei X H, Yang Z B, Xu C G, Lin D M, Jie W J, Hao J H 2019 Nano Energy 57 566Google Scholar

    [7]

    Chen G L, Zhang L, Li L Y, Cheng F, Fu X, Li J H, Pan R K, Cao W Q, Chan A S, Panin G N, Wan J X, Zhang H, Liu C 2020 J. Alloys Compd. 823 153697Google Scholar

    [8]

    Park H, Mastro M A, Tadjer M J, Kim J 2019 Adv. Electron. Mater. 5 1900333Google Scholar

    [9]

    Zhao Y, Yu D Z, Liu Z, Li S J, He Z Y 2020 IEEE Access 8 106726Google Scholar

    [10]

    Dragoman M, Dinescu A, Nastase F, Dragoman D 2020 Nanomaterials 10 1404Google Scholar

    [11]

    Yu Y M, Yang F, Mao S S, Zhu S H, Jia Y F, Yuan L, Salmen M, Sun B 2018 Chem. Phys. Lett. 706 477Google Scholar

    [12]

    余志强, 刘敏丽, 郎建勋, 钱楷, 张昌华 2018 物理学报 67 157302Google Scholar

    Yu Z Q, Liu M L, Lang J X, Qian K, Zhang C H 2018 Acta Phys. Sin. 67 157302Google Scholar

    [13]

    孟凡一, 段书凯, 王丽丹, 胡小方, 董哲康 2015 物理学报 64 148501Google Scholar

    Meng F Y, Duan S K, Wang L D, Hu X F, Dong Z K 2015 Acta Phys. Sin. 64 148501Google Scholar

    [14]

    Dongale T D, Mohite S V, Bagade A A, Kamat R K, Rajpure K Y 2017 Microelectron. Eng. 183-184 12

    [15]

    Rajkumari R, Singh N K 2020 ACS Appl. Nano Mater. 3 12087Google Scholar

    [16]

    Rodder M A, Vasishta S, Dodabalapur A 2020 ACS Appl. Mater. Interfaces 12 33926Google Scholar

    [17]

    Xu L P, Duan Z H, Zhang P, Wang X, Zhang J Z, Shang L Y, Jiang K, Li Y W, Zhu L Q, Gong Y J, Hu Z G, Chu J H 2020 ACS Appl. Mater. Interfaces 12 44902Google Scholar

    [18]

    Zhang S Q, Liu Y, Zhou J R, Ma M, Gao A Y, Zheng B J, Li L F, Su X, Han G Q, Zhang J C, Shi Y, Wang X M, Hao Y 2020 Nanoscale Res. Lett. 15 157Google Scholar

    [19]

    Wang Y H, Li D Y, Lai X B, Liu B Y, Chen Y B, Wang F P, Wang R M, Zhang L W 2020 Curr. Appl. Phys. 20 298Google Scholar

    [20]

    Ahmed Z, Shi Q, Ma Z C, Zhang L N, Guo H, Chan M S 2020 IEEE Electron Device Lett. 41 171Google Scholar

    [21]

    Huang X N, Yao Y, Peng S G, Zhang D Y, Shi J Y, Jin Z 2020 Materials 13 2896Google Scholar

    [22]

    Nalwa H S 2020 RCS Adv. 10 30529Google Scholar

    [23]

    孙真昊, 管鸿明, 付雷, 沈波, 唐宁 2021 物理学报 70 027302

    Sun Z H, Guan H M, Fu L, Shen B, Tang N 2021 Acta Phys. Sin. 70 027302

    [24]

    Bao W Z, Cai X H, Kim D, Sridhara K, Fuhrer M S 2013 Appl. Phys. Lett. 102 042104Google Scholar

    [25]

    Zhang J, Yu H, Chen W, Tian X Z, Liu D H, Cheng M, Xie G B, Yang W, Yang R, Bai X D, Shi D X, Zhang G Y 2014 ACS Nano 8 6024Google Scholar

    [26]

    Yu H, Liao M Z, Zhao W J, Liu G D, Zhou X J, Wei Z, Xu X Z, Liu K H, Hu Z H, Deng K, Zhou S Y, Shi J A, Gu L, Shen C, Zhang T T, Du L J, Xie L, Zhu J Q, Chen W, Yang R, Shi D X, Zhang G Y 2017 ACS Nano 11 12001Google Scholar

    [27]

    Li D, Wu B, Zhu X J, Wang J T, Ryu B, Lu W D, Lu W, Liang X G 2018 ACS Nano 12 9240Google Scholar

    [28]

    Kim K S, Ji Y J, Kim K H, Choi S, Kang D H, Heo K, Cho S, Yim S, Lee S, Park J H, Jung Y S, Yeom G Y 2019 Nat. Commun. 10 4701Google Scholar

  • [1] 段聪, 刘俊杰, 陈永杰, 左慧玲, 董健生, 欧阳钢. MoS2/SiO2界面黏附性能的尺寸和温度效应. 物理学报, 2024, 73(5): 056801. doi: 10.7498/aps.73.20231648
    [2] 王月, 马杰. MoS2中S原子空位形成的非绝热动力学研究. 物理学报, 2023, 72(22): 226101. doi: 10.7498/aps.72.20230787
    [3] 王婉玉, 石凯熙, 李金华, 楚学影, 方铉, 匡尚奇, 徐国华. MoO3覆盖层对MoS2基光伏型光电探测器性能的影响. 物理学报, 2023, 72(14): 147301. doi: 10.7498/aps.72.20230464
    [4] 孔宇晗, 王蓉, 徐明生. CuPc/MoS2范德瓦耳斯异质结荧光特性. 物理学报, 2022, 71(12): 128103. doi: 10.7498/aps.71.20220132
    [5] 余雪玲, 陈凤翔, 相韬, 邓文, 刘嘉宁, 汪礼胜. ReSe2/WSe2记忆晶体管的光电调控和阻变特性研究. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120221154
    [6] 余雪玲, 陈凤翔, 相韬, 邓文, 刘嘉宁, 汪礼胜. ReSe2/WSe2记忆晶体管的光电调控和阻变特性. 物理学报, 2022, 71(21): 217302. doi: 10.7498/aps.71.20221154
    [7] 胡炜, 廖建彬, 杜永乾. 一种适用于大规模忆阻网络的忆阻器单元解析建模策略. 物理学报, 2021, 70(17): 178505. doi: 10.7498/aps.70.20210116
    [8] 史晨阳, 闵光宗, 刘向阳. 蛋白质基忆阻器研究进展. 物理学报, 2020, 69(17): 178702. doi: 10.7498/aps.69.20200617
    [9] 邵楠, 张盛兵, 邵舒渊. 具有经验学习特性的忆阻器模型分析. 物理学报, 2019, 68(19): 198502. doi: 10.7498/aps.68.20190808
    [10] 邵楠, 张盛兵, 邵舒渊. 具有感觉记忆的忆阻器模型. 物理学报, 2019, 68(1): 018501. doi: 10.7498/aps.68.20181577
    [11] 余志强, 刘敏丽, 郎建勋, 钱楷, 张昌华. 基于Au/TiO2/FTO结构忆阻器的开关特性与机理研究. 物理学报, 2018, 67(15): 157302. doi: 10.7498/aps.67.20180425
    [12] 俞亚娟, 王在华. 一个分数阶忆阻器模型及其简单串联电路的特性. 物理学报, 2015, 64(23): 238401. doi: 10.7498/aps.64.238401
    [13] 孟凡一, 段书凯, 王丽丹, 胡小方, 董哲康. 一种改进的WOx忆阻器模型及其突触特性分析. 物理学报, 2015, 64(14): 148501. doi: 10.7498/aps.64.148501
    [14] 郭羽泉, 段书凯, 王丽丹. 纳米级尺寸参数对钛氧化物忆阻器的特性影响. 物理学报, 2015, 64(10): 108502. doi: 10.7498/aps.64.108502
    [15] 徐晖, 田晓波, 步凯, 李清江. 温度改变对钛氧化物忆阻器导电特性的影响. 物理学报, 2014, 63(9): 098402. doi: 10.7498/aps.63.098402
    [16] 田晓波, 徐晖, 李清江. 横截面积参数对钛氧化物忆阻器导电特性的影响. 物理学报, 2014, 63(4): 048401. doi: 10.7498/aps.63.048401
    [17] 刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳. 忆阻器及其阻变机理研究进展. 物理学报, 2014, 63(18): 187301. doi: 10.7498/aps.63.187301
    [18] 任圣, 马忠元, 江小帆, 王越飞, 夏国银, 陈坤基, 黄信凡, 徐骏, 徐岭, 李伟, 冯端. SiOx(x=1.3)薄膜的优化阻变特性与退火温度的关系探究. 物理学报, 2014, 63(16): 167201. doi: 10.7498/aps.63.167201
    [19] 贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫. 界面效应调制忆阻器研究进展. 物理学报, 2012, 61(21): 217306. doi: 10.7498/aps.61.217306
    [20] 吴振宇, 董嗣万, 刘毅, 柴常春, 杨银堂. 铜互连电迁移失效阻变特性研究. 物理学报, 2012, 61(24): 248501. doi: 10.7498/aps.61.248501
计量
  • 文章访问数:  6650
  • PDF下载量:  204
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-20
  • 修回日期:  2021-06-17
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-11-05

/

返回文章
返回