搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种适用于大规模忆阻网络的忆阻器单元解析建模策略

胡炜 廖建彬 杜永乾

引用本文:
Citation:

一种适用于大规模忆阻网络的忆阻器单元解析建模策略

胡炜, 廖建彬, 杜永乾

An analytic modeling strategy for memristor cell applicable to large-scale memristive networks

Hu Wei, Liao Jian-Bin, Du Yong-Qian
PDF
HTML
导出引用
  • 忆阻网络是一种基于忆阻器单元的大规模非线性电路, 在下一代人工智能、生物电子、高性能存储器等新兴研究领域发挥着重要作用. 描述忆阻器单元物理和电学特性的模型对忆阻网络的性能仿真具有显著影响. 然而, 现有模型主要为非解析模型, 应用于忆阻网络分析时可能存在收敛性问题. 因此, 提出了一种基于同伦分析法(homotopy analysis method, HAM)的忆阻器单元解析建模策略, 该策略具有解析性和收敛性优化的特点, 可提高忆阻器单元和相应忆阻网络的收敛性. 此外, 还提出了一种面向忆阻器单元模型的验证准则, 以验证模型在大规模忆阻网络中的适用性. 通过忆阻器单元和忆阻矩阵网络的长时演化实验以及与传统非解析(数值)方法的比较, 验证了所提策略的解析性和收敛性优势; 利用不同类型忆阻器单元和输入的实验, 验证了该策略的扩展性. 进一步地, 基于上述实验, 揭示了忆阻网络仿真出现收敛性问题的潜在原因. 该策略可应用于基于忆阻网络的新兴研究.
    Memristive networks are large-scale non-linear circuits based on memristor cells, playing a crucial role in developing the emerging researches such as next-generation artificial intelligence, bioelectronics, and high-performance memory. The performance of memristive networks is greatly affected by the memristor model describing physical and electrical characteristics of a memristor cell. However, existing models are mainly non-analytic and, accordingly, may have convergence issues in their applications in memristive networks’ analyses. Therefore, aiming at improving convergence of memristive networks, we propose an analytic modeling strategy for memristor based on homotopy analysis method (HAM). In this strategy, the HAM is used to obtain an analytic memristor model through solving the state equations of memristors in original physical model. Specifically, the HAM is used to solve the analytic approximate solution of the core parameter of memristor—state variable, from the state equations, in the form of analytic homotopy series. Then the analytic approximate model of memristor is obtained by using the solved state variables. The characteristics of the proposed strategy are as follows. 1) Its solution has a closed-form expression, i.e. an explicit function, 2) its approximation error is optimized, thereby realizing the convergence optimization. Moreover, according to the characteristics of memristive networks, we introduce an analysis criterion for memristor model applicable to memristive networks. Through the long-time evolution experiments of a memristor cell and a benchmark memristive matrix network with different inputs, and the comparisons with the traditional non-analytic (numeric) method, we verify the analyticity and convergence superiority of the modeling strategy. Besides, based on this strategy and the comparison experiments, we reveal that one of the underlying reasons for non-convergence in the large-scale memristive network simulation possesses the non-analyticity of the used memristor model. The strategy can be further used for analyzing the performances of a memristor cell and memristive networks in long-time. It also has potential applications in emerging technologies.
      通信作者: 廖建彬, 18950185198@189.cn ; 杜永乾, duyongqian@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61704139)、福建省船舶与海洋工程重点实验室开放基金和深圳市科技创新委员会基金知识创新基础研究(自由探索)项目(批准号: JCYJ20180306171040865)资助的课题.
      Corresponding author: Liao Jian-Bin, 18950185198@189.cn ; Du Yong-Qian, duyongqian@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61704139), the Fund of Fujian Province Key Laboratory of Ship and Ocean Engineering, China, and the Fundamental Research Funds for the Science, Technology and Innovation Commission of Shenzhen Municipality, China (Grant No. JCYJ20180306171040865).
    [1]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80Google Scholar

    [2]

    邵楠, 张盛兵, 邵舒渊 2019 物理学报 68 282

    Shao N, Zhang S B, Shao S Y 2019 Acta Phys. Sin. 68 282

    [3]

    Wang S P, He C L, Tang J, Yang R, Shi D X, Zhang G Y 2019 Chin. Phys. B 28 017304Google Scholar

    [4]

    余志强, 刘敏丽, 郎建勋, 钱楷, 张昌华 2018 物理学报 67 157302Google Scholar

    Yu Z Q, Liu M L, Lang J X, Qian K, Zhang C H 2018 Acta Phys. Sin. 67 157302Google Scholar

    [5]

    Bafrani H A, Ebrahimi M, Shouraki S B, Moshfegh A Z 2018 Nanotechnology 29 15205Google Scholar

    [6]

    Choi B J, Torrezan A C, Strachan J P, Kotula P G, Lohn A J, Marinella M J, Li Z Y, Williams R S, Yang J J 2016 Adv. Funct. Mater. 26 5290Google Scholar

    [7]

    Simanjuntak F M, Chandrasekaran S, Lin C C, Tseng T Y 2019 APL Mater. 7 051108Google Scholar

    [8]

    陈义豪, 徐威, 王钰琪, 万相, 李岳峰, 梁定康, 陆立群, 刘鑫伟, 连晓娟, 胡二涛, 郭宇锋, 许剑光, 童祎, 肖建 2019 物理学报 68 098501Google Scholar

    Chen Y H, Xu W, Wang Y Q, Wan X, Li Y F, Liang D K, Lu L Q, Liu X W, Lian X J, Hu Er T, Guo Y F, Xu J G, Tong Y, Xiao J 2019 Acta Phys. Sin. 68 098501Google Scholar

    [9]

    Banerjee W, Zhang X M, Luo Q, Lv H B, Liu Q, Long S B, Liu M 2017 Adv. Electron. Mater. 4 1700561

    [10]

    Li C, Belkin D, Li Y N, Yan P, Hu M, Ge N, Jiang H, Montgomery E, Lin P, Wang Z R, Song W H, Strachan J P, Barnell M, Wu Q, Williams R S, Yang J J, Xia Q F 2018 Nat. Commun. 9 2385Google Scholar

    [11]

    Sung S H, Kim D H, Kim T J, Kang I S, Lee K J 2019 Adv. Mater. Technol. 4 1900080Google Scholar

    [12]

    徐威, 王钰琪, 李岳峰, 高斐, 张缪城, 连晓娟, 万相, 肖建, 童祎 2019 物理学报 68 238501Google Scholar

    Xu W, Wang Y Q, Li Y F, Gao F, Zhang M C, Lian X J, Wan X, Xiao J, Tong Y 2019 Acta Phys. Sin. 68 238501Google Scholar

    [13]

    Hu X F, Feng G, Duan S K, Liu L 2017 IEEE Trans. Neural Networks Learn. Syst. 28 1889Google Scholar

    [14]

    Schmitt R, Kubicek M, Sediva E, Trassin M, Weber M C, Rossi A, Hutter H, Kreisel J, Fiebig M, Rupp J L M 2018 Adv. Funct. Mater. 29 1804782

    [15]

    Luo Q, Zhang X M, Hu Y, Gong T C, Xu X X, Yuan P, Ma H, Dong D N, Lv H B, Long S B, Liu Q, Liu M 2018 IEEE Electron Device Lett. 39 664Google Scholar

    [16]

    Xue W H, Ci W J, Xu X H, Liu G 2020 Chin. Phys. B 29 048401Google Scholar

    [17]

    朱玮, 郭恬恬, 刘兰, 周荣荣 2021 物理学报 70 068502Google Scholar

    Zhu W, Guo T T, Liu L, Zhou R R 2021 Acta Phys. Sin. 70 068502Google Scholar

    [18]

    Duan S K, Hu X F, Dong Z K, Wang L D, Mazumder P 2015 IEEE Trans. Neural Networks Learn. Syst. 26 1202Google Scholar

    [19]

    Mladenov V 2019 Electronics 8 383Google Scholar

    [20]

    Biolek D, Kolka Z, Biolková V, Biolek Z, Potrebić M, Tošić D 2018 Int. J. Circuit Theory Appl. 46 50Google Scholar

    [21]

    Li C, Han L L, Jiang H, Jang M H, Lin P, Wu Q, Barnell M, Yang J J, Xin L H, Xia Q F 2017 Nat. Commun. 8 15666Google Scholar

    [22]

    Yakopcic C, Taha T M, Subramanyam G, Robinson E P 2013 IEEE Trans. Comput-Aided Des. Integr. Circuits Syst. 32 1201Google Scholar

    [23]

    Li H, Huang P, Gao B 2014 IEEE Electron Device Lett. 35 211Google Scholar

    [24]

    廖世俊 1992 博士学位论文 (上海: 上海交通大学)

    Liao S J 1992 Ph. D. Dissertation (Shanghai: Shanghai Jiaotong University) (in Chinese)

    [25]

    Abbasbandy S, Zakaria F S 2008 Nonlinear Dyn. 51 83

    [26]

    Ellahi R, Raza M, Vafai K 2012 Math. Comput. Model. 55 1876Google Scholar

    [27]

    Li X C, Yu Z Y, Liao J S 2015 Phys. Rev. E 92 033014Google Scholar

    [28]

    Biolek D, Biolek Z, Biolkova V, Kolka Z 2014 Semicond. Sci. Technol. 29 125008Google Scholar

    [29]

    Joglekar Y N, Wolf S J 2009 Eur. J. Phys. 30 661Google Scholar

    [30]

    Biolek Z, Biolek D, Biolkova V 2009 Radioengineering 18 210

    [31]

    Prodromakis T, Peh B P, Papavassiliou C, Toumazou C 2011 IEEE Trans. Electron Devices 58 3099Google Scholar

    [32]

    https://www.wolfram.com/ [2020-11-21]

    [33]

    https://www.synopsys.com/ [2020-12-28]

    [34]

    Biolek D, Biolek Z, Biolkova V, KOLKA Z 2015 Radioengineering 24 393Google Scholar

    [35]

    Zhang Y, Wang X P, Li Y, Friedman E G 2017 IEEE Trans. Circuits Syst. Express Briefs 64 767Google Scholar

    [36]

    Chua L O 2015 Radioengineering 24 319Google Scholar

    [37]

    Adhikari S P, Sah M P, Kim H, Chua L O 2013 IEEE Trans. Circuits Syst. Regul. Pap. 60 3008Google Scholar

    [38]

    Cserti J 2000 Am. J. Phys. 68 896Google Scholar

    [39]

    Carbajal J P, Dambre J, Hermans M, Schrauwen B 2015 Neural Comput. 27 725Google Scholar

    [40]

    Hatem F O, Kumar T N, Almurib H A F 2016 IEEE Trans. Circuits Syst. Regul. Pap. 63 1487Google Scholar

    [41]

    Chang T, Jo S H, Kim K H, Sheridan P, Gaba S, Lu W 2011 Appl. Phys. A 102 857Google Scholar

    [42]

    Amirsoleimani A, Shamsi J, Ahmadi M, Ahmadi A, Alirezaee A, Mohammadi K, Karami M A, Yakopcic C, Kavehei O, Al-Sarawi S 2017 Microelectron. J. 65 49Google Scholar

  • 图 1  输入电流$ A{\rm sin}\left(\omega t\right) $激励下, HP Pt/TiO2/Pt忆阻器单元的传统非解析和HAM解析模型中各自状态变量$ x\left(t\right) $的长时演化对比 (a)非解析(数值积分)模型[35]; (b)解析的HAM模型. 两种模型采用相同的仿真配置(Hspice仿真)和器件参数: 优化型Prodromakis窗函数[31,34] ($f\left(x\right)= $$ [ 1-{\left({x}^{ 2}-x+ 1\right)}^{P}]/(1-{0.75}^{P})$), 其中非线性控制参数$ P=7 $), $ {x}_{0}=0.5, {R}_{{\rm O}{\rm N}}=1 $00 Ω, $ \delta =10 $(高低忆阻值之比), $ A=1 $ mA, 以及 $ \omega =0.1/\left(2\pi \right) $ rad/s

    Fig. 1.  Dynamic evolution comparison of the state variables based on the traditional non-analytic[35] and the analytic HAM models of the HP Pt/TiO2/Pt memristor, respectively, under an input current $ A{\rm sin}\left(\omega t\right) $: (a) Non-analytic (numeric integration) mode; (b) analytic 3-order HAM model. The optimized Prodromakis window[31,34] ($f\left(x\right)= $$ [ 1-{\left({x}^{ 2}-x+ 1\right)}^{P}]/(1-{0.75}^{P})$), where nonlinearity controlling parameter $ P=7 $) and the device parameters: $ {x}_{0}=0.5, {R}_{{\rm O}{\rm N}}=1 $00 Ω, $ \delta =10 $ (the ratio of high memristance to low resistance), A = 1 mA, and $ \omega =0.1/\left(2\pi \right) $ rad/s, are used in the two models (Hspice simulation).

    图 2  $ M\times N $忆阻矩阵网络. 电流或电压信号可作用于网络的“in”输入端

    Fig. 2.  A $ M\times N $ memristive matrix network. The current or voltage is inputted into the “in” terminal of the network.

    图 3  250 $ {\text{μ}}$A DC电流Iin输入下, 忆阻矩阵网络中“in”输入端电压Vin的瞬态长时演化 $ M=50 $, $ N=30 $. 除采用Biolek窗函数[30]($ P=2 $)、初始忆阻值${R}_{0}=16.6\;{\rm k}{ \Omega }$, $ \delta =1000 $之外, 其余仿真参数均与图1相同

    Fig. 3.  Transient long-time evolution of the “in” terminal voltage (Vin) of the matrix network under a 250 ${\text{μ}}$A DC current input (Iin). $ M=50 $, $ N=30 $, and the simulation parameters are the same as those in Fig. 1 except the Biolek window[30] ($ P=2 $), initial memristance $ {R}_{0}=1 $6.6 kΩ, and $ \delta =1000 $ are used.

    图 4  输入幅度为1 mA、频率为1 Hz的AC(正弦)电流时所对应的忆阻矩阵瞬态长时演化 (a) 忆阻矩阵网络中“in”输入端电压Vin; (b) 相应的I-V曲线(重叠压缩迟滞环). 各仿真参数均与图3相同

    Fig. 4.  Transient long-time evolutions of memristive matrix network under a 1 mA, 1 Hz AC (Sinusoidal) current input: (a) “in” voltage Vin; (b) corresponding I-V curves (compressed hysteresis loops). The simulation parameters are the same as those in Fig. 3.

    图 5  分别采用HAM和传统非解析[37](数值积分)模型进行忆阻矩阵仿真, 随着忆阻器单元数目的增加, 仿真时间的对比 (a)和(b)分别表示DC和AC (正弦)电流输入下的仿真时间. 此对比分析基于图3(DC)和图4(AC)所示Vin的动态演化

    Fig. 5.  Comparisons of running time between simulations using the HAM and the traditional non-analytic (numeric integration)[35] and models with increasing memristor cells: (a) and (b) show the time under the DC and AC (Sinusoidal) current inputs, respectively. The comparisons are adopted to analyze the dynamic evolutions Vin as shown in Figs. 3 (DC) and 4 (AC).

    表 1  直流演化场景下, 基于不同类型忆阻器单元的忆阻网络仿真时长比较

    Table 1.  Running time comparisons of the DC evolution for memristive networks with different types of memristor cells.

    M = NPt/Ta2O5/TaOx/Pt忆阻器单元[40] Pd/WO3/W忆阻器单元[41] Ag/TiO2/ITO忆阻器单元[42]
    传统非解析模型/sHAM模型/s 传统非解析模型/sHAM模型/s 传统非解析模型/sHAM模型/s
    100.300.01 0.530.02 1.120.10
    50494716不收敛7
    10017312不收敛15不收敛20
    *注: 忆阻网络的仿真设置与图3图5(a)相同. 由于该表主要目的为通过仿真时长对比来验证HAM模型相对于非解析模型的扩展性优势, 且上述忆阻器硬件无法商业获取, 该表并未列出基于上述忆阻器网络的硬件运行时间, 也从应用的角度体现了模型和建模策略的重要性.
    下载: 导出CSV
  • [1]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80Google Scholar

    [2]

    邵楠, 张盛兵, 邵舒渊 2019 物理学报 68 282

    Shao N, Zhang S B, Shao S Y 2019 Acta Phys. Sin. 68 282

    [3]

    Wang S P, He C L, Tang J, Yang R, Shi D X, Zhang G Y 2019 Chin. Phys. B 28 017304Google Scholar

    [4]

    余志强, 刘敏丽, 郎建勋, 钱楷, 张昌华 2018 物理学报 67 157302Google Scholar

    Yu Z Q, Liu M L, Lang J X, Qian K, Zhang C H 2018 Acta Phys. Sin. 67 157302Google Scholar

    [5]

    Bafrani H A, Ebrahimi M, Shouraki S B, Moshfegh A Z 2018 Nanotechnology 29 15205Google Scholar

    [6]

    Choi B J, Torrezan A C, Strachan J P, Kotula P G, Lohn A J, Marinella M J, Li Z Y, Williams R S, Yang J J 2016 Adv. Funct. Mater. 26 5290Google Scholar

    [7]

    Simanjuntak F M, Chandrasekaran S, Lin C C, Tseng T Y 2019 APL Mater. 7 051108Google Scholar

    [8]

    陈义豪, 徐威, 王钰琪, 万相, 李岳峰, 梁定康, 陆立群, 刘鑫伟, 连晓娟, 胡二涛, 郭宇锋, 许剑光, 童祎, 肖建 2019 物理学报 68 098501Google Scholar

    Chen Y H, Xu W, Wang Y Q, Wan X, Li Y F, Liang D K, Lu L Q, Liu X W, Lian X J, Hu Er T, Guo Y F, Xu J G, Tong Y, Xiao J 2019 Acta Phys. Sin. 68 098501Google Scholar

    [9]

    Banerjee W, Zhang X M, Luo Q, Lv H B, Liu Q, Long S B, Liu M 2017 Adv. Electron. Mater. 4 1700561

    [10]

    Li C, Belkin D, Li Y N, Yan P, Hu M, Ge N, Jiang H, Montgomery E, Lin P, Wang Z R, Song W H, Strachan J P, Barnell M, Wu Q, Williams R S, Yang J J, Xia Q F 2018 Nat. Commun. 9 2385Google Scholar

    [11]

    Sung S H, Kim D H, Kim T J, Kang I S, Lee K J 2019 Adv. Mater. Technol. 4 1900080Google Scholar

    [12]

    徐威, 王钰琪, 李岳峰, 高斐, 张缪城, 连晓娟, 万相, 肖建, 童祎 2019 物理学报 68 238501Google Scholar

    Xu W, Wang Y Q, Li Y F, Gao F, Zhang M C, Lian X J, Wan X, Xiao J, Tong Y 2019 Acta Phys. Sin. 68 238501Google Scholar

    [13]

    Hu X F, Feng G, Duan S K, Liu L 2017 IEEE Trans. Neural Networks Learn. Syst. 28 1889Google Scholar

    [14]

    Schmitt R, Kubicek M, Sediva E, Trassin M, Weber M C, Rossi A, Hutter H, Kreisel J, Fiebig M, Rupp J L M 2018 Adv. Funct. Mater. 29 1804782

    [15]

    Luo Q, Zhang X M, Hu Y, Gong T C, Xu X X, Yuan P, Ma H, Dong D N, Lv H B, Long S B, Liu Q, Liu M 2018 IEEE Electron Device Lett. 39 664Google Scholar

    [16]

    Xue W H, Ci W J, Xu X H, Liu G 2020 Chin. Phys. B 29 048401Google Scholar

    [17]

    朱玮, 郭恬恬, 刘兰, 周荣荣 2021 物理学报 70 068502Google Scholar

    Zhu W, Guo T T, Liu L, Zhou R R 2021 Acta Phys. Sin. 70 068502Google Scholar

    [18]

    Duan S K, Hu X F, Dong Z K, Wang L D, Mazumder P 2015 IEEE Trans. Neural Networks Learn. Syst. 26 1202Google Scholar

    [19]

    Mladenov V 2019 Electronics 8 383Google Scholar

    [20]

    Biolek D, Kolka Z, Biolková V, Biolek Z, Potrebić M, Tošić D 2018 Int. J. Circuit Theory Appl. 46 50Google Scholar

    [21]

    Li C, Han L L, Jiang H, Jang M H, Lin P, Wu Q, Barnell M, Yang J J, Xin L H, Xia Q F 2017 Nat. Commun. 8 15666Google Scholar

    [22]

    Yakopcic C, Taha T M, Subramanyam G, Robinson E P 2013 IEEE Trans. Comput-Aided Des. Integr. Circuits Syst. 32 1201Google Scholar

    [23]

    Li H, Huang P, Gao B 2014 IEEE Electron Device Lett. 35 211Google Scholar

    [24]

    廖世俊 1992 博士学位论文 (上海: 上海交通大学)

    Liao S J 1992 Ph. D. Dissertation (Shanghai: Shanghai Jiaotong University) (in Chinese)

    [25]

    Abbasbandy S, Zakaria F S 2008 Nonlinear Dyn. 51 83

    [26]

    Ellahi R, Raza M, Vafai K 2012 Math. Comput. Model. 55 1876Google Scholar

    [27]

    Li X C, Yu Z Y, Liao J S 2015 Phys. Rev. E 92 033014Google Scholar

    [28]

    Biolek D, Biolek Z, Biolkova V, Kolka Z 2014 Semicond. Sci. Technol. 29 125008Google Scholar

    [29]

    Joglekar Y N, Wolf S J 2009 Eur. J. Phys. 30 661Google Scholar

    [30]

    Biolek Z, Biolek D, Biolkova V 2009 Radioengineering 18 210

    [31]

    Prodromakis T, Peh B P, Papavassiliou C, Toumazou C 2011 IEEE Trans. Electron Devices 58 3099Google Scholar

    [32]

    https://www.wolfram.com/ [2020-11-21]

    [33]

    https://www.synopsys.com/ [2020-12-28]

    [34]

    Biolek D, Biolek Z, Biolkova V, KOLKA Z 2015 Radioengineering 24 393Google Scholar

    [35]

    Zhang Y, Wang X P, Li Y, Friedman E G 2017 IEEE Trans. Circuits Syst. Express Briefs 64 767Google Scholar

    [36]

    Chua L O 2015 Radioengineering 24 319Google Scholar

    [37]

    Adhikari S P, Sah M P, Kim H, Chua L O 2013 IEEE Trans. Circuits Syst. Regul. Pap. 60 3008Google Scholar

    [38]

    Cserti J 2000 Am. J. Phys. 68 896Google Scholar

    [39]

    Carbajal J P, Dambre J, Hermans M, Schrauwen B 2015 Neural Comput. 27 725Google Scholar

    [40]

    Hatem F O, Kumar T N, Almurib H A F 2016 IEEE Trans. Circuits Syst. Regul. Pap. 63 1487Google Scholar

    [41]

    Chang T, Jo S H, Kim K H, Sheridan P, Gaba S, Lu W 2011 Appl. Phys. A 102 857Google Scholar

    [42]

    Amirsoleimani A, Shamsi J, Ahmadi M, Ahmadi A, Alirezaee A, Mohammadi K, Karami M A, Yakopcic C, Kavehei O, Al-Sarawi S 2017 Microelectron. J. 65 49Google Scholar

  • [1] 吴朝俊, 方礼熠, 杨宁宁. 含有偏置电压源的非齐次分数阶忆阻混沌电路动力学分析与实验研究. 物理学报, 2024, 73(1): 010501. doi: 10.7498/aps.73.20231211
    [2] 郭慧朦, 梁燕, 董玉姣, 王光义. 蔡氏结型忆阻器的简化及其神经元电路的硬件实现. 物理学报, 2023, 72(7): 070501. doi: 10.7498/aps.72.20222013
    [3] 温新宇, 王亚赛, 何毓辉, 缪向水. 忆阻类脑计算. 物理学报, 2022, 71(14): 140501. doi: 10.7498/aps.71.20220666
    [4] 史晨阳, 闵光宗, 刘向阳. 蛋白质基忆阻器研究进展. 物理学报, 2020, 69(17): 178702. doi: 10.7498/aps.69.20200617
    [5] 徐威, 王钰琪, 李岳峰, 高斐, 张缪城, 连晓娟, 万相, 肖建, 童祎. 新型忆阻器神经形态电路的设计及其在条件反射行为中的应用. 物理学报, 2019, 68(23): 238501. doi: 10.7498/aps.68.20191023
    [6] 邵楠, 张盛兵, 邵舒渊. 具有感觉记忆的忆阻器模型. 物理学报, 2019, 68(1): 018501. doi: 10.7498/aps.68.20181577
    [7] 邵楠, 张盛兵, 邵舒渊. 具有经验学习特性的忆阻器模型分析. 物理学报, 2019, 68(19): 198502. doi: 10.7498/aps.68.20190808
    [8] 吴洁宁, 王丽丹, 段书凯. 基于忆阻器的时滞混沌系统及伪随机序列发生器. 物理学报, 2017, 66(3): 030502. doi: 10.7498/aps.66.030502
    [9] 郭羽泉, 段书凯, 王丽丹. 纳米级尺寸参数对钛氧化物忆阻器的特性影响. 物理学报, 2015, 64(10): 108502. doi: 10.7498/aps.64.108502
    [10] 袁泽世, 李洪涛, 朱晓华. 基于忆阻器的数模混合随机数发生器. 物理学报, 2015, 64(24): 240503. doi: 10.7498/aps.64.240503
    [11] 孟凡一, 段书凯, 王丽丹, 胡小方, 董哲康. 一种改进的WOx忆阻器模型及其突触特性分析. 物理学报, 2015, 64(14): 148501. doi: 10.7498/aps.64.148501
    [12] 董哲康, 段书凯, 胡小方, 王丽丹. 两类纳米级非线性忆阻器模型及串并联研究. 物理学报, 2014, 63(12): 128502. doi: 10.7498/aps.63.128502
    [13] 徐晖, 田晓波, 步凯, 李清江. 温度改变对钛氧化物忆阻器导电特性的影响. 物理学报, 2014, 63(9): 098402. doi: 10.7498/aps.63.098402
    [14] 田晓波, 徐晖, 李清江. 横截面积参数对钛氧化物忆阻器导电特性的影响. 物理学报, 2014, 63(4): 048401. doi: 10.7498/aps.63.048401
    [15] 刘玉东, 王连明. 基于忆阻器的spiking神经网络在图像边缘提取中的应用. 物理学报, 2014, 63(8): 080503. doi: 10.7498/aps.63.080503
    [16] 李志军, 曾以成, 李志斌. 改进型细胞神经网络实现的忆阻器混沌电路. 物理学报, 2014, 63(1): 010502. doi: 10.7498/aps.63.010502
    [17] 刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳. 忆阻器及其阻变机理研究进展. 物理学报, 2014, 63(18): 187301. doi: 10.7498/aps.63.187301
    [18] 许碧荣. 一种最简的并行忆阻器混沌系统. 物理学报, 2013, 62(19): 190506. doi: 10.7498/aps.62.190506
    [19] 贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫. 界面效应调制忆阻器研究进展. 物理学报, 2012, 61(21): 217306. doi: 10.7498/aps.61.217306
    [20] 包伯成, 胡文, 许建平, 刘中, 邹凌. 忆阻混沌电路的分析与实现. 物理学报, 2011, 60(12): 120502. doi: 10.7498/aps.60.120502
计量
  • 文章访问数:  4995
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-18
  • 修回日期:  2021-02-18
  • 上网日期:  2021-08-20
  • 刊出日期:  2021-09-05

/

返回文章
返回