搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种改进的WOx忆阻器模型及其突触特性分析

孟凡一 段书凯 王丽丹 胡小方 董哲康

引用本文:
Citation:

一种改进的WOx忆阻器模型及其突触特性分析

孟凡一, 段书凯, 王丽丹, 胡小方, 董哲康

An improved WOx memristor model with synapse characteristic analysis

Meng Fan-Yi, Duan Shu-Kai, Wang Li-Dan, Hu Xiao-Fang, Dong Zhe-Kang
PDF
导出引用
  • 忆阻器被定义为第四种基本电子元器件, 其模型的研究呈现多样性. 目前, 忆阻器模型与忆阻器实际特性的切合程度引起了研究者的广泛关注. 通过改变离子扩散项, 提出了一种新的WOx忆阻器模型, 更好地匹配了忆阻器的实际行为特性. 首先, 新的模型不仅能够描述忆阻器的一般特性, 而且能够俘获记忆丢失行为. 另外, 将新的忆阻器作为神经突触, 分析了脉冲速率依赖可塑性、短期可塑性、长期可塑性, 并发现了与生物系统中极为相似的“经验学习”现象. 最后, 考虑到温度与离子扩散系数的关系, 探讨了温度对突触权值弛豫过程的影响. 实验表明, 新忆阻器模型比原来的模型更切合实际, 且更适合作为突触而应用到神经形态系统之中.
    Memristor is defined as the fourth basic electronic element, the studies on its models exhibit diversity. Now, the matching extent between memristor model and natural memristor has received researchers' wide attention. A new memristor model is proposed by changing the ion diffusion term of the WOx memristor, namely, adding another two internal state variables τ and μ which denote the relaxation time and retention, respectively, and the improved model can simulate natural memristor better. Firstly, the new one is able to not only describe the general characteristics of a memrsitor, but also capture the memory loss behavior. In addition, the new memristor can be considered as a neural synapse, under the action of the input pulses with different amplitudes, duration and intervals, the spike rate dependent plasticity, short-term plasticity (STP), and long-term plasticity (LTP) are analyzed, and the ''learning experience'' phenomenon which is very similar to the biological system is discovered, most of which is due to the back diffusion of the oxygen vacancies during the intervals of the input pulses which are caused by the concentration difference. Moreover, an exponential decay equation is built to describe the relaxation process of STP. Finally, taking into consideration the relationship between temperature and ion diffusion coefficient, the effect of temperature on the relaxation process of STP is discussed. Experimental results show that the new memristor model can better match the actual behavior characteristics, and more suitably acts as a synapse for being applied to neuromorphic systems.
    • 基金项目: 教育部新世纪优秀人才支持计划(批准号: 教技函[2013] 47号)、国家自然科学基金(批准号: 61372139, 61101233, 60972155)、教育部“春晖计划” 科研项目(批准号: z2011148)、留学人员科技活动项目(批准号: 渝人社办[2012] 186 号)、重庆市高等学校优秀人才支持计划(批准号: 渝教人[2011] 65号)、重庆市高等学校青年骨干教师资助计划(批准号: 渝教人[2011]65号)和中央高校基本科研业务费(批准号: XDJK2014A009, XDJK2013B011)资助的课题.
    • Funds: Project supported by the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. [2013]47), the National Natural Science Foundation of China (Grant Nos. 61372139, 61101233, 60972155), the "Spring Sunshine Plan" Research Project of Ministry of Education of China (Grant No. z2011148), the Technology Foundation for Selected Overseas Chinese Scholars, Ministry of Personnel in China (Grant No. [2012]186), the University Excellent Talents Supporting Foundation of Chongqing, China (Grant No. [2011]65), the University Key Teacher Supporting Foundation of Chongqing, China (Grant No. [2011]65), and the Fundamental Research Fund for the Central Universities, China (Grant Nos. XDJK2014A009, XDJK2013B011).
    [1]

    Chua L O 1971 IEEE Trans. Circ. Th. 18 507

    [2]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [3]

    Biolek Z, Biolek D, Biolková V 2009 Radioengineering 18 210

    [4]

    Chen Y R, Wang X B 2009 IEEE/ACM International Symposium on Nanoscale Architectures, San Francisco, CA USA, July 30-31, 2009 p7

    [5]

    Wu H G, Bao B C, Chen M 2014 Chin. Phys. B 23 118401

    [6]

    Jo S H, Kim K H, Lu W 2009 Nano Lett. 9 870

    [7]

    Duan S K, Hu X F, Wang L D, Li C D, Mazumder P 2012 Sci. China: Inf. Sci. 55 1446

    [8]

    Yener S C, Kuntman H H 2014 Radioengineering 23 1140

    [9]

    Dong Z K, Duan S K, Hu X F, Wang L D, Li H 2014 Sci. World J. 2014 394828

    [10]

    Cantley K D, Subramaniam A, Stiegler H J, Chapman R A, Vogel E M 2011 IEEE Trans. Nanotechnol. 10 1066

    [11]

    Adhikari S P, Yang C J, Kim H, Chua L O 2012 IEEE Trans. Neural Networks and Learning Systems 23 1426

    [12]

    Hu X F, Duan S K, Wang L D, Liao X F 2011 Sci. China: Inf. Sci. 41 500 (in Chinese) [胡小方, 段书凯, 王丽丹, 廖晓峰 2011 中国科学:信息科学 41 500]

    [13]

    Afifi A, Ayatollahi A, Raissi F 2009 IEEE Circuit Theory and Design Antalya, August 23-27, 2009 p563

    [14]

    Dong Z K, Duan S K, Hu X F, Wang L D 2014 Acta Phys. Sin. 63 128502 (in Chinese) [董哲康, 段书凯, 胡小方, 王丽丹 2014 物理学报 63 128502]

    [15]

    Tian X B, Xu H 2013 Chin. Phys. B 22 088501

    [16]

    Tian X B, Xu H 2014 Chin. Phys. B 23 068401

    [17]

    Xu H, Tian X B, Bu K, Li Q J 2014 Acta Phys. Sin. 63 098402 (in Chinese) [徐晖, 田晓波, 步凯, 李清江 2014 物理学报 63 098402]

    [18]

    Tian X B, Xu H, Li Q J 2014 Acta Phys. Sin. 63 048401 (in Chinese) [田晓波, 徐晖, 李清江 2014 物理学报 63 048401]

    [19]

    Chen L, Li C D, Huang T W, Ahmad H G, Chen Y R 2014 Phys. Lett. A 378 2924

    [20]

    Chang T, Jo S H, Kim K H, Sheridan P, Gaba S, Lu W 2011 Appl. Phys. A 102 857

    [21]

    Chang T, Jo S H, Lu W 2011 ACS Nano 5 7669

    [22]

    Ohno T, Hasegawa T, Tsuruoka T, Terabe K, Gimzewski J K, Aono M 2011 Nat. Mater. 10 591

    [23]

    Wang Z Q, Xu H Y, Li X H, Yu H, Liu Y C, Zhu X J 2012 Adv. Funct. Mater. 22 2759

    [24]

    Bhagya V, Srikumar B N, Raju T R, Shankaranarayana Rao B S 2015 J. Neurosci. Res. 93 104

    [25]

    So H S, Choi S H, Seo K S, Seo C S, So S Y 2014 KSCE J. Civ. Eng. 18 2227

  • [1]

    Chua L O 1971 IEEE Trans. Circ. Th. 18 507

    [2]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [3]

    Biolek Z, Biolek D, Biolková V 2009 Radioengineering 18 210

    [4]

    Chen Y R, Wang X B 2009 IEEE/ACM International Symposium on Nanoscale Architectures, San Francisco, CA USA, July 30-31, 2009 p7

    [5]

    Wu H G, Bao B C, Chen M 2014 Chin. Phys. B 23 118401

    [6]

    Jo S H, Kim K H, Lu W 2009 Nano Lett. 9 870

    [7]

    Duan S K, Hu X F, Wang L D, Li C D, Mazumder P 2012 Sci. China: Inf. Sci. 55 1446

    [8]

    Yener S C, Kuntman H H 2014 Radioengineering 23 1140

    [9]

    Dong Z K, Duan S K, Hu X F, Wang L D, Li H 2014 Sci. World J. 2014 394828

    [10]

    Cantley K D, Subramaniam A, Stiegler H J, Chapman R A, Vogel E M 2011 IEEE Trans. Nanotechnol. 10 1066

    [11]

    Adhikari S P, Yang C J, Kim H, Chua L O 2012 IEEE Trans. Neural Networks and Learning Systems 23 1426

    [12]

    Hu X F, Duan S K, Wang L D, Liao X F 2011 Sci. China: Inf. Sci. 41 500 (in Chinese) [胡小方, 段书凯, 王丽丹, 廖晓峰 2011 中国科学:信息科学 41 500]

    [13]

    Afifi A, Ayatollahi A, Raissi F 2009 IEEE Circuit Theory and Design Antalya, August 23-27, 2009 p563

    [14]

    Dong Z K, Duan S K, Hu X F, Wang L D 2014 Acta Phys. Sin. 63 128502 (in Chinese) [董哲康, 段书凯, 胡小方, 王丽丹 2014 物理学报 63 128502]

    [15]

    Tian X B, Xu H 2013 Chin. Phys. B 22 088501

    [16]

    Tian X B, Xu H 2014 Chin. Phys. B 23 068401

    [17]

    Xu H, Tian X B, Bu K, Li Q J 2014 Acta Phys. Sin. 63 098402 (in Chinese) [徐晖, 田晓波, 步凯, 李清江 2014 物理学报 63 098402]

    [18]

    Tian X B, Xu H, Li Q J 2014 Acta Phys. Sin. 63 048401 (in Chinese) [田晓波, 徐晖, 李清江 2014 物理学报 63 048401]

    [19]

    Chen L, Li C D, Huang T W, Ahmad H G, Chen Y R 2014 Phys. Lett. A 378 2924

    [20]

    Chang T, Jo S H, Kim K H, Sheridan P, Gaba S, Lu W 2011 Appl. Phys. A 102 857

    [21]

    Chang T, Jo S H, Lu W 2011 ACS Nano 5 7669

    [22]

    Ohno T, Hasegawa T, Tsuruoka T, Terabe K, Gimzewski J K, Aono M 2011 Nat. Mater. 10 591

    [23]

    Wang Z Q, Xu H Y, Li X H, Yu H, Liu Y C, Zhu X J 2012 Adv. Funct. Mater. 22 2759

    [24]

    Bhagya V, Srikumar B N, Raju T R, Shankaranarayana Rao B S 2015 J. Neurosci. Res. 93 104

    [25]

    So H S, Choi S H, Seo K S, Seo C S, So S Y 2014 KSCE J. Civ. Eng. 18 2227

  • [1] 李瑞, 徐邦林, 周建芳, 姜恩华, 汪秉宏, 袁五届. 一种突触可塑性导致的觉醒-睡眠周期中突触强度变化和神经动力学转变. 物理学报, 2023, 72(24): 248706. doi: 10.7498/aps.72.20231037
    [2] 胡炜, 廖建彬, 杜永乾. 一种适用于大规模忆阻网络的忆阻器单元解析建模策略. 物理学报, 2021, 70(17): 178505. doi: 10.7498/aps.70.20210116
    [3] 史晨阳, 闵光宗, 刘向阳. 蛋白质基忆阻器研究进展. 物理学报, 2020, 69(17): 178702. doi: 10.7498/aps.69.20200617
    [4] 郭科鑫, 于海洋, 韩弘, 卫欢欢, 龚江东, 刘璐, 黄茜, 高清运, 徐文涛. 基于水热法制备三氧化钼纳米片的人工突触器件. 物理学报, 2020, 69(23): 238501. doi: 10.7498/aps.69.20200928
    [5] 马天兵, 訾保威, 郭永存, 凌六一, 黄友锐, 贾晓芬. 基于拟合衰减差自补偿的分布式光纤温度传感器. 物理学报, 2020, 69(3): 030701. doi: 10.7498/aps.69.20191456
    [6] 邵楠, 张盛兵, 邵舒渊. 具有感觉记忆的忆阻器模型. 物理学报, 2019, 68(1): 018501. doi: 10.7498/aps.68.20181577
    [7] 邵楠, 张盛兵, 邵舒渊. 具有经验学习特性的忆阻器模型分析. 物理学报, 2019, 68(19): 198502. doi: 10.7498/aps.68.20190808
    [8] 刘益春, 林亚, 王中强, 徐海阳. 氧化物基忆阻型神经突触器件. 物理学报, 2019, 68(16): 168504. doi: 10.7498/aps.68.20191262
    [9] 陈义豪, 徐威, 王钰琪, 万相, 李岳峰, 梁定康, 陆立群, 刘鑫伟, 连晓娟, 胡二涛, 郭宇锋, 许剑光, 童祎, 肖建. 基于二维材料MXene的仿神经突触忆阻器的制备和长/短时程突触可塑性的实现. 物理学报, 2019, 68(9): 098501. doi: 10.7498/aps.68.20182306
    [10] 吴洁宁, 王丽丹, 段书凯. 基于忆阻器的时滞混沌系统及伪随机序列发生器. 物理学报, 2017, 66(3): 030502. doi: 10.7498/aps.66.030502
    [11] 杨易, 徐贲, 刘亚铭, 李萍, 王东宁, 赵春柳. 基于游标效应的增敏型光纤法布里-珀罗干涉仪温度传感器. 物理学报, 2017, 66(9): 094205. doi: 10.7498/aps.66.094205
    [12] 邵楠, 张盛兵, 邵舒渊. 具有突触特性忆阻模型的改进与模型经验学习特性机理. 物理学报, 2016, 65(12): 128503. doi: 10.7498/aps.65.128503
    [13] 袁泽世, 李洪涛, 朱晓华. 基于忆阻器的数模混合随机数发生器. 物理学报, 2015, 64(24): 240503. doi: 10.7498/aps.64.240503
    [14] 刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳. 忆阻器及其阻变机理研究进展. 物理学报, 2014, 63(18): 187301. doi: 10.7498/aps.63.187301
    [15] 夏小飞, 王俊松. 基于分岔理论的突触可塑性对神经群动力学特性调控规律研究. 物理学报, 2014, 63(14): 140503. doi: 10.7498/aps.63.140503
    [16] 徐晖, 田晓波, 步凯, 李清江. 温度改变对钛氧化物忆阻器导电特性的影响. 物理学报, 2014, 63(9): 098402. doi: 10.7498/aps.63.098402
    [17] 蒋中英, 张国梁, 马晶, 朱涛. 磷脂在膜结构间的交换:温度和离子强度的影响. 物理学报, 2013, 62(1): 018701. doi: 10.7498/aps.62.018701
    [18] 贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫. 界面效应调制忆阻器研究进展. 物理学报, 2012, 61(21): 217306. doi: 10.7498/aps.61.217306
    [19] 赵学燕, 袁萍, 王杰, 申晓志, 郭逸潇, 乔红贞. 闪电消散过程等离子体温度衰减规律的理论研究. 物理学报, 2009, 58(5): 3243-3247. doi: 10.7498/aps.58.3243
    [20] 宋庆功, 姜恩永. 快离子导体AgxTiS2中Ag+离子-空位的二维基态结构与能量性质研究. 物理学报, 2008, 57(3): 1823-1828. doi: 10.7498/aps.57.1823
计量
  • 文章访问数:  5854
  • PDF下载量:  392
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-19
  • 修回日期:  2015-03-16
  • 刊出日期:  2015-07-05

/

返回文章
返回