搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Eu掺杂Si纳米线的光致发光特性

范志东 周子淳 刘绰 马蕾 彭英才

引用本文:
Citation:

Eu掺杂Si纳米线的光致发光特性

范志东, 周子淳, 刘绰, 马蕾, 彭英才

Photoluminescence properties of Eu doped Si nanowires

Fan Zhi-Dong, Zhou Zi-Chun, Liu Chuo, Ma Lei, Peng Ying-Cai
PDF
导出引用
  • 利用Si(111)衬底, 以Au-Al为金属催化剂, 基于固-液-固生长机理, 在温度为1100℃, N2气流量为1.5 L/min、生长时间为30–90 min等工艺条件下, 制备了直径约为100 nm、长度为数微米的高密度、均匀分布、大面积的Si纳米线(~1010 cm-2). 对Si纳米线进行了Eu掺杂, 实验研究了不同长度的Si纳米线以及不同掺杂温度、掺杂时间等工艺参数对Eu离子红光发射的影响, 利用扫描电子显微镜和X射线衍射仪对Si纳米线表面形貌和Eu掺杂后Si纳米线的结晶取向进行了测量和表征; 室温下利用Hitachi F-4600型荧光分光光度计对样品的激发光谱和发射光谱进行了测试和分析. 结果表明: 在Si纳米线生长时间为30 min、掺杂温度为1000℃、 最佳激发波长为395 nm时, 样品最强荧光波长为619 nm (5D0→7F2); 同时, 还出现了576 nm (5D0→7F0), 596 nm (5D0→7F1), 658 nm (5D0→7F3)和708 nm (5D0→7F4)四条谱带.
    High-density (~1010 cm-2) silicon nanowires are grown directly from n-(111) single crystal silicon based on solid-liquid-solid mechanism by using Au-Al films as metallic catalyst. The results indicate that the optimal parameters to realize Si nanowires with high density and uniform distribution are as follows. The thickness of Au-Al film is between 5 and 15 nm, the temperature is 1100℃, and the flow of N2 is 1.5 L/min. The diameters and lengths of the formed Si nanowires are 100 nm and from several micrometers to sereral tens of micrometerss, respectively. Then Eu-doped Si nanowires are studied. The influences of the different lengths of Si nanowires, doping temperature (900-1100℃), and doping time (15-60 min) on the luminescence of Eu3 + are experimentally investigated. The morphologies and microstructures of the SiNWs, the photoluminescence properties and growth crystall orientations are characterized and analyzed by the scanning electron microscopy, the Hitachi F-4600 fluorescence spectrophotometer and X-ray powder diffraction. The results show that the Eu-doped Si nanowires have a stronly red luminescencent with an emission peak position at 619 nm (5D0→7F2) when the doping temperature is 1000℃, the grow time of SiNWs is 30 min, and the optimal excitation wavelength is 395 nm. At the same time, there are four emission bands of 576 nm (5D0→7F0), 596 nm (5D0→7F1), 658 nm (5D0→7F3), and 708 nm (5D0→7F4) that are observed. Compared with the scenario of the silicon substrate, the Eu-doped Si nanowires present strong red light emission. The photoluminescence properties of Eu-doped Si nanowires have potential applications in the lighting and the silicon optoelectronic integration. However, the parameters of Si nanowires such as diameter, density, surface morphology have great influences on the photoluminescence properties of Eu-doped Si nanowires, which are necessary to be further studied.
    [1]

    Li X, Guan L, An J Y, Jin L T, Yang Z P, Yang Y M, Li P L, Fu G S 2011 Chin. Phys. Lett. 28 027805

    [2]

    Liu H L, Hao Y Y, Xu B S 2013 Acta Phys. Sin. 62 108504 (in Chinese) [刘红利, 郝玉英, 许并社 2013 物理学报 62 108504]

    [3]

    Hazra C, Mahalingam V 2013 RSC Adv. 24 9197

    [4]

    Hasna K, Kumar S S, Komath M, Varma M R, Jayaraj M K, Kumar K R 2013 Phys. Chem. Chem. Phys. 15 8106

    [5]

    Kesavulu C R, Kiran K K, Vijaya N, Lim K S, Jayasankar C K 2013 Mater. Chem. Phys. 141 903

    [6]

    Kumar V, Kumar V, Som S, Duvenhage M M, Ntwaeaborwa O M, Swart H C 2014 Appl. Surf. Sci. 308 419

    [7]

    Morishita H, Delsing A C A, Hintzen H T, Kuwahara H, Itatani K 2014 Key Eng. Mater. 617 149

    [8]

    Bahl S, Lochab S P, Pandey A, Kumar V, Aleynikov V E, Molokanov A G, Kumar P 2014 J. Lumin. 149 176

    [9]

    Zhang N, Ding H, Fu D G 2010 J. Funct. Mater. 3 530 (in Chinese) [张诺, 丁卉, 付德刚 2010 功能材料 3 530]

    [10]

    Li H L, Wang Y H, Zhang W X, Wang X S, Zhao H 2012 Acta Phys. Sin. 61 227802 (in Chinese) [李海玲, 王银海, 张万鑫, 王显盛, 赵慧 2012 物理学报 61 227802]

    [11]

    Yu H L, Yu X, Xu X H, Jiang T M, Yang P H, Jiao Q, Zhou D C, Qiu J B 2013 Chin. Phys. B 22 098503

    [12]

    Gao Y, Lü Q, Wang Y, Liu Z B 2012 Acta Phys. Sin. 61 077802 (in Chinese) [高杨, 吕强, 汪洋, 刘占波 2012 物理学报 61 077802]

    [13]

    Jiang D, Hu X Y, Zhang D K, Ma Y P, Zheng X L, Zhang X, Fan J 2009 Chin. J. Lumin. 2 247 (in Chinese) [江东, 胡晓云, 张德恺, 马益平, 郑新亮, 张昕, 樊君 2009 发光学报 2 247]

    [14]

    Costa V C, Lochhead M J, Bay K L 1996 Chem. Mater. 8 783

    [15]

    Sharma P K, Nass R, Schmidt E L 1998 Opt. Mater. 10 161

    [16]

    Selvan S T, Hayakawa T, Nogami M 1999 J. Phys. Chem. B 103 7064

    [17]

    Campostrini R, Carturan G, Ferrari M, Montagna M, Pilla O 1992 J. Mater. Res. 7 745

    [18]

    Werts M H, Jukes R T, Verhoeven J W 2002 Phys. Chem. Chem. Phys. 4 1542

  • [1]

    Li X, Guan L, An J Y, Jin L T, Yang Z P, Yang Y M, Li P L, Fu G S 2011 Chin. Phys. Lett. 28 027805

    [2]

    Liu H L, Hao Y Y, Xu B S 2013 Acta Phys. Sin. 62 108504 (in Chinese) [刘红利, 郝玉英, 许并社 2013 物理学报 62 108504]

    [3]

    Hazra C, Mahalingam V 2013 RSC Adv. 24 9197

    [4]

    Hasna K, Kumar S S, Komath M, Varma M R, Jayaraj M K, Kumar K R 2013 Phys. Chem. Chem. Phys. 15 8106

    [5]

    Kesavulu C R, Kiran K K, Vijaya N, Lim K S, Jayasankar C K 2013 Mater. Chem. Phys. 141 903

    [6]

    Kumar V, Kumar V, Som S, Duvenhage M M, Ntwaeaborwa O M, Swart H C 2014 Appl. Surf. Sci. 308 419

    [7]

    Morishita H, Delsing A C A, Hintzen H T, Kuwahara H, Itatani K 2014 Key Eng. Mater. 617 149

    [8]

    Bahl S, Lochab S P, Pandey A, Kumar V, Aleynikov V E, Molokanov A G, Kumar P 2014 J. Lumin. 149 176

    [9]

    Zhang N, Ding H, Fu D G 2010 J. Funct. Mater. 3 530 (in Chinese) [张诺, 丁卉, 付德刚 2010 功能材料 3 530]

    [10]

    Li H L, Wang Y H, Zhang W X, Wang X S, Zhao H 2012 Acta Phys. Sin. 61 227802 (in Chinese) [李海玲, 王银海, 张万鑫, 王显盛, 赵慧 2012 物理学报 61 227802]

    [11]

    Yu H L, Yu X, Xu X H, Jiang T M, Yang P H, Jiao Q, Zhou D C, Qiu J B 2013 Chin. Phys. B 22 098503

    [12]

    Gao Y, Lü Q, Wang Y, Liu Z B 2012 Acta Phys. Sin. 61 077802 (in Chinese) [高杨, 吕强, 汪洋, 刘占波 2012 物理学报 61 077802]

    [13]

    Jiang D, Hu X Y, Zhang D K, Ma Y P, Zheng X L, Zhang X, Fan J 2009 Chin. J. Lumin. 2 247 (in Chinese) [江东, 胡晓云, 张德恺, 马益平, 郑新亮, 张昕, 樊君 2009 发光学报 2 247]

    [14]

    Costa V C, Lochhead M J, Bay K L 1996 Chem. Mater. 8 783

    [15]

    Sharma P K, Nass R, Schmidt E L 1998 Opt. Mater. 10 161

    [16]

    Selvan S T, Hayakawa T, Nogami M 1999 J. Phys. Chem. B 103 7064

    [17]

    Campostrini R, Carturan G, Ferrari M, Montagna M, Pilla O 1992 J. Mater. Res. 7 745

    [18]

    Werts M H, Jukes R T, Verhoeven J W 2002 Phys. Chem. Chem. Phys. 4 1542

  • [1] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究. 物理学报, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [2] 周小红, 杨卿, 邹军涛, 梁淑华. 生长条件对Ga掺杂ZnO薄膜微观结构及光致发光性能的影响. 物理学报, 2015, 64(8): 087803. doi: 10.7498/aps.64.087803
    [3] 王疆靖, 邵瑞文, 邓青松, 郑坤. 应变加载下Si纳米线电输运性能的原位电子显微学研究. 物理学报, 2014, 63(11): 117303. doi: 10.7498/aps.63.117303
    [4] 刘智, 李亚明, 薛春来, 成步文, 王启明. 掺杂对多层Ge/Si(001)量子点光致发光的影响. 物理学报, 2013, 62(7): 076108. doi: 10.7498/aps.62.076108
    [5] 程赛, 吕惠民, 石振海, 崔静雅. 碳泡沫衬底上氮化铝纳米线的生长及其光致发光特性研究. 物理学报, 2012, 61(12): 126201. doi: 10.7498/aps.61.126201
    [6] 路芳, 张兴华, 卢遵铭, 徐学文, 唐成春. Sr和Ba替代对Eu掺杂Ca2.955Si2O7的结构和发光特性的影响研究. 物理学报, 2012, 61(14): 144209. doi: 10.7498/aps.61.144209
    [7] 方合, 王顺利, 李立群, 李培刚, 刘爱萍, 唐为华. 液相激光烧蚀合成ZnO及Zn/ZnO纳米颗粒及其光致发光性能. 物理学报, 2011, 60(9): 096102. doi: 10.7498/aps.60.096102
    [8] 彭英才, 范志东, 白振华, 马蕾. Si纳米线的固-液-固可控生长及其形成机理分析. 物理学报, 2010, 59(2): 1169-1174. doi: 10.7498/aps.59.1169
    [9] 高立, 张建民. 微量Mg掺杂ZnO薄膜的光致发光光谱和带隙变化机理研究. 物理学报, 2010, 59(2): 1263-1267. doi: 10.7498/aps.59.1263
    [10] 吴定才, 胡志刚, 段满益, 徐禄祥, 刘方舒, 董成军, 吴艳南, 纪红萱, 徐明. Co与Cu掺杂ZnO薄膜的制备与光致发光研究. 物理学报, 2009, 58(10): 7261-7266. doi: 10.7498/aps.58.7261
    [11] 郑立仁, 黄柏标, 尉吉勇. 不同气氛下SiOx纳米线的制备及形貌、红外、光致发光研究. 物理学报, 2009, 58(4): 2306-2312. doi: 10.7498/aps.58.2306
    [12] 刘春明, 方丽梅, 祖小涛. 钴掺杂二氧化锡纳米粉的光致发光和磁学性质. 物理学报, 2009, 58(2): 936-940. doi: 10.7498/aps.58.936
    [13] 于 威, 李亚超, 丁文革, 张江勇, 杨彦斌, 傅广生. 氮化硅薄膜中纳米非晶硅颗粒的键合结构及光致发光. 物理学报, 2008, 57(6): 3661-3665. doi: 10.7498/aps.57.3661
    [14] 唐 斌, 邓 宏, 税正伟, 韦 敏, 陈金菊, 郝 昕. 掺AlZnO纳米线阵列的光致发光特性研究. 物理学报, 2007, 56(9): 5176-5179. doi: 10.7498/aps.56.5176
    [15] 彭智伟, 王玲玲, 刘晃清, 黄维清, 邹炳锁. Gd2O3:Eu3+纳米晶的燃烧合成及光致发光性质. 物理学报, 2007, 56(2): 1162-1166. doi: 10.7498/aps.56.1162
    [16] 王英龙, 卢丽芳, 闫常瑜, 褚立志, 周 阳, 傅广生, 彭英才. 具有窄光致发光谱的纳米Si晶薄膜的激光烧蚀制备. 物理学报, 2005, 54(12): 5738-5742. doi: 10.7498/aps.54.5738
    [17] 黄凯, 王思慧, 施毅, 秦国毅, 张荣, 郑有炓. 内电场对纳米硅光致发光谱的影响. 物理学报, 2004, 53(4): 1236-1242. doi: 10.7498/aps.53.1236
    [18] 张喜田, 肖芝燕, 张伟力, 高 红, 王玉玺, 刘益春, 张吉英, 许 武. 高质量纳米ZnO薄膜的光致发光特性研究. 物理学报, 2003, 52(3): 740-744. doi: 10.7498/aps.52.740
    [19] 杨秀健, 施朝淑, 许小亮. 纳米ZnO和ZnO∶Eu3+的表面效应及发光特性. 物理学报, 2002, 51(12): 2871-2874. doi: 10.7498/aps.51.2871
    [20] 马书懿, 秦国刚, 尤力平, 王印月. 含纳米硅和纳米锗的氧化硅薄膜光致发光的比较研究. 物理学报, 2001, 50(8): 1580-1584. doi: 10.7498/aps.50.1580
计量
  • 文章访问数:  3331
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-31
  • 修回日期:  2015-03-08
  • 刊出日期:  2015-07-05

Eu掺杂Si纳米线的光致发光特性

  • 1. 河北大学物理科学与技术学院, 保定 071002;
  • 2. 河北大学电子信息工程学院, 保定 071002;
  • 3. 北京大学, 介观物理国家重点实验室, 北京 100871

摘要: 利用Si(111)衬底, 以Au-Al为金属催化剂, 基于固-液-固生长机理, 在温度为1100℃, N2气流量为1.5 L/min、生长时间为30–90 min等工艺条件下, 制备了直径约为100 nm、长度为数微米的高密度、均匀分布、大面积的Si纳米线(~1010 cm-2). 对Si纳米线进行了Eu掺杂, 实验研究了不同长度的Si纳米线以及不同掺杂温度、掺杂时间等工艺参数对Eu离子红光发射的影响, 利用扫描电子显微镜和X射线衍射仪对Si纳米线表面形貌和Eu掺杂后Si纳米线的结晶取向进行了测量和表征; 室温下利用Hitachi F-4600型荧光分光光度计对样品的激发光谱和发射光谱进行了测试和分析. 结果表明: 在Si纳米线生长时间为30 min、掺杂温度为1000℃、 最佳激发波长为395 nm时, 样品最强荧光波长为619 nm (5D0→7F2); 同时, 还出现了576 nm (5D0→7F0), 596 nm (5D0→7F1), 658 nm (5D0→7F3)和708 nm (5D0→7F4)四条谱带.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回