搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁致塑性效应下的位错动力学机制

李桂荣 王宏明 李沛思 高雷章 彭琮翔 郑瑞

引用本文:
Citation:

磁致塑性效应下的位错动力学机制

李桂荣, 王宏明, 李沛思, 高雷章, 彭琮翔, 郑瑞

Mechanism of dislocation kinetics under magnetoplastic effect

Li Gui-Rong, Wang Hong-Ming, Li Pei-Si, Gao Lei-Zhang, Peng Cong-Xiang, Zheng Rui
PDF
导出引用
  • 基于磁致塑性效应探讨了磁场作用下位错受力和运动机制, 对磁场下的位错动力学机制进行了定性和定量分析. 选择氧化铝纳米颗粒强化铝基复合材料为实验对象, 在不同磁感应强度下(0–3 T范围)对试样进行磁场处理. 结果表明, 随着磁感应强度增加, 位错密度提高, 表现出塑性变形特征. 分析认为, 磁场力不足以驱动位错运动, 位错增殖诱因在于磁致塑性效应, 即磁场改变了顺磁性位错芯与障碍间自由基对中的电子自旋状态, 促使自由基对从强键结合单线态向弱键结合三重态转化, 位错穿越障碍时所需能量减小, 退钉扎趋势明显; 位错运动中的限速环节是位错在障碍处的停留, 磁场诱发的电子激发和原子重排速度很快, 表现出磁场作用的高效性. 磁场起作用的临界磁感应强度约为3 T, 低于3 T时磁场作用随磁场强度增加而变得明显, 高于3 T 后磁场效果会减小. 计算得到3 T 时位错运动速度是10-3 m/s, 位错线长度比未加磁场时增加两个数量级, 位移与磁感应强度平方和磁场作用时间成正比. 实验和理论研究表明磁场具有改善材料塑性变形能力的显著作用.
    The plasticity of material is associated closely with the movement and proliferation of dislocation. Therefore, in the deformation and plasticity theory the dislocation kinetics is an important topic. In the case of no magnetic field, the conventional dislocation kinetics normally focuses on the dislocation microstructure, nucleation and mobility, and the inherent relationship between electron spin and plasticity is seldom concerned. As a matter of fact, the electron rotation is directionless and unordered in the absence of magnetic field, so the electron behavior will not take an apparent effect on the microstructure and properties of material. Nevertheless, in the presence of magnetic field the case is different. The magnetic field will influence the electron spin and, therefore, atomic rearrangement. The dislocation behavior and plasticity will also be affected by the magnetic field, which is called the magnetoplastic effect. In this paper, on the basis of magnetoplastic effect the dislocation kinetics involving dislocation stress, mobility and others is discussed both qualitatively and quantitatively. It has rarely reported currently in the literature. The pulsed magnetic field is first utilized to process solid nanometer alumina particulates reinforced aluminum matrix composites. The experimental results demonstrate that the dislocation density increases with magnetic induction intensity increasing from zero to 3 T. The phenomenon reveals the characteristic of plastic deformation in a processed sample. The further theoretical analysis displays that the generated magnetic force is not large enough to activate the dislocation movement. The fundamental reason lies in the magnetoplastic effect, that is, the magnetic field brings about the transition of electron spin in the radical pairs between paramagnetic dislocation cores and obstacles. The radical pairs tend to be conversed from the singlet state with high bonding energy to the triplet state with low bonding energy, therefore, the prerequisite energy for dislocation to surmount the obstacles will be lowed and the depinning tendency will be apparent. In a period of dislocation movement, the rate limiting consists in the dislocation stopping at the obstacle; on the contrary, the electron excitation and atomic arrangement governed by the magnetic field take negligible time. Hence, it can be seen that the performance of magnetic field is highly efficient. The critical magnetic induction intensity is calculated to be 3 T. That is, when the intensity is lower than 3 T, the magnetoplastic effect becomes strong with the increase of magnetic induction intensity and action time; when the intensity is higher than 3 T, the effect changes gently. Under this critical magnetic induction intensity, the dislocation velocity is deduced to be on the order of 10-3 m/s. Moreover, the dislocation length will be increased by two orders of magnitude. The displacement of dislocation is proportional to the square of magnetic induction intensity and action time of magnetic field. To sum up, the magnetic field treatment has been proved to be an efficient approach to improve the plasticity of material. The prospective research will focus on the mechanical properties of alloys or composites subjected to magnetic field, together with tensile stress so as to acquire the effect of magnetic field parameters of macro plasticity of materials.
    • 基金项目: 国家自然科学基金(批准号: 51371091, 51174099)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51371091, 51174099).
    [1]

    Kim C S, Galligan J M 1996 Acta Mater. 44 775

    [2]

    Nes E, Marthinsen K 2002 Mat. Sci. Eng. A 322 176

    [3]

    Li W, Fan T Y 2011 Chin. Phys. B 20 036100

    [4]

    Wang H M, Li G R, Zhao Y T, Zhang Z 2011 J. Alloys Compd. 509 5696

    [5]

    Li H T, Wang Q, Wang K, He J C 2011 Intermetallics 19 187

    [6]

    Li G R, Wang H M, Zhao Y T, Chen D B, Chen G, Cheng X N 2010 Trans. Nonferrous Met. Soc. China 20 577

    [7]

    Barham M, Steigmann D J, White D 2012 Inter. J. Non-Linear Mech. 47 185

    [8]

    Li H Q, Chen Q Z, Wang Y B, Chu W Y 1997 Chin. Sci. Bull. 42 2282 (in Chinese) [李红旗, 陈奇志, 王燕斌, 褚武扬 1997 科学通报 42 2282]

    [9]

    Golovin Y I 2004 Phys. Solid State 46 789

    [10]

    Molotskii M, Fleurov V 1997 Phys. Rev. Lett. 78 2779

    [11]

    Liu Z L, Hu H Y, Fan T Y 2007 Trans. Beijing Institute of Technology 27 113 (in Chinese) [刘兆龙, 胡海云, 范天佑 2007 北京理工大学学报 27 113]

    [12]

    Buchachenko A L 2006 J. Exp. Theor. Phys. 129 909

    [13]

    Li G R, Wang H M, Zhao Y T 2009 J. Alloys Compd. 471 530

    [14]

    Wang H M, Li G, Zhao Y T 2010 Mat. Sci. Eng. A 527 2881

    [15]

    Urusovskaya A A, Alshits V I, Smirnov A E, Bekkauer N N 2003 Crystallography Report 48 796

    [16]

    Li G R, Wang H M, Yuan X T, Zhao Y T 2013 Mater. Lett. 99 50

    [17]

    Molotskii M I 1989 Soviet Scientific Reviews (London: Harwood Press) p1

    [18]

    Hutchinson B, Ridley N 2006 Scripta Mater. 55 299

    [19]

    Salikhov K M, Molin Y N, Sagdeev R Z, Buchachenko A L 1984 Spin Polarization and Magnetic Effects in Radical Reactions (Amsterdam: Elsevier Press) pp1

    [20]

    Molotskii M, Fleurov V 2000 Phys. Chem. B 104 3812

    [21]

    Molotskii M I 2000 Mat. Sci. Eng. A 287 248

    [22]

    Mullner P, Chernenko V A, Kostorz G 2003 J. Magn. Magn. Mater. 267 325

  • [1]

    Kim C S, Galligan J M 1996 Acta Mater. 44 775

    [2]

    Nes E, Marthinsen K 2002 Mat. Sci. Eng. A 322 176

    [3]

    Li W, Fan T Y 2011 Chin. Phys. B 20 036100

    [4]

    Wang H M, Li G R, Zhao Y T, Zhang Z 2011 J. Alloys Compd. 509 5696

    [5]

    Li H T, Wang Q, Wang K, He J C 2011 Intermetallics 19 187

    [6]

    Li G R, Wang H M, Zhao Y T, Chen D B, Chen G, Cheng X N 2010 Trans. Nonferrous Met. Soc. China 20 577

    [7]

    Barham M, Steigmann D J, White D 2012 Inter. J. Non-Linear Mech. 47 185

    [8]

    Li H Q, Chen Q Z, Wang Y B, Chu W Y 1997 Chin. Sci. Bull. 42 2282 (in Chinese) [李红旗, 陈奇志, 王燕斌, 褚武扬 1997 科学通报 42 2282]

    [9]

    Golovin Y I 2004 Phys. Solid State 46 789

    [10]

    Molotskii M, Fleurov V 1997 Phys. Rev. Lett. 78 2779

    [11]

    Liu Z L, Hu H Y, Fan T Y 2007 Trans. Beijing Institute of Technology 27 113 (in Chinese) [刘兆龙, 胡海云, 范天佑 2007 北京理工大学学报 27 113]

    [12]

    Buchachenko A L 2006 J. Exp. Theor. Phys. 129 909

    [13]

    Li G R, Wang H M, Zhao Y T 2009 J. Alloys Compd. 471 530

    [14]

    Wang H M, Li G, Zhao Y T 2010 Mat. Sci. Eng. A 527 2881

    [15]

    Urusovskaya A A, Alshits V I, Smirnov A E, Bekkauer N N 2003 Crystallography Report 48 796

    [16]

    Li G R, Wang H M, Yuan X T, Zhao Y T 2013 Mater. Lett. 99 50

    [17]

    Molotskii M I 1989 Soviet Scientific Reviews (London: Harwood Press) p1

    [18]

    Hutchinson B, Ridley N 2006 Scripta Mater. 55 299

    [19]

    Salikhov K M, Molin Y N, Sagdeev R Z, Buchachenko A L 1984 Spin Polarization and Magnetic Effects in Radical Reactions (Amsterdam: Elsevier Press) pp1

    [20]

    Molotskii M, Fleurov V 2000 Phys. Chem. B 104 3812

    [21]

    Molotskii M I 2000 Mat. Sci. Eng. A 287 248

    [22]

    Mullner P, Chernenko V A, Kostorz G 2003 J. Magn. Magn. Mater. 267 325

  • [1] 闻鹏, 陶钢. 温度对CoCrFeMnNi高熵合金冲击响应和塑性变形机制影响的分子动力学研究. 物理学报, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20221621
    [2] 江双双, 朱力, 刘思楠, 杨詹詹, 兰司, 王寅岗. 局部塑性变形下铁基金属玻璃的致密化和非均匀性增强. 物理学报, 2022, 71(5): 058101. doi: 10.7498/aps.71.20211304
    [3] 闻鹏, 陶钢. 温度对CoCrFeMnNi高熵合金冲击响应和塑性变形机制影响的分子动力学研究. 物理学报, 2022, 71(24): 246101. doi: 10.7498/aps.71.20221621
    [4] 安敏荣, 李思澜, 宿梦嘉, 邓琼, 宋海洋. 尺寸依赖的CoCrFeNiMn晶体/非晶双相高熵合金塑性变形机制的分子动力学模拟. 物理学报, 2022, 71(24): 243101. doi: 10.7498/aps.71.20221368
    [5] 魏宁, 赵思涵, 李志辉, 区炳显, 花安平, 赵军华. 石墨烯尺寸和分布对石墨烯/铝基复合材料裂纹扩展的影响. 物理学报, 2022, 71(13): 134702. doi: 10.7498/aps.71.20212203
    [6] 汉芮岐, 宋海洋, 安敏荣, 李卫卫, 马佳丽. 石墨烯/铝基复合材料在纳米压痕过程中位错与石墨烯相互作用机制的模拟研究. 物理学报, 2021, 70(6): 066201. doi: 10.7498/aps.70.20201591
    [7] 江双双, 朱力, 刘思楠, 杨詹詹, 兰司, 王寅岗. 局部塑性变形下铁基金属玻璃的致密化和非均匀性增强. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211304
    [8] 宋旭, 陆勇俊, 石明亮, 赵翔, 王峰会. 集流体塑性变形对锂离子电池双层电极中锂扩散和应力的影响. 物理学报, 2018, 67(14): 140201. doi: 10.7498/aps.67.20180148
    [9] 刘清友, 罗旭, 朱海燕, 韩一维, 刘建勋. 基于Jiles-Atherton理论的铁磁材料塑性变形磁化模型修正. 物理学报, 2017, 66(10): 107501. doi: 10.7498/aps.66.107501
    [10] 姜太龙, 喻寅, 宦强, 李永强, 贺红亮. 设计脆性材料的冲击塑性. 物理学报, 2015, 64(18): 188301. doi: 10.7498/aps.64.188301
    [11] 第伍旻杰, 胡晓棉. 高应变率压缩下纳米孔洞对金属铝塑性变形的影响研究. 物理学报, 2015, 64(17): 170201. doi: 10.7498/aps.64.170201
    [12] 闻鹏, 陶钢, 任保祥, 裴政. 纳米多晶铜的超塑性变形机理的分子动力学探讨. 物理学报, 2015, 64(12): 126201. doi: 10.7498/aps.64.126201
    [13] 王宏明, 李沛思, 郑瑞, 李桂荣, 袁雪婷. 强脉冲磁场冲击处理对铝基复合材料塑性的影响机制. 物理学报, 2015, 64(8): 087104. doi: 10.7498/aps.64.087104
    [14] 徐爽, 郭雅芳. 纳米铜薄膜塑性变形中空位型缺陷形核与演化的分子动力学研究. 物理学报, 2013, 62(19): 196201. doi: 10.7498/aps.62.196201
    [15] 戴春娟, 刘希琴, 刘子利, 刘伯路. 铝基碳化硼材料中子屏蔽性能的蒙特卡罗模拟. 物理学报, 2013, 62(15): 152801. doi: 10.7498/aps.62.152801
    [16] 高原, 柳占立, 赵雪川, 张朝晖, 庄茁, 由小川. 基于点缺陷扩散理论与离散位错动力学耦合的位错攀移模型研究. 物理学报, 2011, 60(9): 096103. doi: 10.7498/aps.60.096103
    [17] 何安民, 邵建立, 王裴, 秦承森. 单晶Cu(001)薄膜塑性变形的分子动力学模拟. 物理学报, 2010, 59(12): 8836-8842. doi: 10.7498/aps.59.8836
    [18] 罗诗裕, 李洪涛, 吴木营, 王善进, 凌东雄, 张伟风, 邵明珠. 应变超晶格系统的共振行为及其动力学稳定性. 物理学报, 2010, 59(8): 5766-5771. doi: 10.7498/aps.59.5766
    [19] 王海燕, 祝文军, 邓小良, 宋振飞, 陈向荣. 冲击加载下铝中氦泡和孔洞的塑性变形特征研究. 物理学报, 2009, 58(2): 1154-1160. doi: 10.7498/aps.58.1154
    [20] 林鸿荪. 轴对稱塑性变形问题. 物理学报, 1954, 10(2): 89-104. doi: 10.7498/aps.10.89
计量
  • 文章访问数:  6758
  • PDF下载量:  284
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-12
  • 修回日期:  2015-02-25
  • 刊出日期:  2015-07-05

/

返回文章
返回