搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强脉冲磁场冲击处理对铝基复合材料塑性的影响机制

王宏明 李沛思 郑瑞 李桂荣 袁雪婷

引用本文:
Citation:

强脉冲磁场冲击处理对铝基复合材料塑性的影响机制

王宏明, 李沛思, 郑瑞, 李桂荣, 袁雪婷

Mechanism of high pulsed magnetic field treatment of the plasticity of aluminum matrix composites

Wang Hong-Ming, Li Pei-Si, Zheng Rui, Li Gui-Rong, Yuan Xue-Ting
PDF
导出引用
  • 铝基复合材料在加入颗粒相之后, 延伸率和塑性变形能力明显降低. 为改善其塑性变形能力, 通过对比强脉冲磁场冲击处理前后试样内部组织和残余应力的变化特征, 研究了磁致塑性效应对铝基复合材料塑性变形能力的影响机理. 结果表明: 当磁感应强度从2 T变化到4 T时, 铝基复合材料中位错密度显著增加, 4 T时的位错密度是未加磁场时的3.1倍; 3 T, 30个脉冲处理后的复合材料中残余应力值从未加磁场时的41 MPa减小为-1 MPa. 从原子尺度来看, 强磁场导致了磁致塑性效应, 从而引起了位错的运动, 并促进了位错的退钉扎和可移动位错数量的增加; 从材料内部整体结构变化来看, 磁场加速了材料内应力的释放速率, 降低了材料内部的残余应力, 从而改善了铝基复合材料的塑性变形能力.
    For aluminum matrix composite, the introduced particles will strengthen the matrix, but as the obstacles, the heterogeneous particles will hinder the dislocation movement, generate uneven material structure, and may become a source of stress concentration. Therefore, they are detrimental severely to the elongation and plasticity of composite. It is known that dislocations exhibit a paramagnetic behavior because they contain paramagnetic centers including localized electrons, holes, triplet excitons, ion radicals, etc. The initial radical pair of the dislocation-obstacle S (spin angular momentum) = ± 1/2 is in a singlet state, and the total spin of the radical pair is 0 and in the antiparallel spin direction, offsetting a magnetism of the radical pair. The magnetic field can change the spin direction from singlet state to triplet state. In the triplet state the electron spin is 1 and in the same spin direction. A strong bond of the dislocation-obstacle is formed only in the singlet state when the spins of the two electrons are antiparallel. So an obstacle is able to pin a dislocation only if the radical pair is in the singlet state. Under the condition of high pulsed magnetic field treatment (HPMFT) the conversion of electronic spin will be a fundamental cause of dislocation motion along a glide plane. The movement of pinned dislocations will change the material microstructure and influence the performance of material. By comparing the microstructural evolutions and the residual stresses of samples subjected to HPMFT with different values of magnetic induced density (B), the positive influence of magnetoplastic effect on the plasticity of aluminum matrix composite is investigated in this paper. The results show that the dislocation density is significantly increased when B changes from 2 T to 4 T. When B=4 T the dislocation density is enhanced by 3.1 times compared with that of the sample without HPMFT. Moreover, the residual stress is reduced apparently from 41 MPa (B=0) to -1 MPa (B=3 T). In the view of atomic scale, the high magnetic field leads to a magnetoplastic effect which contributes to the dislocation movement and promotes the dislocation depinning, thereafter, the number of movable dislocations increases up. From the viewing of the internal structure of composite, the magnetic field accelerates the releasing rate of internal stress and lowers the residual stress in material, which is beneficial to improving the plasticity of aluminum matrix composite.
    • 基金项目: 国家自然科学基金(批准号: 51371091, 51001054, 51174099)、江苏大学研究生科研创新计划(批准号: KYXX_0014)、 江苏省自然科学基金(批准号: BK2011533)、金属基复合材料国家重点实验室开放基金(批准号: MMC-KF12-06)和江苏大学工业中心实践创新基金资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51371091, 51001054, 51174099), the Scientific Research Innovation Projects by Graduate Students in Jiangsu University, China (Grant No. KYXX_0014), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2011533), the Open Fund for State Key Laboratory of Metal Matrix Composites, China (Grant No. MMC-KF12-06), and the Practice Innovation Foundation of Jiangsu University Industrial Centre, China.
    [1]

    Molotskii M I 2000 Mat. Sci. Eng. A 287 248

    [2]

    Golovin Y 2004 Phys. Solid State 46 789

    [3]

    Li H Q, Chen Q Z, Wang Y B, Chu W Y 1997 Chin. Sci. Bull. 42 2282 (in Chinese) [李红旗, 陈奇志, 王燕斌, 褚武扬 1997 科学通报 42 2282]

    [4]

    Liu Z L, Hu H Y, Fan T Y 2007 Trans. Beijing Ins. Technol. 27 113 (in Chinese) [刘兆龙, 胡海云, 范天佑 2007 北京理工大学学报 27 113]

    [5]

    Hutchinson B, Ridley N 2006 Scripta Mater. 55 299

    [6]

    Li J H, Gao X X, Zhu J, Li J, Zhang Y F, Zhang M C 2009 J. Funct. Mater. 8 1251 (in Chinese) [李纪恒, 高学绪, 朱洁, 李洁, 张亚飞, 张茂才 2009 功能材料 8 1251]

    [7]

    Li L, Wang X, Shan B W 2012 Application of Atomism in Material Science (Harbin: Harbin Institute of Technology Press) p184 (in Chinese) [李莉, 王香, 山本悟 2012 原子论在材料科学中的应用 (哈尔滨市: 哈尔滨工业大学出版社) 第184页]

    [8]

    Wang H M, Li G R, Zhao Y T, Chen G 2010 Mat. Sci. Eng. A 527 2881

    [9]

    Li G R, Wang H M, Zhao Y T, Chen D B, Chen G, Cheng X N 2010 Trans. Nonferrous Met. Soc. China 20 577

    [10]

    Zhang Q Q 2010 M. S. Dissertation (Beijing: Beijing Jiaotong University) (in Chinese) [张菁菁 2010 硕士论文 (北京: 北京交通大学)]

    [11]

    Li G R, Zhao Y T, Wang H M, Chen G, Dai Q X, Cheng X N 2009 J. Alloys Compd. 471 530

    [12]

    Li G R 2007 Ph. D. Dissertation (Jiangsu: Jiangsu University) (in Chinese) [李桂荣 2007 博士学位论文 (江苏: 江苏大学)]

    [13]

    Liu P, Chen Z J 2011 J. Hefei Univ. Technol. (Nat. Sci. Ed.) 34 341 (in Chinese) [刘萍, 陈忠家 2011 合肥工业大学学报(自然科学版) 34 341]

    [14]

    Jia R X, Zhang Y M, Zhang Y M, Guo H 2010 Spectrosc. Spect. Anal. 30 1995 (in Chinese) [贾仁需, 张玉明, 张义门, 郭辉 2010 光谱学与光谱分析 30 1995]

    [15]

    Li P M, Wen X Z, Zhi Q L, Xi B W, Li J X, Li J, Tian F Z 2014 Mat. Sci. Eng. A 609 16

    [16]

    Clayton J D, McDowell D L, Bammann D J 2006 Int. J. Plast. 22 210

    [17]

    Gao Y L, Zhan L, Zhao X C, Zhang Z H, Zhuang Z, You X C 2011 Acta Phys. Sin. 60 096103 (in Chinese) [高原柳, 占立, 赵雪川, 张朝晖, 庄茁, 由小川 2011 物理学报 60 096103]

    [18]

    Li G R, Zhao Y T, Dai Q X, Zhang H J, Wang H M 2007 J. Uni. Sci. Technol. Beijing 14 460

    [19]

    Li G R, Wang H M, Yuan X T, Cai Y 2013 Chin. J. Mater. Res. 27 397 (in Chinese) [李桂荣, 王宏明, 袁雪婷, 蔡云 2013 材料研究学报 27 397]

    [20]

    Buchachenko A L 2006 J. Exp. Theor. Phys. 102 795

    [21]

    Molotskii M I, Fleurov V 2000 J. Phys. Chem. B 104 3812

    [22]

    Xu X Y, Liang M, Lu Y F, Wang P F, Jiao G F, Li C S 2014 J. Low Temp. Phys. 36 140 (in Chinese) [徐晓燕, 梁明, 卢亚锋, 王鹏飞, 焦高峰, 李成山 2014 低温物理学报 36 140]

    [23]

    Li Z F 2008 Ph. D. Dissertation (Shanghai: Shanghai Jiaotong University) (in Chinese) [励志峰 2008 博士学位论文 (上海: 上海交通大学)]

    [24]

    Li B, Coles P, Reimer J A, Dawson P, Meriles C A 2010 Solid State Commun. 150 450

    [25]

    Lin J, Zhao H Y, Cai Z P, Lu A L 2005 J. Mater. Eng. 3 55 (in Chinese) [林健, 赵海燕, 蔡志鹏, 鹿安理 2005 材料工程 3 55]

    [26]

    Wu S, Zhao H Y, Lu A L, Fang H Z 2002 Trans. China Welding Ins. 23 9 (in Chinese) [吴甦, 赵海燕, 鹿安理, 方慧珍 2002 焊接学报 23 9]

    [27]

    Wu S, Zhao H Y, Lu A L, Fang H Z, Tang F 2002 J. Tsinghua Univ. (Nat. Sci. Ed.) 42 147 (in Chinese) [吴甦, 赵海燕, 鹿安理, 方慧珍, 唐非 2002 清华大学学报(自然科学版) 42 147]

  • [1]

    Molotskii M I 2000 Mat. Sci. Eng. A 287 248

    [2]

    Golovin Y 2004 Phys. Solid State 46 789

    [3]

    Li H Q, Chen Q Z, Wang Y B, Chu W Y 1997 Chin. Sci. Bull. 42 2282 (in Chinese) [李红旗, 陈奇志, 王燕斌, 褚武扬 1997 科学通报 42 2282]

    [4]

    Liu Z L, Hu H Y, Fan T Y 2007 Trans. Beijing Ins. Technol. 27 113 (in Chinese) [刘兆龙, 胡海云, 范天佑 2007 北京理工大学学报 27 113]

    [5]

    Hutchinson B, Ridley N 2006 Scripta Mater. 55 299

    [6]

    Li J H, Gao X X, Zhu J, Li J, Zhang Y F, Zhang M C 2009 J. Funct. Mater. 8 1251 (in Chinese) [李纪恒, 高学绪, 朱洁, 李洁, 张亚飞, 张茂才 2009 功能材料 8 1251]

    [7]

    Li L, Wang X, Shan B W 2012 Application of Atomism in Material Science (Harbin: Harbin Institute of Technology Press) p184 (in Chinese) [李莉, 王香, 山本悟 2012 原子论在材料科学中的应用 (哈尔滨市: 哈尔滨工业大学出版社) 第184页]

    [8]

    Wang H M, Li G R, Zhao Y T, Chen G 2010 Mat. Sci. Eng. A 527 2881

    [9]

    Li G R, Wang H M, Zhao Y T, Chen D B, Chen G, Cheng X N 2010 Trans. Nonferrous Met. Soc. China 20 577

    [10]

    Zhang Q Q 2010 M. S. Dissertation (Beijing: Beijing Jiaotong University) (in Chinese) [张菁菁 2010 硕士论文 (北京: 北京交通大学)]

    [11]

    Li G R, Zhao Y T, Wang H M, Chen G, Dai Q X, Cheng X N 2009 J. Alloys Compd. 471 530

    [12]

    Li G R 2007 Ph. D. Dissertation (Jiangsu: Jiangsu University) (in Chinese) [李桂荣 2007 博士学位论文 (江苏: 江苏大学)]

    [13]

    Liu P, Chen Z J 2011 J. Hefei Univ. Technol. (Nat. Sci. Ed.) 34 341 (in Chinese) [刘萍, 陈忠家 2011 合肥工业大学学报(自然科学版) 34 341]

    [14]

    Jia R X, Zhang Y M, Zhang Y M, Guo H 2010 Spectrosc. Spect. Anal. 30 1995 (in Chinese) [贾仁需, 张玉明, 张义门, 郭辉 2010 光谱学与光谱分析 30 1995]

    [15]

    Li P M, Wen X Z, Zhi Q L, Xi B W, Li J X, Li J, Tian F Z 2014 Mat. Sci. Eng. A 609 16

    [16]

    Clayton J D, McDowell D L, Bammann D J 2006 Int. J. Plast. 22 210

    [17]

    Gao Y L, Zhan L, Zhao X C, Zhang Z H, Zhuang Z, You X C 2011 Acta Phys. Sin. 60 096103 (in Chinese) [高原柳, 占立, 赵雪川, 张朝晖, 庄茁, 由小川 2011 物理学报 60 096103]

    [18]

    Li G R, Zhao Y T, Dai Q X, Zhang H J, Wang H M 2007 J. Uni. Sci. Technol. Beijing 14 460

    [19]

    Li G R, Wang H M, Yuan X T, Cai Y 2013 Chin. J. Mater. Res. 27 397 (in Chinese) [李桂荣, 王宏明, 袁雪婷, 蔡云 2013 材料研究学报 27 397]

    [20]

    Buchachenko A L 2006 J. Exp. Theor. Phys. 102 795

    [21]

    Molotskii M I, Fleurov V 2000 J. Phys. Chem. B 104 3812

    [22]

    Xu X Y, Liang M, Lu Y F, Wang P F, Jiao G F, Li C S 2014 J. Low Temp. Phys. 36 140 (in Chinese) [徐晓燕, 梁明, 卢亚锋, 王鹏飞, 焦高峰, 李成山 2014 低温物理学报 36 140]

    [23]

    Li Z F 2008 Ph. D. Dissertation (Shanghai: Shanghai Jiaotong University) (in Chinese) [励志峰 2008 博士学位论文 (上海: 上海交通大学)]

    [24]

    Li B, Coles P, Reimer J A, Dawson P, Meriles C A 2010 Solid State Commun. 150 450

    [25]

    Lin J, Zhao H Y, Cai Z P, Lu A L 2005 J. Mater. Eng. 3 55 (in Chinese) [林健, 赵海燕, 蔡志鹏, 鹿安理 2005 材料工程 3 55]

    [26]

    Wu S, Zhao H Y, Lu A L, Fang H Z 2002 Trans. China Welding Ins. 23 9 (in Chinese) [吴甦, 赵海燕, 鹿安理, 方慧珍 2002 焊接学报 23 9]

    [27]

    Wu S, Zhao H Y, Lu A L, Fang H Z, Tang F 2002 J. Tsinghua Univ. (Nat. Sci. Ed.) 42 147 (in Chinese) [吴甦, 赵海燕, 鹿安理, 方慧珍, 唐非 2002 清华大学学报(自然科学版) 42 147]

  • [1] 祁超, 马玉田, 齐艳飞, 肖善曲, 王波. 微观组织对叠片结构钨基面向等离子体材料的热疲劳效应的影响. 物理学报, 2024, 73(11): 112801. doi: 10.7498/aps.73.20240007
    [2] 魏宁, 赵思涵, 李志辉, 区炳显, 花安平, 赵军华. 石墨烯尺寸和分布对石墨烯/铝基复合材料裂纹扩展的影响. 物理学报, 2022, 71(13): 134702. doi: 10.7498/aps.71.20212203
    [3] 周勇, 李纯健, 潘昱融. 磁致伸缩/压电层叠复合材料磁电效应分析. 物理学报, 2018, 67(7): 077702. doi: 10.7498/aps.67.20172307
    [4] 李丽丽, 张晓虹, 王玉龙, 国家辉, 张双. 基于聚乙烯/蒙脱土纳米复合材料微观结构的力学性能模拟. 物理学报, 2016, 65(19): 196202. doi: 10.7498/aps.65.196202
    [5] 李桂荣, 王宏明, 李沛思, 高雷章, 彭琮翔, 郑瑞. 磁致塑性效应下的位错动力学机制. 物理学报, 2015, 64(14): 148102. doi: 10.7498/aps.64.148102
    [6] 戴龙泽, 刘希琴, 刘子利, 丁丁. 乏燃料贮运用铝基碳化硼复合材料的屏蔽性能计算. 物理学报, 2013, 62(22): 222401. doi: 10.7498/aps.62.222401
    [7] 戴春娟, 刘希琴, 刘子利, 刘伯路. 铝基碳化硼材料中子屏蔽性能的蒙特卡罗模拟. 物理学报, 2013, 62(15): 152801. doi: 10.7498/aps.62.152801
    [8] 顾苏怡, 方红梅, 周正存, 杜洁. 累积轧制Ti/Al复合材料的微观结构演变和力学性能研究. 物理学报, 2012, 61(18): 186104. doi: 10.7498/aps.61.186104
    [9] 卞雷祥, 文玉梅, 李平. 磁致伸缩材料磁弹性内耗的场依赖特性及其用于磁场传感研究. 物理学报, 2010, 59(2): 883-892. doi: 10.7498/aps.59.883
    [10] 卞雷祥, 文玉梅, 李平. 磁致伸缩/压电叠层复合材料磁-机-电耦合系数分析. 物理学报, 2009, 58(6): 4205-4213. doi: 10.7498/aps.58.4205
    [11] 高剑森, 张宁. 异型磁体/铁电复合材料中的电致变磁导及电致变阻抗效应. 物理学报, 2009, 58(12): 8607-8611. doi: 10.7498/aps.58.8607
    [12] 阳昌海, 文玉梅, 李 平, 卞雷祥. 偏置磁场对磁致伸缩/弹性/压电层合材料磁电效应的影响. 物理学报, 2008, 57(11): 7292-7297. doi: 10.7498/aps.57.7292
    [13] 张国英, 张 辉, 魏 丹, 何君琦. 碳纳米管增强铝基复合材料电子理论研究. 物理学报, 2007, 56(3): 1581-1584. doi: 10.7498/aps.56.1581
    [14] 万 红, 谢立强, 吴学忠, 刘希从. TbDyFe/PZT层状复合材料的磁电效应研究. 物理学报, 2005, 54(8): 3872-3877. doi: 10.7498/aps.54.3872
    [15] 韩 逸, 班春燕, 巴启先, 王书晗, 崔建忠. 磁场对液态铝和固态铁界面微观组织的影响. 物理学报, 2005, 54(6): 2955-2960. doi: 10.7498/aps.54.2955
    [16] 晁月盛, 李明扬, 耿 岩, 刘吉刚. 铁基非晶的低频脉冲磁场处理效应. 物理学报, 2004, 53(10): 3453-3456. doi: 10.7498/aps.53.3453
    [17] 张川江, 吴佑实, 董守义, 石元昌, 周国荣. 铝基非晶合金微观结构的特点与演变. 物理学报, 2002, 51(11): 2575-2579. doi: 10.7498/aps.51.2575
    [18] 王 丽, 李 辉, 边秀房, 孙民华, 刘相法, 刘洪波, 陈魁英. 纯铝熔体微观结构演变及液固相关性研究…. 物理学报, 2000, 49(1): 45-48. doi: 10.7498/aps.49.45
    [19] 訾炳涛, 巴启先, 崔建忠, 白玉光, 那兴杰. 强脉冲电磁场对金属凝固组织影响的研究. 物理学报, 2000, 49(5): 1010-1013. doi: 10.7498/aps.49.1010
    [20] 何正明, 赵妙余, 张玲芬, 汪晓光. 铁基非晶合金磁致伸缩的温度效应. 物理学报, 1990, 39(4): 656-660. doi: 10.7498/aps.39.656
计量
  • 文章访问数:  7000
  • PDF下载量:  725
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-17
  • 修回日期:  2014-12-04
  • 刊出日期:  2015-04-05

/

返回文章
返回