搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯尺寸和分布对石墨烯/铝基复合材料裂纹扩展的影响

魏宁 赵思涵 李志辉 区炳显 花安平 赵军华

引用本文:
Citation:

石墨烯尺寸和分布对石墨烯/铝基复合材料裂纹扩展的影响

魏宁, 赵思涵, 李志辉, 区炳显, 花安平, 赵军华

Effects of graphene size and arrangement on crack propagation of graphene/aluminum composites

Wei Ning, Zhao Si-Han, Li Zhi-Hui, Ou Bing-Xian, Hua An-Ping, Zhao Jun-Hua
PDF
HTML
导出引用
  • 铝基复合材料由于其质轻高强的特点, 是机械工业和航空航天工程中最重要的材料之一. 而石墨烯因其优异力学性能和高比表面积等特点,被作为金属基复合材料的理想增强相. 然而,目前石墨烯在铝基复合材料中对裂纹扩展影响的机制尚不清晰, 制约了其在铝基复合材料的设计和应用. 本文采用分子动力学模拟方法研究了石墨烯的尺寸和分布对铝基复合材料中裂纹扩展的影响. 研究结果表明, 当石墨烯尺寸 l ≤ 3.35 nm时, 在拉伸过程中产生的亚裂纹促进了裂纹扩展。值得注意的是,这种促进作用随着石墨烯与裂纹的距离增大而减弱. 当石墨烯尺寸 l > 3.35 nm时, 石墨烯阻碍了裂纹的扩展和亚裂纹位错的滑移. 此外, 石墨烯的分布和角度可以有效地改变裂纹扩展路径. 本研究的结果有助于理解石墨烯在其铝基复合材料中的破坏失效的作用, 为设计高性能石墨烯/铝基复合材料提供一定参考依据.
    Aluminum-based composite material is one of the most important candidate materials in the mechanical industry and aerospace engineering due to its light weight and high strength. Graphene is an ideal reinforcement for composite materials for its excellent mechanical properties. Till-now, the contribution of graphene sheets in the process of crack propagation in composites is not clear. In present work, the effects of graphene size and distribution in graphene/aluminum composites are explored using molecular dynamics simulation methods. It is found that when the length of graphene flake is less than 3.35 nm, the generated sub-cracks in the composite is benefit to the crack propagation. This effect reduces the mechanical properties of composite. When the length of graphene flake is greater than 3.35 nm, graphene sheet impedes the crack propagation and dislocates slip at sub-cracks. In addition, the distribution of graphene flakes angle changes the crack propagation path. Our findings also provide insights into ways to optimize mechanical properties of graphene/aluminum composites.
      通信作者: 李志辉, zhli0097@x263.net ; 赵军华, junhua.zhao@163.com
    • 基金项目: 国家自然科学基金 (批准号: 11502217)和载人航天工程技术课题“ 大型航天器飞行与再入监视预报系统研制” (批准号: 2020-ZKZX-5011)资助的课题.
      Corresponding author: Li Zhi-Hui, zhli0097@x263.net ; Zhao Jun-Hua, junhua.zhao@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11502217), and the Manned Space Engineering Technology “Development of Large-scale Spacecraft Flight and Reentry Surveillance and Prediction System”, China (Grant No. 2020-ZKZX-5011).
    [1]

    Singh S, Garg M, Batra N K 2015 Tribol. Trans. 58 758Google Scholar

    [2]

    Hu Z, Tong G, Lin D, Chen C, Guo H, Xu J, Zhou L 2016 Mater. Sci. Technol. 32 930

    [3]

    Jayendra B, Sumanth D, Dinesh G, Rao M V 2020 Mater. Today:Proc. 21 1104Google Scholar

    [4]

    Zhang X, Zhao N, He C 2020 Prog. Mater. Sci. 113 100672Google Scholar

    [5]

    Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192Google Scholar

    [6]

    Dai Z, Hou Y, Sanchez D A, Wang G, Brennan C J, Zhang Z, Liu L, Lu N 2018 Phys. Rev. Lett. 121 266101Google Scholar

    [7]

    Dai Z, Liu L, Zhang Z 2019 Adv. Mater. 31 1805417Google Scholar

    [8]

    范冰冰, 郭焕焕, 李稳, 贾瑜, 张锐 2013 物理学报 62 148101Google Scholar

    Fan B-B, Guo H-H, Li W, Jia Y, Zhang R 2013 Acta Phys. Sin. 62 148101Google Scholar

    [9]

    Stankovich S, Dikin D A, Dommett G H, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S 2006 Nature 442 282Google Scholar

    [10]

    Zhang P, Ma L, Fan F, Zeng Z, Peng C, Loya P E, Liu Z, Gong Y, Zhang J, Zhang X, Ajayan P M, Zhu T, Lou J 2014 Nat. Commun. 5 3782Google Scholar

    [11]

    Yang Z, Wang D, Lu Z, Hu W 2016 Appl. Phys. Lett. 109 191909Google Scholar

    [12]

    Galashev A Y, Rakhmanova O R 2020 Phys. Lett. A 384 126790Google Scholar

    [13]

    Wegst U G, Bai H, Saiz E, Tomsia A P, Ritchie R O 2015 Nat. Mater. 14 23Google Scholar

    [14]

    Zhang Y, Li X 2017 Nano Lett. 17 6907Google Scholar

    [15]

    Li Z, Guo Q, Li Z, Fan G, Xiong D B, Su Y, Zhang J, Zhang D 2015 Nano Lett. 15 8077Google Scholar

    [16]

    Kim Y, Lee J, Yeom M S, Shin J W, Kim H, Cui Y, Kysar J W, Hone J, Jung Y, Jeon S, Han S M 2013 Nat. Commun. 4 2114Google Scholar

    [17]

    Zhou X, Liu X, Shang J, Yang Q 2020 Mech. Mater. 148 103530Google Scholar

    [18]

    Zhu J Q, Yang Q S, Liu X 2019 Key Eng. Mater. 804 1Google Scholar

    [19]

    Muller S E, Santhapuram R R, Nair A K 2018 Comput. Mater. Sci. 152 341Google Scholar

    [20]

    Su Y, Xu S 2016 Mater. Sci. Eng. , A 678 153Google Scholar

    [21]

    Qiu R Z, Li C C, Fang T H 2017 Phys. Scr. 92 085702Google Scholar

    [22]

    Akbarian S, Dehghani K 2020 Int. J. Fatigue 135 105570Google Scholar

    [23]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [24]

    Wang P, Yang X, Tian X 2015 J. Mater. Res. 30 709Google Scholar

    [25]

    Zhang C, Lu C, Pei L, Li J, Wang R, Tieu K 2019 Carbon 143 125Google Scholar

    [26]

    Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443Google Scholar

    [27]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys. Condens. Matter 14 783Google Scholar

    [28]

    Silvestre N, Faria B, Canongia Lopes J N 2014 Compos. Sci. Technol. 90 16Google Scholar

    [29]

    汉芮岐, 宋海洋, 安敏荣, 李卫卫, 马佳丽 2021 物理学报 70 066201Google Scholar

    Han R Q, Song H Y, An M R, Li W W, Ma J L 2021 Acta Phys. Sin. 70 066201Google Scholar

    [30]

    Kumar S 2018 Mater. Chem. Phys. 208 41Google Scholar

    [31]

    Munilla J, Castro M, Carnicero A 2009 Phys. Rev. B 80 024109Google Scholar

    [32]

    Kutana A, Giapis K P 2006 Phys. Rev. Lett. 97 245501Google Scholar

    [33]

    Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012Google Scholar

    [34]

    Kelchner C, Plimpton S, Hamilton J 2000 Phys. Rev. B 58 11085

    [35]

    Faken D, Jónsson H 1994 Comput. Mater. Sci. 2 279Google Scholar

    [36]

    Stukowski A, Bulatov V V, Arsenlis A 2012 Modell. Simul. Mater. Sci. Eng. 20 085007Google Scholar

    [37]

    Zheng Y G, Zhang H W, Chen Z, Lu C, Mai Y W 2009 Phys. Lett. A 373 570Google Scholar

    [38]

    Rong Y, He H P, Zhang L, Li N, Zhu Y C 2018 Comput. Mater. Sci. 153 48Google Scholar

  • 图 1  (a) Gr/Al复合材料的模型示意图; (b) 原子结构模型 (左侧为正视图, 右侧为剖视图)

    Fig. 1.  (a) Geometrical representation of the simulated Gr/Al composite; (b) atomistic configurations for modeling (front view on the left and section view on the right).

    图 2  石墨烯分布角度分别为 (a) θ = 0º, (b) θ = 45º和(c) θ = 90º的Gr/Al复合材料模型

    Fig. 2.  Model of the Gr/Al composites with graphene orientations of (a) θ = 0º, (b) θ = 45º and (c) θ = 90º.

    图 3  (a) 纯铝在单轴拉伸过程中的裂纹长度-应变曲线; (b)—(d) 为图3(a)中的A-C点CSP原子结构图 (插图中绿色原子为面心立方结构 (FCC), 红色原子为密排六方结构 (HCP), 白色原子为其他结构)

    Fig. 3.  Uniaxial tensile process of pure Al: (a) Crack length-strain curve; (b)–(d) CSP morphology at points A-C correspongding to Fig. 3(a). (Atoms in the inset are colored by the CNA. Green atoms represent face-centered cubic structure (FCC), red atoms represent hexagonal closest packed structure (HCP) and white ones have OTHER structures.)

    图 4  (a) p-Gr/Al的单轴拉伸过程裂纹长度-应变曲线; (b)—(e) 为图4(a)中的D-G点CSP原子结构图 (插图中绿色为FCC结构, 红色为HCP结构, 白色为OTHER结构, 黑色为C原子)

    Fig. 4.  (a) Crack length-strain curve of p-Gr/Al under uniaxial tensile; (b)–(e) CSP morphology of p-Gr/Al corresponding to point D-G in Fig. 4(b). (Atoms in the inset are colored by the CNA. Green atoms have an FCC structure, red atoms have an HCP structure, white ones have other structures and black atoms are C atoms.)

    图 5  (a) 不同长度石墨烯Gr/Al复合材料的裂纹长度-应变曲线; (b) Gr/Al 复合材料的裂纹比随石墨烯嵌入长度的变化 (插图中A-Gr/Al和B-Gr/Al分别为A-Gr/Al-2和B-Gr/Al-2模型在20%时原子结构图)

    Fig. 5.  (a) Crack length-strain curves of Gr/Al composites with different Gr length; (b) relationship between the crack ratio of Gr/Al composites with different length of graphene (In the inset, A-Gr/Al and B-Gr/Al are atomic structure diagrams of A-Gr/Al-2 and B-Gr/Al-2 models at 20%, respectively).

    图 6  A-Gr/Al-2的裂纹扩展 (a) 应力-应变曲线; (b) 位错密度-应变曲线; (c) a1a4σy瞬时应力分布图; (d) 位错线分布图

    Fig. 6.  Evolution of A-Gr/Al-2 crack growth: (a) Stress-strain curve; (b) dislocation density-strain curve; (c) instantaneous stress distribution of σy for a1a4; (d) distributions of dislocation lines.

    图 7  B-Gr/Al-2的裂纹扩展运动 (a) 应力-应变曲线; (b) 位错密度-应变曲线; (c) b1b4的瞬时σy应力图; (d) 位错线分布

    Fig. 7.  Evolution of B-Gr/Al-2 crack growth behavior: (a) Stress-strain curve; (b) dislocation density-strain curve; (c) σy distribution of b1 to b4; (d) distributions of dislocation lines.

    图 8  (a) A-Gr/Al-2复合材料在δ为1.72—4.96 nm范围内的裂纹长度-应变曲线; (b) δ为2.53 nm的A-Gr/Al-2复合材料位错密度的演化

    Fig. 8.  (a) Crack propagation in the δ range of 1.72—4.96 nm for A-Gr/Al-2 composites; (b) dislocation density evolution in the δ = 2.53 nm for A-Gr/Al-2 composite.

    图 9  (a) B-Gr/Al-1复合材料在δ为1.72—4.96 nm范围内的裂纹长度-应变曲线; (b) δ为3.34 nm的B-Gr/Al-1复合材料位错密度的演化; (c), (d) 对应的d2d3原子结构图

    Fig. 9.  (a) Crack propagation in the δ range of 1.72—4.96 nm for B-Gr/Al-1; (b) dislocation density evolution in the δ = 3.34 nm for B-Gr/Al-1 composite; (c), (d) corresponding to d2 and d3 atomic structure.

    图 10  石墨烯尺寸为1.49 nm的Gr/Al复合材料的裂纹扩展 (a) θ = 0º; (b) θ = 45º; (c) θ = 905

    Fig. 10.  Crack propagation of Gr/Al composite with graphene length of 1.49 nm: (a) θ = 0º; (b) θ = 45º; (c) θ = 90º.

    图 11  石墨烯尺寸为5.43 nm的Gr/Al复合材料的裂纹扩展 (a) θ = 0º; (b) θ = 45º; (c) θ = 90º

    Fig. 11.  Crack propagation of Gr/Al composite with graphene length of 5.43 nm: (a) θ= 0º; (b) θ= 45º; (c) θ= 90º.

    图 12  (a) 石墨烯尺寸为1.49 和5.43 nm的Gr/Al复合材料的裂纹比-分布角度曲线图; (b) 不同分布角度Gr/Al的裂纹扩展路径

    Fig. 12.  (a) Crack ratio-direction angle curves of Gr/Al composites with graphene lengths of 1.49 and 5.43 nm; (b) crack propagation paths for different direction angle of Gr/Al composite.

    表 1  不同模型的参数, 包括石墨烯长度 (l ) 和石墨烯与裂纹的相对距离 (δ)

    Table 1.  Parameters of different models including graphene length (l ) and the distance between graphene and crack (δ).

    模型名称l/nmδ/nm模型名称l/nmδ/nm
    Pure Al00B-Gr/Al-25.431.72
    A-Gr/Al-10.971.72B-Gr/Al-37.531.72
    A-Gr/Al-21.491.72—4.96B-Gr/Al-49.921.72
    A-Gr/Al-32.641.72B-Gr/Al-515.221.72
    A-Gr/Al-43.351.72p-Gr/Al20.251.72
    B-Gr/Al-14.181.72—4.96
    下载: 导出CSV

    表 2  原子间Lennard-Jones (L-J)势函数参数值

    Table 2.  Lennard-Jones (L-J) potential parameter for atomic interactions

    相互作用的原子
    L-J势函数参数Al-Al[31]C-C[32]Al-C[29,30]
    σ2.62003.40703.0135
    ε/eV0.41570.002960.0351
    下载: 导出CSV
  • [1]

    Singh S, Garg M, Batra N K 2015 Tribol. Trans. 58 758Google Scholar

    [2]

    Hu Z, Tong G, Lin D, Chen C, Guo H, Xu J, Zhou L 2016 Mater. Sci. Technol. 32 930

    [3]

    Jayendra B, Sumanth D, Dinesh G, Rao M V 2020 Mater. Today:Proc. 21 1104Google Scholar

    [4]

    Zhang X, Zhao N, He C 2020 Prog. Mater. Sci. 113 100672Google Scholar

    [5]

    Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192Google Scholar

    [6]

    Dai Z, Hou Y, Sanchez D A, Wang G, Brennan C J, Zhang Z, Liu L, Lu N 2018 Phys. Rev. Lett. 121 266101Google Scholar

    [7]

    Dai Z, Liu L, Zhang Z 2019 Adv. Mater. 31 1805417Google Scholar

    [8]

    范冰冰, 郭焕焕, 李稳, 贾瑜, 张锐 2013 物理学报 62 148101Google Scholar

    Fan B-B, Guo H-H, Li W, Jia Y, Zhang R 2013 Acta Phys. Sin. 62 148101Google Scholar

    [9]

    Stankovich S, Dikin D A, Dommett G H, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S 2006 Nature 442 282Google Scholar

    [10]

    Zhang P, Ma L, Fan F, Zeng Z, Peng C, Loya P E, Liu Z, Gong Y, Zhang J, Zhang X, Ajayan P M, Zhu T, Lou J 2014 Nat. Commun. 5 3782Google Scholar

    [11]

    Yang Z, Wang D, Lu Z, Hu W 2016 Appl. Phys. Lett. 109 191909Google Scholar

    [12]

    Galashev A Y, Rakhmanova O R 2020 Phys. Lett. A 384 126790Google Scholar

    [13]

    Wegst U G, Bai H, Saiz E, Tomsia A P, Ritchie R O 2015 Nat. Mater. 14 23Google Scholar

    [14]

    Zhang Y, Li X 2017 Nano Lett. 17 6907Google Scholar

    [15]

    Li Z, Guo Q, Li Z, Fan G, Xiong D B, Su Y, Zhang J, Zhang D 2015 Nano Lett. 15 8077Google Scholar

    [16]

    Kim Y, Lee J, Yeom M S, Shin J W, Kim H, Cui Y, Kysar J W, Hone J, Jung Y, Jeon S, Han S M 2013 Nat. Commun. 4 2114Google Scholar

    [17]

    Zhou X, Liu X, Shang J, Yang Q 2020 Mech. Mater. 148 103530Google Scholar

    [18]

    Zhu J Q, Yang Q S, Liu X 2019 Key Eng. Mater. 804 1Google Scholar

    [19]

    Muller S E, Santhapuram R R, Nair A K 2018 Comput. Mater. Sci. 152 341Google Scholar

    [20]

    Su Y, Xu S 2016 Mater. Sci. Eng. , A 678 153Google Scholar

    [21]

    Qiu R Z, Li C C, Fang T H 2017 Phys. Scr. 92 085702Google Scholar

    [22]

    Akbarian S, Dehghani K 2020 Int. J. Fatigue 135 105570Google Scholar

    [23]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [24]

    Wang P, Yang X, Tian X 2015 J. Mater. Res. 30 709Google Scholar

    [25]

    Zhang C, Lu C, Pei L, Li J, Wang R, Tieu K 2019 Carbon 143 125Google Scholar

    [26]

    Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443Google Scholar

    [27]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys. Condens. Matter 14 783Google Scholar

    [28]

    Silvestre N, Faria B, Canongia Lopes J N 2014 Compos. Sci. Technol. 90 16Google Scholar

    [29]

    汉芮岐, 宋海洋, 安敏荣, 李卫卫, 马佳丽 2021 物理学报 70 066201Google Scholar

    Han R Q, Song H Y, An M R, Li W W, Ma J L 2021 Acta Phys. Sin. 70 066201Google Scholar

    [30]

    Kumar S 2018 Mater. Chem. Phys. 208 41Google Scholar

    [31]

    Munilla J, Castro M, Carnicero A 2009 Phys. Rev. B 80 024109Google Scholar

    [32]

    Kutana A, Giapis K P 2006 Phys. Rev. Lett. 97 245501Google Scholar

    [33]

    Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012Google Scholar

    [34]

    Kelchner C, Plimpton S, Hamilton J 2000 Phys. Rev. B 58 11085

    [35]

    Faken D, Jónsson H 1994 Comput. Mater. Sci. 2 279Google Scholar

    [36]

    Stukowski A, Bulatov V V, Arsenlis A 2012 Modell. Simul. Mater. Sci. Eng. 20 085007Google Scholar

    [37]

    Zheng Y G, Zhang H W, Chen Z, Lu C, Mai Y W 2009 Phys. Lett. A 373 570Google Scholar

    [38]

    Rong Y, He H P, Zhang L, Li N, Zhu Y C 2018 Comput. Mater. Sci. 153 48Google Scholar

  • [1] 刘秀成, 杨智, 郭浩, 陈颖, 罗向龙, 陈健勇. 金刚石/环氧树脂复合物热导率的分子动力学模拟. 物理学报, 2023, 72(16): 168102. doi: 10.7498/aps.72.20222270
    [2] 刘青阳, 徐青松, 李瑞. 氮掺杂对石墨烯摩擦学特性影响的分子动力学模拟. 物理学报, 2022, 71(14): 146801. doi: 10.7498/aps.71.20212309
    [3] 明知非, 宋海洋, 安敏荣. 基于分子动力学模拟的石墨烯镁基复合材料力学行为. 物理学报, 2022, 71(8): 086201. doi: 10.7498/aps.71.20211753
    [4] 汉芮岐, 宋海洋, 安敏荣, 李卫卫, 马佳丽. 石墨烯/铝基复合材料在纳米压痕过程中位错与石墨烯相互作用机制的模拟研究. 物理学报, 2021, 70(6): 066201. doi: 10.7498/aps.70.20201591
    [5] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [6] 史超, 林晨森, 陈硕, 朱军. 石墨烯表面的特征水分子排布及其湿润透明特性的分子动力学模拟. 物理学报, 2019, 68(8): 086801. doi: 10.7498/aps.68.20182307
    [7] 王俊珺, 李涛, 李雄鹰, 李辉. 液态镓在石墨烯表面的润湿性及形貌特征. 物理学报, 2018, 67(14): 149601. doi: 10.7498/aps.67.20172717
    [8] 白清顺, 沈荣琦, 何欣, 刘顺, 张飞虎, 郭永博. 纳米微结构表面与石墨烯薄膜的界面黏附特性研究. 物理学报, 2018, 67(3): 030201. doi: 10.7498/aps.67.20172153
    [9] 董若宇, 曹鹏, 曹桂兴, 胡帼杰, 曹炳阳. 直流电场下水中石墨烯定向行为研究. 物理学报, 2017, 66(1): 014702. doi: 10.7498/aps.66.014702
    [10] 杨文龙, 韩浚生, 王宇, 林家齐, 何国强, 孙洪国. 聚酰亚胺/功能化石墨烯复合材料力学性能及玻璃化转变温度的分子动力学模拟. 物理学报, 2017, 66(22): 227101. doi: 10.7498/aps.66.227101
    [11] 林文强, 徐斌, 陈亮, 周峰, 陈均朗. 双酚A在氧化石墨烯表面吸附的分子动力学模拟. 物理学报, 2016, 65(13): 133102. doi: 10.7498/aps.65.133102
    [12] 李桂荣, 王宏明, 李沛思, 高雷章, 彭琮翔, 郑瑞. 磁致塑性效应下的位错动力学机制. 物理学报, 2015, 64(14): 148102. doi: 10.7498/aps.64.148102
    [13] 王宏明, 李沛思, 郑瑞, 李桂荣, 袁雪婷. 强脉冲磁场冲击处理对铝基复合材料塑性的影响机制. 物理学报, 2015, 64(8): 087104. doi: 10.7498/aps.64.087104
    [14] 覃业宏, 唐超, 张春小, 孟利军, 钟建新. 硅晶体表面石墨烯褶皱形貌的分子动力学模拟研究. 物理学报, 2015, 64(1): 016804. doi: 10.7498/aps.64.016804
    [15] 徐军, 肖晓春, 潘一山, 丁鑫. 基于J积分的颗粒煤岩单轴压缩下裂纹扩展研究. 物理学报, 2014, 63(21): 214602. doi: 10.7498/aps.63.214602
    [16] 叶振强, 曹炳阳, 过增元. 石墨烯的声子热学性质研究. 物理学报, 2014, 63(15): 154704. doi: 10.7498/aps.63.154704
    [17] 孙伟峰, 王暄. 聚酰亚胺/铜纳米颗粒复合物的分子动力学模拟研究. 物理学报, 2013, 62(18): 186202. doi: 10.7498/aps.62.186202
    [18] 戴春娟, 刘希琴, 刘子利, 刘伯路. 铝基碳化硼材料中子屏蔽性能的蒙特卡罗模拟. 物理学报, 2013, 62(15): 152801. doi: 10.7498/aps.62.152801
    [19] 韩同伟, 贺鹏飞. 石墨烯弛豫性能的分子动力学模拟. 物理学报, 2010, 59(5): 3408-3413. doi: 10.7498/aps.59.3408
    [20] 李 瑞, 胡元中, 王 慧, 张宇军. 单壁碳纳米管在石墨基底上运动的分子动力学模拟. 物理学报, 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
计量
  • 文章访问数:  3453
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-30
  • 修回日期:  2022-03-07
  • 上网日期:  2022-06-27
  • 刊出日期:  2022-07-05

/

返回文章
返回