搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

直流电场下水中石墨烯定向行为研究

董若宇 曹鹏 曹桂兴 胡帼杰 曹炳阳

引用本文:
Citation:

直流电场下水中石墨烯定向行为研究

董若宇, 曹鹏, 曹桂兴, 胡帼杰, 曹炳阳

DC electric field induced orientation of a graphene in water

Dong Ruo-Yu, Cao Peng, Cao Gui-Xing, Hu Guo-Jie, Cao Bing-Yang
PDF
导出引用
  • 纳米颗粒在液体环境中的定向控制与系统物理性能的调控及新型纳米器件的制备等应用领域密切相关.本文使用分子动力学模拟方法,研究了水中单片不带电矩形石墨烯在直流电场下的定向行为.结果发现石墨烯平面趋向平行于电场方向且随着电场强度增大定向性增强,其主要原因在于极性水分子在电场下的响应以及水合作用;减小石墨烯长宽比,石墨烯法向矢量和长边矢量的定向性减弱,定量结果表明法向和长边定向度分别与绕长边和法向的转动扩散系数存在负相关关系.
    Graphene, as a classical two-dimensional material, has various excellent physical properties, which can be further transferred into its nanocomposite. Under external fields, the nonspherical nanoparticles in liquid environment will exhibit various deterministic movements, among them is the orientation behavior. By realizing the orientation control of nanoparticles, we can, on one hand, increase the thermal conductivity of the system along the oriented direction, and on the other hand, fabricate novel nano-devices based on the nanoscale self-assembly, which may become the key components in NEMS and Lab-on-a-chip architectures. However, current studies mainly focus on the orientations of one-dimensional rod-shaped particles, like carbon nanotubes. For a two-dimensional nanoparticle, like graphene, the situation is more complex than the one-dimensional one, because two unit vectors should be defined to monitor the orientation behaviors. As far as we know, this part of research has not been extensively carried out. Thus, in this paper, the molecular dynamics method is used to study the orientation of a single uncharged rectangular graphene in water, induced by DC electric fields. We track the orientations of the normal and long-side vectors of graphene. The results show that at a relatively high electric strength of 1.0 V/nm, the graphene is preferred to orient its normal vector perpendicular and its long-side vector with a small angle(located between 0° and 30°) with respect to the electric direction, respectively. With the increase of the electric field strength, the orientation preference of the normal vector along the electric direction is increased. To explain this phenomenon, we calculate the orientation distribution of water molecules in the first hydration shell. The dipoles tend to be parallel to the electric direction, and the surfaces of water molecules tend to be parallel to the surface of graphene. These two combined effects result in the above orientation behavior of the normal vector. Another interesting phenomenon is that the decrease of the length to width ratio of graphene will cause both the orientation preferences of the normal vector and the long-side vector to decrease. By utilizing the Einstein relation, we can obtain the rotational diffusion coefficients of graphene around the normal vector and long-side vector. The qualitative results show that the orientation orders of the normal vector and long-side vector respectively have negative correlations with the rotational diffusion coefficients of the rotation around the long-side vector and the normal vector. The orientation behavior of the platelike graphene actually comes from the competing effects between its rotational Brownian motion and the external field. Increasing the strength of the external field or reducing the rotational diffusivity will both lead to an increased orientation order of the nonspherical nanoparticle.
      通信作者: 曹炳阳, caoby@tsinghua.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51322603)和通信卫星系统创新基金资助的课题.
      Corresponding author: Cao Bing-Yang, caoby@tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant No. 51322603) and Institute of Telecommunication Satellite Innovation Fund, China.
    [1]

    Huang H, Liu C H, Wu Y, Fan S S 2005 Adv. Mater. 17 1652

    [2]

    Liang Q, Yao X, Wang W, Liu Y, Wong C P 2011 ACS Nano 5 2392

    [3]

    Behabtu N, Young C C, Tsentalovich D E, Kleinerman O, Wang X, Ma A W K, Bengio E A, ter Waarbeek R F, de Jong J J, Hoogerwerf R E, Fairchild F B, Ferguson J B, Maruyama B, Kono J, Talmon Y, Cohen Y, Otto M J, Pasquali M 2013 Science 339 182

    [4]

    Liu M S, Lin M C C, Huang I T, Wang C C 2005 Int. Commun. Heat Mass Trans. 32 1202

    [5]

    Guo X, Su J, Guo H 2012 Soft Matter 8 1010

    [6]

    Hermanson K D, Lumsdon S O, Williams J P, Kaler E W, Velev O D 2001 Science 294 1082

    [7]

    Hsu H Y, Sharma N, Ruoff R S, Patankar N A 2005 Nanotechnology 16 312

    [8]

    Alexandrou I, Ang D K H, Mathur N D, Haq S, Amaratunga G A J 2004 Nano Lett. 4 2299

    [9]

    van der Zande B M I, Koper G J M, Lekkerkerker H N W 1999 J. Phys. Chem. B 103 5754

    [10]

    Ma C, Zhang W, Zhu Y, Ji L, Zhang R, Koratkar N, Liang J 2008 Carbon 46 706

    [11]

    Li J, Zhang Q, Peng N, Zhu Q 2005 Appl. Phys. Lett. 86 153116

    [12]

    Martin C A, Sandler J K W, Winder A H, Schwarz M K, Bauhofer W, Schulte K, Shaffer M S P 2005 Polymer 46 877

    [13]

    Oliveira L, Saini D, Gaillard J B, Podila R, Rao A M, Serkiz S M 2015 Carbon 93 32

    [14]

    Daub C D, Bratko D, Ali T, Luzar A 2009 Phys. Rev. Lett. 103 207801

    [15]

    Cao B Y, Dong R Y 2014 J. Chem. Phys. 140 34703

    [16]

    Dong R Y, Cao B Y 2014 Sci. Rep. 4 6120

    [17]

    Song Y, Dai L L 2010 Mol. Simulat. 36 560

    [18]

    Ryckaert J P, Cicotti G, Berendsen H J C 1977 J. Comput. Phys. 23 327

    [19]

    Won C Y, Joseph S, Aluru N R 2006 J. Chem. Phys. 125 114701

    [20]

    Werder T, Walther J H, Jaffe R L, Halicioglu T, Noca F, Koumoutsakos P 2001 Nano Lett. 1 697

    [21]

    Shiomi J, Maruyama S 2009 Nanotechnology 20 055708

    [22]

    Plimpton S 1995 J. Comput. Phys. 7 1

    [23]

    Hockney R W, Eastwood J W 1988 Computer Simulation Using Particles(New York:Taylor & Francis Group) pp267-304

    [24]

    Djikaev Y S, Ruckenstein E 2012 J. Phys. Chem. B 116 2820

    [25]

    Dong R Y, Cao B Y 2015 J. Nanosci. Nanotechnol. 15 2984

    [26]

    Börzsönyi T, Szabó B, Törös G, Wegner S, Török J, Somfai E, Bien T, Stannarius R 2012 Phys. Rev. Lett. 108 228302

  • [1]

    Huang H, Liu C H, Wu Y, Fan S S 2005 Adv. Mater. 17 1652

    [2]

    Liang Q, Yao X, Wang W, Liu Y, Wong C P 2011 ACS Nano 5 2392

    [3]

    Behabtu N, Young C C, Tsentalovich D E, Kleinerman O, Wang X, Ma A W K, Bengio E A, ter Waarbeek R F, de Jong J J, Hoogerwerf R E, Fairchild F B, Ferguson J B, Maruyama B, Kono J, Talmon Y, Cohen Y, Otto M J, Pasquali M 2013 Science 339 182

    [4]

    Liu M S, Lin M C C, Huang I T, Wang C C 2005 Int. Commun. Heat Mass Trans. 32 1202

    [5]

    Guo X, Su J, Guo H 2012 Soft Matter 8 1010

    [6]

    Hermanson K D, Lumsdon S O, Williams J P, Kaler E W, Velev O D 2001 Science 294 1082

    [7]

    Hsu H Y, Sharma N, Ruoff R S, Patankar N A 2005 Nanotechnology 16 312

    [8]

    Alexandrou I, Ang D K H, Mathur N D, Haq S, Amaratunga G A J 2004 Nano Lett. 4 2299

    [9]

    van der Zande B M I, Koper G J M, Lekkerkerker H N W 1999 J. Phys. Chem. B 103 5754

    [10]

    Ma C, Zhang W, Zhu Y, Ji L, Zhang R, Koratkar N, Liang J 2008 Carbon 46 706

    [11]

    Li J, Zhang Q, Peng N, Zhu Q 2005 Appl. Phys. Lett. 86 153116

    [12]

    Martin C A, Sandler J K W, Winder A H, Schwarz M K, Bauhofer W, Schulte K, Shaffer M S P 2005 Polymer 46 877

    [13]

    Oliveira L, Saini D, Gaillard J B, Podila R, Rao A M, Serkiz S M 2015 Carbon 93 32

    [14]

    Daub C D, Bratko D, Ali T, Luzar A 2009 Phys. Rev. Lett. 103 207801

    [15]

    Cao B Y, Dong R Y 2014 J. Chem. Phys. 140 34703

    [16]

    Dong R Y, Cao B Y 2014 Sci. Rep. 4 6120

    [17]

    Song Y, Dai L L 2010 Mol. Simulat. 36 560

    [18]

    Ryckaert J P, Cicotti G, Berendsen H J C 1977 J. Comput. Phys. 23 327

    [19]

    Won C Y, Joseph S, Aluru N R 2006 J. Chem. Phys. 125 114701

    [20]

    Werder T, Walther J H, Jaffe R L, Halicioglu T, Noca F, Koumoutsakos P 2001 Nano Lett. 1 697

    [21]

    Shiomi J, Maruyama S 2009 Nanotechnology 20 055708

    [22]

    Plimpton S 1995 J. Comput. Phys. 7 1

    [23]

    Hockney R W, Eastwood J W 1988 Computer Simulation Using Particles(New York:Taylor & Francis Group) pp267-304

    [24]

    Djikaev Y S, Ruckenstein E 2012 J. Phys. Chem. B 116 2820

    [25]

    Dong R Y, Cao B Y 2015 J. Nanosci. Nanotechnol. 15 2984

    [26]

    Börzsönyi T, Szabó B, Törös G, Wegner S, Török J, Somfai E, Bien T, Stannarius R 2012 Phys. Rev. Lett. 108 228302

  • [1] 丁业章, 叶寅, 李多生, 徐锋, 朗文昌, 刘俊红, 温鑫. WC-Co硬质合金表面石墨烯沉积生长分子动力学仿真研究. 物理学报, 2023, 72(6): 068703. doi: 10.7498/aps.72.20221332
    [2] 魏宁, 赵思涵, 李志辉, 区炳显, 花安平, 赵军华. 石墨烯尺寸和分布对石墨烯/铝基复合材料裂纹扩展的影响. 物理学报, 2022, 71(13): 134702. doi: 10.7498/aps.71.20212203
    [3] 明知非, 宋海洋, 安敏荣. 基于分子动力学模拟的石墨烯镁基复合材料力学行为. 物理学报, 2022, 71(8): 086201. doi: 10.7498/aps.71.20211753
    [4] 刘青阳, 徐青松, 李瑞. 氮掺杂对石墨烯摩擦学特性影响的分子动力学模拟. 物理学报, 2022, 71(14): 146801. doi: 10.7498/aps.71.20212309
    [5] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 张婷婷, 刘洋, 胡振洋, 唐小洁. 基于石墨烯电极的蒽醌分子器件开关特性. 物理学报, 2021, 70(3): 038501. doi: 10.7498/aps.70.20201095
    [6] 白清顺, 窦昱昊, 何欣, 张爱民, 郭永博. 基于分子动力学模拟的铜晶面石墨烯沉积生长机理. 物理学报, 2020, 69(22): 226102. doi: 10.7498/aps.69.20200781
    [7] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [8] 史超, 林晨森, 陈硕, 朱军. 石墨烯表面的特征水分子排布及其湿润透明特性的分子动力学模拟. 物理学报, 2019, 68(8): 086801. doi: 10.7498/aps.68.20182307
    [9] 王俊珺, 李涛, 李雄鹰, 李辉. 液态镓在石墨烯表面的润湿性及形貌特征. 物理学报, 2018, 67(14): 149601. doi: 10.7498/aps.67.20172717
    [10] 白清顺, 沈荣琦, 何欣, 刘顺, 张飞虎, 郭永博. 纳米微结构表面与石墨烯薄膜的界面黏附特性研究. 物理学报, 2018, 67(3): 030201. doi: 10.7498/aps.67.20172153
    [11] 韩同伟, 李攀攀. 石墨烯剪纸的大变形拉伸力学行为研究. 物理学报, 2017, 66(6): 066201. doi: 10.7498/aps.66.066201
    [12] 杨文龙, 韩浚生, 王宇, 林家齐, 何国强, 孙洪国. 聚酰亚胺/功能化石墨烯复合材料力学性能及玻璃化转变温度的分子动力学模拟. 物理学报, 2017, 66(22): 227101. doi: 10.7498/aps.66.227101
    [13] 林文强, 徐斌, 陈亮, 周峰, 陈均朗. 双酚A在氧化石墨烯表面吸附的分子动力学模拟. 物理学报, 2016, 65(13): 133102. doi: 10.7498/aps.65.133102
    [14] 覃业宏, 唐超, 张春小, 孟利军, 钟建新. 硅晶体表面石墨烯褶皱形貌的分子动力学模拟研究. 物理学报, 2015, 64(1): 016804. doi: 10.7498/aps.64.016804
    [15] 郑伯昱, 董慧龙, 陈非凡. 基于量子修正的石墨烯纳米带热导率分子动力学表征方法. 物理学报, 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [16] 徐志成, 钟伟荣. C60轰击石墨烯的瞬间动力学. 物理学报, 2014, 63(8): 083401. doi: 10.7498/aps.63.083401
    [17] 叶振强, 曹炳阳, 过增元. 石墨烯的声子热学性质研究. 物理学报, 2014, 63(15): 154704. doi: 10.7498/aps.63.154704
    [18] 王卫东, 郝跃, 纪翔, 易成龙, 牛翔宇. 不同温度条件下单层石墨烯纳米带弛豫性能的分子动力学研究. 物理学报, 2012, 61(20): 200207. doi: 10.7498/aps.61.200207
    [19] 韩同伟, 贺鹏飞. 石墨烯弛豫性能的分子动力学模拟. 物理学报, 2010, 59(5): 3408-3413. doi: 10.7498/aps.59.3408
    [20] 李 瑞, 胡元中, 王 慧, 张宇军. 单壁碳纳米管在石墨基底上运动的分子动力学模拟. 物理学报, 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
计量
  • 文章访问数:  6060
  • PDF下载量:  445
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-26
  • 修回日期:  2016-10-13
  • 刊出日期:  2017-01-05

/

返回文章
返回