搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维边界层内定常横流涡的感受性研究

沈露予 陆昌根

引用本文:
Citation:

三维边界层内定常横流涡的感受性研究

沈露予, 陆昌根

Receptivity of the steady cross-flow vortices in three-dimensional boundary layer

Shen Lu-Yu, Lu Chang-Gen
PDF
导出引用
  • 层流向湍流转捩的预测与控制一直是研究的前沿热点问题之一,其中感受性阶段是转捩过程中的初始阶段,它决定着湍流产生或形成的物理过程.但是有关三维边界层内感受性问题的数值和理论研究都比较少;实际工程问题中大部分转捩过程都是发生在三维边界层流中,所以研究三维边界层中的感受性问题显得尤为重要.本文以典型的后掠角45°无限长平板为例,数值研究了在三维壁面局部粗糙作用下的三维边界层感受性问题,探讨了三维边界层感受性问题与三维壁面局部粗糙长、宽和高之间的关系;然后,考虑在后掠平板上设计不同的三维壁面局部粗糙的分布状态、几何形状、距离后掠平板前缘的位置以及流向和展向设计多个三维壁面局部粗糙对三维边界层感受性问题有何影响;最后,讨论两两三维壁面局部粗糙中心点之间的距离以及后掠角的改变对三维边界层感受性的物理过程将会发生何种影响等.这一问题的深入研究将为三维边界层流中层流向湍流转捩过程的认识和理解提供理论依据.
    The prediction and control of the laminar-turbulent transition are always one of the most concerned frontiers and hot topics.Receptivity is the initial stage of the laminar-turbulent transition process in the boundary layer,which decides the physical process of the turbulent formation.To date,the researches of receptivity in the three-dimensional boundary layer are much less than those in the two-dimensional boundary layer;while most of the real laminar-turbulent transition in practical engineering occurs in three-dimensional boundary layers.Therefore,receptivity under the threedimensional wall local roughness in a typical three-dimensional boundary layer,i.e.,a 45° back swept infinite flat plate, is numerically studied.And a numerical method for direct numerical simulation (DNS) is constructed in this paper by using fourth order modified Runge-Kutta scheme for temporal march and high-order compact finite difference schemes based on non-uniform mesh for spatial discretization:the convective term is discretized by fifth-order upwind compact finite difference schemes;the pressure term is discretized by sixth-order compact finite difference schemes;the viscous term is discretized by fifth-order compact finite difference schemes;and the pressure equation is solved by third-order finite difference schemes based on non-uniform mesh.As a result,the excited steady cross-flow vortices are observed in the three-dimensional boundary layer.In addition,the relations of three-dimensional boundary-layer receptivity with the length,the width,and the height of three-dimensional wall localized roughness respectively are also ascertained.Then, the influences of the different distributions,the geometrical shapes,and the location to the flat-plate leading-edge of the three-dimensional wall local roughness,and multiple three-dimensional wall local roughness distributed in streamwise and spanwise directions on three-dimensional boundary-layer receptivity are considered.Finally,the effect of the distance between the midpoint of the three-dimensional wall localized roughness and the back-swept angle on three-dimensional boundary-layer receptivity is studied.The intensive research of receptivity in the three-dimensional boundary-layer receptivity will provide the basic theory for awareness and understanding of the laminar-turbulent transition.
      通信作者: 陆昌根, cglu@nuist.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11472139)、南京信息工程大学人才启动经费(批准号:2016r046)、江苏高校优势学科建设工程和江苏省海洋环境探测工程技术研究中心资助项目.
      Corresponding author: Lu Chang-Gen, cglu@nuist.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant No. 11472139), the Startup Foundation for Introducing Talent of NUIST(Grant No. 2016r046), the Priority Academic Program Development of Jiangsu Higher Education Institutions, China, and Marine Environment Detection of Engineering Technology Research Center of Jiangsu Province, China.
    [1]

    Saric W S, Reed H L, White E B 2003 Annu. Rev. Fluid. Mech. 35 413

    [2]

    Shen L Y, Lu C G 2016 Appl. Math. Mech. 37 349

    [3]

    Shen L Y, Lu C G 2016 Appl. Math. Mech. 37 929

    [4]

    Lu C G, Shen L Y 2015 Acta Phys. Sin. 64 224702 (in Chinese)[陆昌根, 沈露予2015物理学报64 224702]

    [5]

    Lu C G, Shen L Y 2016 Acta Phys. Sin. 65 194701 (in Chinese)[陆昌根, 沈露予2016物理学报65 194701]

    [6]

    Shen L Y, Lu C G 2016 Appl. Math. Mech. 37 1145(in Chinese)[沈露予, 陆昌根2016应用数学与力学37 1145]

    [7]

    Xu G L, Fu S 2012 Adv. Mech. 42 262 (in Chinese)[徐国亮, 符松2012力学进展42 262]

    [8]

    Bippes H, Nitschke-Kowsky P 1990 AIAA J. 28 1758

    [9]

    Radeztsky Jr R H, Reibert M S, Saric W S 1994 AIAA P. 2373

    [10]

    Radeztsky R H, Reibert M S, Saric W S 1999 AIAA J. 37 1370

    [11]

    Deyhle H, Bippes H 1996 J. Fluid. Mech. 316 73

    [12]

    Reibert M S, Saric W S, Carrillo Jr R B, et al. 1996 AIAA P. 0184

    [13]

    Reibert M S, Saric W S 1997 AIAA P. 1816

    [14]

    Fedorov A V 1988 J. Appl. Mech. Tech. Phys. 29 643

    [15]

    Manuilovich S V 1989 Fluid. Dyn. 24 764

    [16]

    Crouch J D 1993 AIAA P. 0074

    [17]

    Choudhari M 1994 Theor. Comp. Fluid. Dyn. 6 1

    [18]

    Ng L L, Crouch J D 1999 Phys. Fluid. 11 432

    [19]

    Bertolotti F P 2000 Phys. Fluid. 12 1799

    [20]

    Collis S S, Lele S K 1999 J. Fluid. Mech. 380 141

    [21]

    Schrader L U, Brandt L, Henningson D S 2009 J. Fluid. Mech. 618 209

    [22]

    Schrader L U, Brandt L, Mavriplis C, et al. 2010 J. Fluid. Mech. 653 245

    [23]

    Tempelmann D, Schrader L U, Hanifi A, et al. 2012 J. Fluid. Mech. 711 516

    [24]

    Kurz H B E, Kloker M J 2014 J. Fluid. Mech. 755 62

    [25]

    Shen L Y, Lu C G, Wu W G, Xue S F 2015 Add. Appl. Math. Mech. 7 180

    [26]

    Lu C G, Cao W D, Zhang Y M, Guo J T 2008 P. Nat. Sci. 18 873

  • [1]

    Saric W S, Reed H L, White E B 2003 Annu. Rev. Fluid. Mech. 35 413

    [2]

    Shen L Y, Lu C G 2016 Appl. Math. Mech. 37 349

    [3]

    Shen L Y, Lu C G 2016 Appl. Math. Mech. 37 929

    [4]

    Lu C G, Shen L Y 2015 Acta Phys. Sin. 64 224702 (in Chinese)[陆昌根, 沈露予2015物理学报64 224702]

    [5]

    Lu C G, Shen L Y 2016 Acta Phys. Sin. 65 194701 (in Chinese)[陆昌根, 沈露予2016物理学报65 194701]

    [6]

    Shen L Y, Lu C G 2016 Appl. Math. Mech. 37 1145(in Chinese)[沈露予, 陆昌根2016应用数学与力学37 1145]

    [7]

    Xu G L, Fu S 2012 Adv. Mech. 42 262 (in Chinese)[徐国亮, 符松2012力学进展42 262]

    [8]

    Bippes H, Nitschke-Kowsky P 1990 AIAA J. 28 1758

    [9]

    Radeztsky Jr R H, Reibert M S, Saric W S 1994 AIAA P. 2373

    [10]

    Radeztsky R H, Reibert M S, Saric W S 1999 AIAA J. 37 1370

    [11]

    Deyhle H, Bippes H 1996 J. Fluid. Mech. 316 73

    [12]

    Reibert M S, Saric W S, Carrillo Jr R B, et al. 1996 AIAA P. 0184

    [13]

    Reibert M S, Saric W S 1997 AIAA P. 1816

    [14]

    Fedorov A V 1988 J. Appl. Mech. Tech. Phys. 29 643

    [15]

    Manuilovich S V 1989 Fluid. Dyn. 24 764

    [16]

    Crouch J D 1993 AIAA P. 0074

    [17]

    Choudhari M 1994 Theor. Comp. Fluid. Dyn. 6 1

    [18]

    Ng L L, Crouch J D 1999 Phys. Fluid. 11 432

    [19]

    Bertolotti F P 2000 Phys. Fluid. 12 1799

    [20]

    Collis S S, Lele S K 1999 J. Fluid. Mech. 380 141

    [21]

    Schrader L U, Brandt L, Henningson D S 2009 J. Fluid. Mech. 618 209

    [22]

    Schrader L U, Brandt L, Mavriplis C, et al. 2010 J. Fluid. Mech. 653 245

    [23]

    Tempelmann D, Schrader L U, Hanifi A, et al. 2012 J. Fluid. Mech. 711 516

    [24]

    Kurz H B E, Kloker M J 2014 J. Fluid. Mech. 755 62

    [25]

    Shen L Y, Lu C G, Wu W G, Xue S F 2015 Add. Appl. Math. Mech. 7 180

    [26]

    Lu C G, Cao W D, Zhang Y M, Guo J T 2008 P. Nat. Sci. 18 873

  • [1] 张震, 易仕和, 刘小林, 陈世康, 张臻. 高超声速条件下凸曲率壁面混合层的流动演化. 物理学报, 2024, 73(10): 104701. doi: 10.7498/aps.73.20240128
    [2] 胡玉发, 易仕和, 刘小林, 徐席旺, 张震, 张臻. 壁面渗透气膜工质对圆锥高超声速边界层稳定性的影响. 物理学报, 2024, 73(12): 124701. doi: 10.7498/aps.73.20240369
    [3] 万兵兵, 胡伟波, 李晓虎, 黄文锋, 陈坚强, 涂国华. 高速钝锥对不同类型来流扰动的三维感受性. 物理学报, 2024, 73(23): 234701. doi: 10.7498/aps.73.20241383
    [4] 方芳, 鲍麟, 童秉纲. 基于斜驻点模型的剪切层撞击壁面流动及传热特性. 物理学报, 2020, 69(21): 214401. doi: 10.7498/aps.69.20201000
    [5] 陆昌根, 沈露予, 朱晓清. 压力梯度对壁面局部吹吸边界层感受性的影响研究. 物理学报, 2019, 68(22): 224701. doi: 10.7498/aps.68.20190684
    [6] 陆昌根, 沈露予. 前缘曲率对三维边界层内被激发出非定常横流模态的影响研究. 物理学报, 2018, 67(21): 214702. doi: 10.7498/aps.67.20181343
    [7] 沈露予, 陆昌根. 前缘曲率变化对平板边界层感受性问题的影响. 物理学报, 2018, 67(18): 184703. doi: 10.7498/aps.67.20180593
    [8] 陆昌根, 朱晓清, 沈露予. 三维边界层内诱导横流失稳模态的感受性机理. 物理学报, 2017, 66(20): 204702. doi: 10.7498/aps.66.204702
    [9] 卿绍伟, 李梅, 李梦杰, 周芮, 王磊. 二次电子分布函数对绝缘壁面稳态鞘层特性的影响. 物理学报, 2016, 65(3): 035202. doi: 10.7498/aps.65.035202
    [10] 陆昌根, 沈露予. 无限薄平板边界层前缘感受性过程的数值研究. 物理学报, 2016, 65(19): 194701. doi: 10.7498/aps.65.194701
    [11] 陆昌根, 沈露予. 壁面局部吹吸边界层感受性的数值研究. 物理学报, 2015, 64(22): 224702. doi: 10.7498/aps.64.224702
    [12] 冯玉霄, 黄群星, 梁军辉, 王飞, 严建华, 池涌. 三维燃烧介质和壁面温度的非接触联合重建研究. 物理学报, 2012, 61(13): 134702. doi: 10.7498/aps.61.134702
    [13] 丁锐, 金亚秋. 随机Gauss粗糙面上三维导体目标散射差场的随机泛函解析计算方法. 物理学报, 2011, 60(12): 124102. doi: 10.7498/aps.60.124102
    [14] 姬伟杰, 童创明. 三维目标与粗糙面复合散射的广义稀疏矩阵平面迭代及规范网格算法. 物理学报, 2011, 60(1): 010301. doi: 10.7498/aps.60.010301
    [15] 任新成, 郭立新. 具有二维fBm特征的分层介质粗糙面电磁散射的特性研究. 物理学报, 2009, 58(3): 1627-1634. doi: 10.7498/aps.58.1627
    [16] 叶红霞, 金亚秋. 三维随机粗糙面上导体目标散射的解析-数值混合算法. 物理学报, 2008, 57(2): 839-846. doi: 10.7498/aps.57.839
    [17] 郭立新, 王运华, 吴振森. 二维导体微粗糙面与其上方金属平板的复合电磁散射研究. 物理学报, 2005, 54(11): 5130-5138. doi: 10.7498/aps.54.5130
    [18] 郭立新, 吴振森. 二维分数布朗运动(FBM)随机粗糙面电磁散射的基尔霍夫近似. 物理学报, 2001, 50(1): 42-47. doi: 10.7498/aps.50.42
    [19] 郭立新, 吴振森. 二维导体粗糙面电磁散射的分形特征研究. 物理学报, 2000, 49(6): 1064-1069. doi: 10.7498/aps.49.1064
    [20] 林鸿荪. 片流边界层中气流及热转移. 物理学报, 1954, 10(1): 71-88. doi: 10.7498/aps.10.71
计量
  • 文章访问数:  6262
  • PDF下载量:  230
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-14
  • 修回日期:  2016-10-12
  • 刊出日期:  2017-01-05

/

返回文章
返回