搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压力梯度对壁面局部吹吸边界层感受性的影响研究

陆昌根 沈露予 朱晓清

引用本文:
Citation:

压力梯度对壁面局部吹吸边界层感受性的影响研究

陆昌根, 沈露予, 朱晓清

Numerical study of effect of pressure gradient on boundary-layer receptivity under localized wall blowing/suction

Lu Chang-Gen, Shen Lu-Yu, Zhu Xiao-Qing
PDF
HTML
导出引用
  • 边界层感受性是层流向湍流转捩的初始阶段, 是实现边界层转捩预测和控制的关键环节. 研究结果表明, 边界层感受性问题不仅受到不同自由来流扰动条件, 壁面局部粗糙和局部吹吸的几何大小、形状和位置等参数的影响之外, 还受到一个重要参数压力梯度的作用. 因此, 本文数值研究在自由来流湍流分别与壁面局部吹入和吸出相互作用下压力梯度在激发边界层感受性过程起什么样的关键性作用, 从而揭示不同压力梯度对壁面局部吹入或吸出边界层内被激发出T-S波波包以及T-S波波包向前传播群速度的影响; 分别讨论逆压力梯度、顺压力梯度对边界层内被激发出的T-S波模态是起到加速增长的作用还是遏制增长的作用; 详细分析不同压力梯度对边界层内被激发出的T-S波的幅值、增长率、波长或波数、相速度以及特征形状函数的影响等. 这一问题的深入研究将为工程实践中各种叶片流体机械的设计和性能改善提供理论参考.
    Boundary-layer receptivity is the initial stage of the laminar-turbulent transition process, and plays a key role in predicting and controlling the transition. The present researches indicate that the boundary-layer receptivity is affected not only by the different sorts of free-stream disturbances or the size, shape and position of the wall localized roughness and blowing/suction, but also by the pressure gradient. Therefore, the local receptivity under the interaction between the free-stream turbulence and localized wall blowing/suction in the pressure-gradient boundary layer is studied in the present work, thus revealing the effect of the pressure gradient on the receptive process and the group speeds of the excited T-S wave packets under the interaction of the free-stream turbulence with localized wall blowing/suction in the boundary layer. High-order finite difference scheme is utilized to discretize the incompressible perturbation Navier-Stokes equation. A modified fourth-order Runge-Kutta scheme is used for time integration. The compact difference scheme based on non-uniform meshes is applied to the spatial discretization. The convective term is discretized by the fifth-order upwind compact scheme. The pressure gradient term is discretized by the sixth-order symmetric compact scheme. The viscosity term is discretized by the fifth-order symmetric compact scheme. Besides, the pressure Poisson equation is solved by the fourth-order scheme on the non-uniform meshes. The favorable or adverse pressure gradient promotes or suppresses the receptivity triggered by the interaction between free-stream turbulence and blowing/suction. And the blowing always induces a stronger receptivity than the suction in the same intensity. The initial amplitude of the T-S wave and wave packet excited in the adverse-pressure-gradient boundary layer are two orders larger than those excited in the favorable-pressure-gradient boundary layer. It is analyzed in detail that the favorable and adverse pressure gradient play a promoting or suppressing role in the growth of the excited T-S wave. Then the influences of the pressure gradient on the amplitudes, growth rates, wave numbers, phase speeds and shape functions of the excited T-S waves are investigated. The intensive research on receptivity in the pressure-gradient boundary layers provides a reference for designing the turbine machinery blades in the practical engineering.
      通信作者: 陆昌根, cglu@nuist.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11472139)资助的项目
      Corresponding author: Lu Chang-Gen, cglu@nuist.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11472139)
    [1]

    Goldstein M E 1983 J. Fluid. Mech. 127 59Google Scholar

    [2]

    Ruban A I 1984 Fluid Dynam. 19 709

    [3]

    陆昌根, 沈露予 2015 物理学报 65 194701Google Scholar

    Lu C G, Shen L Y 2015 Acta Phys. Sin. 65 194701Google Scholar

    [4]

    Shen L, Lu C, Zhu X 2019 Appl. Math. Mech. 40 851Google Scholar

    [5]

    Goldstein M E 1985 J. Fluid. Mech. 154 509Google Scholar

    [6]

    Saric W S, Hoos J A, Radeztsky R H 1991 Proceedings of the Symposium and Joint Fluids Engineering Conference, 1st Portland, U.S.A, June 23−27, 1991 p17

    [7]

    Wiegel M, Wlezien R 1993 AIAA P. 3280

    [8]

    Dietz A J 1999 J. Fluid. Mech. 378 291Google Scholar

    [9]

    Dietz A J 1998 AIAA J. 36 1171Google Scholar

    [10]

    Dietz A J 1996 AIAA P. 2083

    [11]

    Wu X 2001 J. Fluid. Mech. 449 373Google Scholar

    [12]

    Wu X 2001 J. Fluid. Mech. 431 91Google Scholar

    [13]

    Shen L, Lu C 2016 Appl. Math. Mech. 37 929Google Scholar

    [14]

    Shen L, Lu C 2016 Appl. Math. Mech. 37 349Google Scholar

    [15]

    Würz W, Herr S, Wörner A, Rist U 2003 J. Fluid. Mech. 478 135Google Scholar

    [16]

    Shen L, Lu C 2018 Adv. Appl. Math. Mech. 10 735Google Scholar

    [17]

    陆昌根, 沈露予 2015 物理学报 64 224702Google Scholar

    Lu C G, Shen L Y 2015 Acta Phys. Sin. 64 224702Google Scholar

    [18]

    Johnson M W, Pinarbasi 2014 Flow Turbul. Combu. 93 1Google Scholar

    [19]

    Jacobs R G 2001 J. Fluid. Mech. 428 185Google Scholar

  • 图 1  数值计算区域示意图

    Fig. 1.  The domain of numerical simulation.

    图 2  在压力梯度(a) βH = 0.1, (b) βH = 0和(c) βH = –0.05情况下壁面局部吹入边界层内被激发出T-S波波包沿流向呈现增长的演化趋势

    Fig. 2.  The streamwise evolutions of the excited T-S waves under the localized suction in the pressure-gradient boundary layers of (a) βH = 0.1, (b) βH = 0 and (c) βH = –0.05.

    图 3  局部吹入和吸出边界层内被激发出T-S波包初始幅值AR与压力梯度的关系 (a) 吹入强度; (b) 吸出强度

    Fig. 3.  The relationships between the initial amplitudes of the excited T-S waves AR and the pressure-gradients in the localized blowing and suction boundary layers: (a) Blowing intensity; (b) suction intensity

    图 4  不同压力梯度对壁面局部吹入边界层内被激发出的T-S波沿x向发展的影响  (a) F = 40; (b) F = 80

    Fig. 4.  The effect of different pressure gradients on x-direction evolutions of the excited T-S waves in the localized blowing boundary layers. (a) F = 40; (b) F = 80

    图 5  壁面局部吹入边界层内被激发出T-S波的幅值AT-S沿x向的演化(t = 2400) (a) F = 40; (b) F = 80

    Fig. 5.  The x-direction evolutions of the amplitude of the excited T-S waves in the local blowing boundary layers (t = 2400): (a) F = 40; (b) F = 80.

    图 6  壁面局部吹入边界层内被激发出T-S波的增长率(–αi)沿x向的演化(t = 2400) (a) F = 40; (b) F = 80

    Fig. 6.  The x-direction evolutions of the growth rate (–αi) of the excited T-S waves in the local blowing boundary layers (t = 2400): (a) F = 40; (b) F = 80.

    图 7  在不同压力梯度情况下壁面局部吹入和吸出边界层内被激发出T-S波波包的初始幅值AR与局部吹吸强度q之间的关系

    Fig. 7.  The relationships between the initial amplitudes of the excited T-S waves AR and the localized blowing/suction intensity q in different pressure boundary layers

    图 8  压力梯度对壁面局部吹入边界层内被激发出T-S波的特征形状函数的幅值沿y向演变的影响(x = 300)

    Fig. 8.  The effects of different pressure gradients on y-direction amplitude profiles of the shape functions of the excited T-S waves in localized blowing boundary layers (x = 300).

    图 9  压力梯度对壁面局部吹入边界层内被激发出T-S波的特征形状函数的相位沿y向演变的影响(x = 300)

    Fig. 9.  The effects of different pressure gradients on y-direction phase profiles of the shape functions of the excited T-S waves in localized blowing boundary layers (x = 300).

    表 1  压力梯度对边界层内被激发出T-S波波包向前传播的群速度(Cg)的影响

    Table 1.  The group speeds (Cg) of the excited T-S wave packets in the pressure-gradient boundary layers.

    βH0.30.10.050–0.05–0.1
    Cg (吹入)0.3580.3480.3430.3360.3330.331
    Cg (吸出)0.3560.3470.3410.3340.3320.329
    下载: 导出CSV

    表 2  压力梯度边界层被激发出的T-S波的流向波数和相速度(αr, C)

    Table 2.  The streamwise wave numbers and phase speeds (αr, C) of the excited T-S wave packets in the pressure-gradient boundary layers.

    βH–0.1–0.0500.050.1
    F = 30(吹) (0.0977, 0.3071) (0.0960, 0.3125) (0.0949, 0.3161) (0.0934, 0.3212) (0.0915, 0.3279)
    F = 30(吸) (0.0984, 0.3049) (0.0967, 0.3102) (0.0956, 0.3138) (0.0943, 0.3181) (0.0923, 0.3250)
    F = 40(吹) (0.1262, 0.3169) (0.1251, 0.3197) (0.1240, 0.3226) (0.1218, 0.3284) (0.1204, 0.3322)
    F = 40(吸) (0.1269, 0.3152) (0.1257, 0.3182) (0.1248, 0.3205) (0.1226, 0.3263) (0.1210, 0.3306)
    F = 50(吹) (0.1533, 0.3262) (0.1522, 0.3285) (0.1514, 0.3303) (0.1489, 0.3357) (0.1470, 0.3401)
    F = 50(吸) (0.1541, 0.3245) (0.1531, 0.3266) (0.1521, 0.3287) (0.1497, 0.3340) (0.1477, 0.3385)
    F = 60(吹) (0.1792, 0.3348) (0.1784, 0.3363) (0.1772, 0.3386) (0.1755, 0.3419) (0.1735, 0.3458)
    F = 60(吸) (0.1799, 0.3335) (0.1792, 0.3348) (0.1780, 0.3371) (0.1763, 0.3403) (0.1744, 0.3440)
    F = 70(吹) (0.2047, 0.3419) (0.2036, 0.3438) (0.2020, 0.3465) (0.2004, 0.3493) (0.1985, 0.3526)
    F = 70(吸) (0.2055, 0.3406) (0.2043, 0.3426) (0.2028, 0.3451) (0.2012, 0.3479) (0.1993, 0.3512)
    F = 80(吹) (0.2287, 0.3498) (0.2279, 0.3510) (0.2267, 0.3529) (0.2249, 0.3557) (0.2234, 0.3581)
    F = 80(吸) (0.2295, 0.3486) (0.2286, 0.3500) (0.2276, 0.3515) (0.2261, 0.3538) (0.2244, 0.3565)
    下载: 导出CSV
  • [1]

    Goldstein M E 1983 J. Fluid. Mech. 127 59Google Scholar

    [2]

    Ruban A I 1984 Fluid Dynam. 19 709

    [3]

    陆昌根, 沈露予 2015 物理学报 65 194701Google Scholar

    Lu C G, Shen L Y 2015 Acta Phys. Sin. 65 194701Google Scholar

    [4]

    Shen L, Lu C, Zhu X 2019 Appl. Math. Mech. 40 851Google Scholar

    [5]

    Goldstein M E 1985 J. Fluid. Mech. 154 509Google Scholar

    [6]

    Saric W S, Hoos J A, Radeztsky R H 1991 Proceedings of the Symposium and Joint Fluids Engineering Conference, 1st Portland, U.S.A, June 23−27, 1991 p17

    [7]

    Wiegel M, Wlezien R 1993 AIAA P. 3280

    [8]

    Dietz A J 1999 J. Fluid. Mech. 378 291Google Scholar

    [9]

    Dietz A J 1998 AIAA J. 36 1171Google Scholar

    [10]

    Dietz A J 1996 AIAA P. 2083

    [11]

    Wu X 2001 J. Fluid. Mech. 449 373Google Scholar

    [12]

    Wu X 2001 J. Fluid. Mech. 431 91Google Scholar

    [13]

    Shen L, Lu C 2016 Appl. Math. Mech. 37 929Google Scholar

    [14]

    Shen L, Lu C 2016 Appl. Math. Mech. 37 349Google Scholar

    [15]

    Würz W, Herr S, Wörner A, Rist U 2003 J. Fluid. Mech. 478 135Google Scholar

    [16]

    Shen L, Lu C 2018 Adv. Appl. Math. Mech. 10 735Google Scholar

    [17]

    陆昌根, 沈露予 2015 物理学报 64 224702Google Scholar

    Lu C G, Shen L Y 2015 Acta Phys. Sin. 64 224702Google Scholar

    [18]

    Johnson M W, Pinarbasi 2014 Flow Turbul. Combu. 93 1Google Scholar

    [19]

    Jacobs R G 2001 J. Fluid. Mech. 428 185Google Scholar

  • [1] 贺啸秋, 熊永亮, 彭泽瑞, 徐顺. 旋转肥皂泡热对流能量耗散与边界层特性的数值模拟. 物理学报, 2022, 71(20): 204701. doi: 10.7498/aps.71.20220693
    [2] 陆昌根, 沈露予. 前缘曲率对三维边界层内被激发出非定常横流模态的影响研究. 物理学报, 2018, 67(21): 214702. doi: 10.7498/aps.67.20181343
    [3] 沈露予, 陆昌根. 前缘曲率变化对平板边界层感受性问题的影响. 物理学报, 2018, 67(18): 184703. doi: 10.7498/aps.67.20180593
    [4] 艾旭鹏, 倪宝玉. 流体黏性及表面张力对气泡运动特性的影响. 物理学报, 2017, 66(23): 234702. doi: 10.7498/aps.66.234702
    [5] 刘强, 罗振兵, 邓雄, 杨升科, 蒋浩. 合成冷/热射流控制超声速边界层流动稳定性. 物理学报, 2017, 66(23): 234701. doi: 10.7498/aps.66.234701
    [6] 沈露予, 陆昌根. 三维边界层内定常横流涡的感受性研究. 物理学报, 2017, 66(1): 014703. doi: 10.7498/aps.66.014703
    [7] 陆昌根, 朱晓清, 沈露予. 三维边界层内诱导横流失稳模态的感受性机理. 物理学报, 2017, 66(20): 204702. doi: 10.7498/aps.66.204702
    [8] 陆昌根, 沈露予. 无限薄平板边界层前缘感受性过程的数值研究. 物理学报, 2016, 65(19): 194701. doi: 10.7498/aps.65.194701
    [9] 李芳, 赵刚, 刘维新, 张殊, 毕红时. 仿生射流孔形状减阻性能数值模拟及实验研究. 物理学报, 2015, 64(3): 034703. doi: 10.7498/aps.64.034703
    [10] 谷云庆, 牟介刚, 代东顺, 郑水华, 蒋兰芳, 吴登昊, 任芸, 刘福庆. 基于蚯蚓背孔射流的仿生射流表面减阻性能研究. 物理学报, 2015, 64(2): 024701. doi: 10.7498/aps.64.024701
    [11] 陆昌根, 沈露予. 壁面局部吹吸边界层感受性的数值研究. 物理学报, 2015, 64(22): 224702. doi: 10.7498/aps.64.224702
    [12] 陈耀慧, 董祥瑞, 陈志华, 张辉, 栗保明, 范宝春. 翼型绕流的洛伦兹力控制机理. 物理学报, 2014, 63(3): 034701. doi: 10.7498/aps.63.034701
    [13] 陈林, 唐登斌, Chaoqun Liu. 转捩边界层中流向条纹的新特性. 物理学报, 2011, 60(9): 094702. doi: 10.7498/aps.60.094702
    [14] 莫嘉琪, 刘树德, 唐荣荣. 一类奇摄动非线性方程Robin问题激波的位置. 物理学报, 2010, 59(7): 4403-4408. doi: 10.7498/aps.59.4403
    [15] 李钢, 李轶明, 徐燕骥, 张翼, 李汉明, 聂超群, 朱俊强. 介质阻挡放电等离子体对近壁区流场的控制的实验研究. 物理学报, 2009, 58(6): 4026-4033. doi: 10.7498/aps.58.4026
    [16] 张改霞, 赵曰峰, 张寅超, 赵培涛. 激光雷达白天探测大气边界层气溶胶. 物理学报, 2008, 57(11): 7390-7395. doi: 10.7498/aps.57.7390
    [17] 龚安龙, 李睿劬, 李存标. 平板边界层转捩过程中低频信号的产生. 物理学报, 2002, 51(5): 1068-1074. doi: 10.7498/aps.51.1068
    [18] 李睿劬, 李存标. 平板边界层中湍流的发生与混沌动力学之间的联系. 物理学报, 2002, 51(8): 1743-1749. doi: 10.7498/aps.51.1743
    [19] 丁鄂江, 黄祖洽. Boltzmann方程的奇异扰动解法(Ⅲ)——边界层解. 物理学报, 1985, 34(2): 213-224. doi: 10.7498/aps.34.213
    [20] 林鸿荪. 片流边界层中气流及热转移. 物理学报, 1954, 10(1): 71-88. doi: 10.7498/aps.10.71
计量
  • 文章访问数:  6534
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-07
  • 修回日期:  2019-07-23
  • 上网日期:  2019-11-01
  • 刊出日期:  2019-11-20

/

返回文章
返回