搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

前缘曲率变化对平板边界层感受性问题的影响

沈露予 陆昌根

引用本文:
Citation:

前缘曲率变化对平板边界层感受性问题的影响

沈露予, 陆昌根

Effect of leading-edge curvature variation on flat-plate boundary-layer receptivity

Shen Lu-Yu, Lu Chang-Gen
PDF
导出引用
  • 边界层感受性问题是层流向湍流转捩的初始阶段,是实现边界层转捩预测和控制的关键环节.目前已有的研究成果显示,在声波扰动或涡波扰动作用下前缘曲率变化对边界层感受性机制有着显著的影响.本文采用直接数值模拟方法,研究了在自由来流湍流作用下具有不同椭圆形前缘平板边界层感受性问题,揭示椭圆形前缘曲率变化对平板边界层内被激发出Tollmien-Schlichting(T-S)波波包的感受性机制以及波包向前传播群速度的影响;通过快速傅里叶分析方法从波包中提取获得了不同频率的T-S波,详细分析了前缘曲率变化对不同频率的T-S波的幅值、色散关系、增长率、相速度以及形状函数的作用;确定了前缘曲率在平板边界层内激发T-S波的感受性过程中所占据的地位.通过上述研究能够进一步认识和理解边界层感受性机制,从而丰富和完善了流动稳定性理论.
    Boundary-layer receptivity is the initial stage of the laminar-turbulent transition, which is the key step to implement the prediction and control of laminar-turbulent transition in the boundary layer. Current studies show that under the action of acoustic wave or vortical disturbance, the variation of leading-edge curvature significantly affects the boundary-layer receptivity. Additionally, the free-stream turbulence is universal in nature. Therefore, direct numerical simulation is performed in this paper to study the receptivity to free-stream turbulence in the flat-plate boundary layer with an elliptic leading edge. To discretize the Navier-Stokes equation, a modified fourth-order Runge-Kutta scheme is introduced for the temporal discretization; the high-order compact finite difference scheme is utilized for the x- and y-direction spatial discretization; the Fourier transform is conducted in the z-direction. The pressure Helmholtz equation is solved by iterating a fourth-order finite difference scheme. In addition, the Jaccobi transform is introduced to convert the curvilinear coordinate system into Cartesian coordinate system. And elliptic equation technique is adopted to generate the body-fitted mesh. Then the effect of elliptic leading-edge curvature on the receptivity mechanism and the propagation speed of the excited Tollmien-Schlichting (T-S) wave packet in the flat-plate boundary layer are revealed. Subsequently, a group of multi-frequency T-S waves is extracted from the T-S wave packets by temporal fast Fourier transform. The influences of different leading-edge curvatures on the amplitudes, dispersion relations, growth rates, phases and shape functions of the excited T-S waves are analyzed in detail. Finally, the position occupied by leading-edge curvature in the boundary-layer receptivity process for the excitation of T-S wave is also confirmed. The numerical results show that the more intensive receptivity is triggered in the smaller leading-edge curvature; on the contrary, the less intensive receptivity is triggered in the greater leading-edge curvature. But in different leading-edge curvatures, the structures of the excited T-S wave packets are almost identical, and the group velocity is close to constant, which is approximate to one-third of the free-stream velocity. Similarly, the greater amplitude of the excited T-S wave can be induced with the smaller leading-edge curvature; whereas the smaller amplitude of the excited T-S wave can be induced with the greater leading-edge curvature. Moreover, the dispersion relations, growth rates, phases and shape function of the excited T-S waves in the boundary layer are found to be nearly invariable in different leading-edge curvatures. Through the above study, a further step can be made to understand the boundary-layer leading-edge receptivity and also improve the theory of the hydrodynamic stability.
      通信作者: 陆昌根, cglu@nuist.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11472139)、江苏省高等学校自然科学研究面上项目(批准号:17KJB130008)和江苏高校优势学科建设工程(PAPD)资助的课题.
      Corresponding author: Lu Chang-Gen, cglu@nuist.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11472139), the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (Grant No. 17KJB130008), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
    [1]

    Morkovin M V 1969 On the Many Faces of Transition Viscous Drag Reduction (New York: Springer) pp1-31

    [2]

    Saric W S, Reed H L, Kerschen E J 2002 Annu. Rev. Fluid Mech. 34 291

    [3]

    Goldstein M E, Hultgren L S 1989 Annu. Rev. Fluid Mech. 21 137

    [4]

    Goldstein M E 1985 J. Fluid Mech. 154 509

    [5]

    Ruban A I 1992 Phys. Fluid A 4 2495

    [6]

    Crouch J D 1992 Phys. Fluid A 4 1408

    [7]

    Choudhari M, Streett C L 1992 Phys. Fluid A 4 2495

    [8]

    Bertolotti F P 1997 Phys. Fluid 9 2286

    [9]

    Goldstein M E 1983 J. Fluid Mech. 127 59

    [10]

    Goldstein M E, Sockol P M, Sanz J 1983 J. Fluid Mech. 129 443

    [11]

    Goldstein M E, Wundrow D W 1998 Theoret. Comput. Fluid Dyn. 10 171

    [12]

    Heinrich R A, Kerschen E J 1989 Z. Angew. Math. Mech. 69 T596

    [13]

    Lu C G, Shen L Y 2016 Acta Phys. Sin. 65 194701 (in Chinese) [陆昌根, 沈露予 2016 物理学报 65 194701]

    [14]

    Hammerton P W, Kerschen E J 1996 J. Fluid Mech. 310 243

    [15]

    Hammerton P W, Kerschen E J 1997 J. Fluid Mech. 353 205

    [16]

    Lin N, Reed H L, Saric W S 1992 Instability, Transition, and Turbulence (New York: Springer) pp421-440

    [17]

    Fuciarelli D, Reed H, Lyttle I 2000 AIAA J. 38 1159

    [18]

    Wanderley J B V, Corke T C 2001 J. Fluid Mech. 429 1

    [19]

    Buter T A, Reed H L 1994 Phys. Fluid 6 3368

    [20]

    Schrader L U, Brandt L, Mavriplis C, Henningson D S 2010 J. Fluid Mech. 653 245

    [21]

    Hoffmann K A, Chiang S T 2000 Computational Fluid Dynamics (Vol. I) (Wichita: Engineering Education System)

    [22]

    Shen L, Lu C 2016 Appl. Math. Mech. 37 349

    [23]

    Jacobs R G, Durbin P A 2001 J. Fluid Mech. 428 185

    [24]

    Dietz A J 1998 AIAA J. 36 1171

  • [1]

    Morkovin M V 1969 On the Many Faces of Transition Viscous Drag Reduction (New York: Springer) pp1-31

    [2]

    Saric W S, Reed H L, Kerschen E J 2002 Annu. Rev. Fluid Mech. 34 291

    [3]

    Goldstein M E, Hultgren L S 1989 Annu. Rev. Fluid Mech. 21 137

    [4]

    Goldstein M E 1985 J. Fluid Mech. 154 509

    [5]

    Ruban A I 1992 Phys. Fluid A 4 2495

    [6]

    Crouch J D 1992 Phys. Fluid A 4 1408

    [7]

    Choudhari M, Streett C L 1992 Phys. Fluid A 4 2495

    [8]

    Bertolotti F P 1997 Phys. Fluid 9 2286

    [9]

    Goldstein M E 1983 J. Fluid Mech. 127 59

    [10]

    Goldstein M E, Sockol P M, Sanz J 1983 J. Fluid Mech. 129 443

    [11]

    Goldstein M E, Wundrow D W 1998 Theoret. Comput. Fluid Dyn. 10 171

    [12]

    Heinrich R A, Kerschen E J 1989 Z. Angew. Math. Mech. 69 T596

    [13]

    Lu C G, Shen L Y 2016 Acta Phys. Sin. 65 194701 (in Chinese) [陆昌根, 沈露予 2016 物理学报 65 194701]

    [14]

    Hammerton P W, Kerschen E J 1996 J. Fluid Mech. 310 243

    [15]

    Hammerton P W, Kerschen E J 1997 J. Fluid Mech. 353 205

    [16]

    Lin N, Reed H L, Saric W S 1992 Instability, Transition, and Turbulence (New York: Springer) pp421-440

    [17]

    Fuciarelli D, Reed H, Lyttle I 2000 AIAA J. 38 1159

    [18]

    Wanderley J B V, Corke T C 2001 J. Fluid Mech. 429 1

    [19]

    Buter T A, Reed H L 1994 Phys. Fluid 6 3368

    [20]

    Schrader L U, Brandt L, Mavriplis C, Henningson D S 2010 J. Fluid Mech. 653 245

    [21]

    Hoffmann K A, Chiang S T 2000 Computational Fluid Dynamics (Vol. I) (Wichita: Engineering Education System)

    [22]

    Shen L, Lu C 2016 Appl. Math. Mech. 37 349

    [23]

    Jacobs R G, Durbin P A 2001 J. Fluid Mech. 428 185

    [24]

    Dietz A J 1998 AIAA J. 36 1171

  • [1] 万兵兵, 胡伟波, 李晓虎, 黄文锋, 陈坚强, 涂国华. 高速钝锥对不同类型来流扰动的三维感受性. 物理学报, 2024, 73(23): 234701. doi: 10.7498/aps.73.20241383
    [2] 杨瑞科, 李福军, 武福平, 卢芳, 魏兵, 周晔. 沙尘湍流大气对自由空间量子通信性能影响研究. 物理学报, 2022, 71(22): 220302. doi: 10.7498/aps.71.20221125
    [3] 毕思昭, 彭朝晖. 地球曲率对远距离声传播的影响. 物理学报, 2021, 70(11): 114303. doi: 10.7498/aps.70.20201858
    [4] 陆昌根, 沈露予, 朱晓清. 压力梯度对壁面局部吹吸边界层感受性的影响研究. 物理学报, 2019, 68(22): 224701. doi: 10.7498/aps.68.20190684
    [5] 陆昌根, 沈露予. 前缘曲率对三维边界层内被激发出非定常横流模态的影响研究. 物理学报, 2018, 67(21): 214702. doi: 10.7498/aps.67.20181343
    [6] 沈露予, 陆昌根. 三维边界层内定常横流涡的感受性研究. 物理学报, 2017, 66(1): 014703. doi: 10.7498/aps.66.014703
    [7] 陆昌根, 朱晓清, 沈露予. 三维边界层内诱导横流失稳模态的感受性机理. 物理学报, 2017, 66(20): 204702. doi: 10.7498/aps.66.204702
    [8] 陆昌根, 沈露予. 无限薄平板边界层前缘感受性过程的数值研究. 物理学报, 2016, 65(19): 194701. doi: 10.7498/aps.65.194701
    [9] 周先春, 汪美玲, 石兰芳, 周林锋, 吴琴. 基于梯度与曲率相结合的图像平滑模型的研究. 物理学报, 2015, 64(4): 044201. doi: 10.7498/aps.64.044201
    [10] 陆昌根, 沈露予. 壁面局部吹吸边界层感受性的数值研究. 物理学报, 2015, 64(22): 224702. doi: 10.7498/aps.64.224702
    [11] 任殿波, 张京明, 王聪. 变曲率弯路车辆换道虚拟轨迹模型. 物理学报, 2014, 63(7): 078902. doi: 10.7498/aps.63.078902
    [12] 孙健, 刘伟强. 高超声速飞行器前缘疏导式热防护结构的实验研究. 物理学报, 2014, 63(9): 094401. doi: 10.7498/aps.63.094401
    [13] 孙健, 刘伟强. 高超声速飞行器热管冷却前缘结构一体化建模分析. 物理学报, 2013, 62(7): 074401. doi: 10.7498/aps.62.074401
    [14] 孙健, 刘伟强. 翼前缘层板对流冷却结构的防热效果分析. 物理学报, 2012, 61(12): 124701. doi: 10.7498/aps.61.124701
    [15] 黄永平, 赵光普, 肖希, 王藩侯. 部分空间相干光束在非Kolmogorov湍流大气中的有效曲率半径. 物理学报, 2012, 61(14): 144202. doi: 10.7498/aps.61.144202
    [16] 聂涛, 刘伟强. 高超声速飞行器前缘流固耦合计算方法研究. 物理学报, 2012, 61(18): 184401. doi: 10.7498/aps.61.184401
    [17] 季小玲. 部分相干平顶光束通过湍流大气传输的等效曲率半径. 物理学报, 2010, 59(6): 3953-3958. doi: 10.7498/aps.59.3953
    [18] 陆赫林, 王顺金. 离子温度梯度模湍流的带状流最小自由度模型. 物理学报, 2009, 58(1): 354-362. doi: 10.7498/aps.58.354
    [19] 邵 丹, 邵 亮, 邵常贵, 陈贻汉. 量子引力的曲率两点真空相关. 物理学报, 2004, 53(2): 367-372. doi: 10.7498/aps.53.367
    [20] 邵明珠. 变曲率弯晶的粒子退道行为. 物理学报, 1992, 41(11): 1825-1829. doi: 10.7498/aps.41.1825
计量
  • 文章访问数:  6100
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-03
  • 修回日期:  2018-06-25
  • 刊出日期:  2019-09-20

/

返回文章
返回