搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维边界层内诱导横流失稳模态的感受性机理

陆昌根 朱晓清 沈露予

引用本文:
Citation:

三维边界层内诱导横流失稳模态的感受性机理

陆昌根, 朱晓清, 沈露予

Receptivity mechanism of cross-flow instablity modes induced in three-dimensional boundary layer

Lu Chang-Gen, Zhu Xiao-Qing, Shen Lu-Yu
PDF
导出引用
  • 边界层感受性问题是层流向湍流转捩的初始阶段,在转捩过程中起关键性作用,尤其是三维边界层流动.因此,研究三维边界层感受性问题对进一步理解层流向湍流转捩机理以及湍流成因具有重要的理论意义.采用数值方法研究自由来流湍流与三维壁面局部粗糙相互作用下三维边界层的感受性问题,确定是否能在三维边界层内寻找一种新的横流失稳模态;确定在何种条件下三维边界层内能诱导出定常、非定常的横流失稳模态;探索自由来流湍流的强度、展向波数和法向波数以及三维壁面局部粗糙的大小和结构类型等因素在自由来流湍流与三维壁面局部粗糙作用下三维边界层内被激发出的感受性过程中有何影响,并确定何种横流失稳模态在三维边界层感受性过程中占据何种地位.对自由来流湍流与三维壁面局部粗糙作用激发三维边界层内感受性问题的深入研究,将有助于完善流动稳定性与湍流理论,为层流向湍流转捩过程的预测与控制提供合理的理论依据.
    Boundary-layer receptivity is the initial stage of the laminar-turbulent transition process, which plays a key role in the transition, especially for the case of three-dimensional boundary-layer flow. The research of the three-dimensional boundary-layer receptivity is theoretically significant for further understanding of the mechanisms of laminar-turbulent transition and turbulence formation. A numerical method is used to study the three-dimensional boundary-layer receptivity under the interaction of the free-stream turbulence and the three-dimensional localized wall roughness. Then whether a new cross-flow instability mode can be found in the three-dimensional boundary layer is studied. Subsequently, investigated are the conditions under which the steady or unsteady cross-flow instability mode can be induced in the three-dimensional boundary layer, the influences of the intensity, spanwise wave number and normal wave number of the free-stream turbulence, and the size and structure of the three-dimensional roughness on the three-dimensional boundary-layer receptivity under the free-stream turbulence interacting with the three-dimensional localized wall roughness, and the instability mode that can be induced and its role in the three-dimensional boundary-layer receptivity. The numerical results show that when the turbulence intensity is low, the steady cross-flow vortex excited by the three-dimensional localized wall roughness dominates the three-dimensional boundary-layer receptivity; on the contrary, when the turbulence intensity is high, the unsteady cross-flow vortex excited by the free-stream turbulence dominates the receptivity; additionally, when the interaction between the three-dimensional localized wall roughness and the free-stream turbulence is existent, three kinds of instability modes are all produced at the same time, namely, the steady cross-flow vortex, the unsteady cross-flow vortex and the new unsteady cross-flow vortex whose dispersion relation is equal to the linear combination of the positive and negative spanwise wave numbers of the first steady cross-flow vortex and the second unsteady cross-flow vortex. The in-depth research on the three-dimensional boundary-layer receptivity under the interaction of the free-stream turbulence and the three-dimensional localized wall roughness is of benefit to accomplishing the hydrodynamic instability theory and the turbulence theory, and providing the theoretical foundation for the prediction and control of the laminar-turbulent transition.
      通信作者: 陆昌根, cglu@nuist.edu.cn;shenluyu@nuist.edu.cn ; 沈露予, cglu@nuist.edu.cn;shenluyu@nuist.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11472139)、江苏高校优势学科建设工程(批准号:PAPD)和南京信息工程大学人才启动基金(批准号:2016r046)资助的课题.
      Corresponding author: Lu Chang-Gen, cglu@nuist.edu.cn;shenluyu@nuist.edu.cn ; Shen Lu-Yu, cglu@nuist.edu.cn;shenluyu@nuist.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11472139), the Priority Academic Development Program of Jiangsu Higher Education Institutions, China (Grant No. PAPD), and the Startup Foundation for Talents of Nanjing University of Information Science and Technology, China (Grant No. 2016r046).
    [1]

    Saric W S, Reed H L, White E B 2003 Annu. Rev. Fluid. Mech. 35 413

    [2]

    Xu G L, Fu S 2012 Advances in Mechanics 42 262 (in Chinese)[徐国亮, 符松2012力学进展42 262]

    [3]

    Bippes H 1999 Prog. Aerosp. Sci. 35 363

    [4]

    Bippes H, Nitschke-Kowsky P 1990 AIAA J. 28 1758

    [5]

    Radeztsky Jr. R H, Reibert M S, Saric W S 1994 AIAA P. 2373

    [6]

    Radeztsky R H, Reibert M S, Saric W S 1999 AIAA J. 37 1370

    [7]

    Deyhle H, Bippes H 1996 J. Fluid. Mech. 316 73

    [8]

    Reibert M S, Saric W S, Carrillo Jr. R B, Chapman K 1996 AIAA P. 0184

    [9]

    Reibert M S, Saric W S 1997 AIAA P. 1816

    [10]

    Fedorov A V 1988 J. Appl. Mech. Tech. Phys. 29 643

    [11]

    Manuilovich S V 1989 Fluid. Dyn. 24 764

    [12]

    Crouch J D 1993 AIAA P. 0074

    [13]

    Choudhari M 1994 Theor. Comp. Fluid. Dyn. 6 1

    [14]

    Ng L L, Crouch J D 1999 Phys. Fluid. 11 432

    [15]

    Kurz H B E, Kloker M J 2014 J. Fluid. Mech. 755 62

    [16]

    Shen L Y, Lu C G 2017 Acta. Phys. Sin. 66 014703 (in Chinese)[沈露予, 陆昌根2017物理学报66 014703]

    [17]

    Schrader L U, Brandt L, Henningson D S 2009 J. Fluid. Mech. 618 209

    [18]

    Schrader L U, Brandt L, Mavriplis C, Henningson D S 2010 J. Fluid. Mech. 653 245

    [19]

    Tempelmann D, Schrader L U, Hanifi A, Brandt L, Henningson D S 2011 AIAA P. 3294

    [20]

    Tempelmann D, Schrader L U, Hanifi A, Brandt L, Henningson D S 2012 J. Fluid. Mech. 711 516

    [21]

    Borodulin V I, Ivanov A V, Kachanov Y S, Roschektaev A P 2013 J. Fluid. Mech. 716 487

    [22]

    Shen L Y, Lu C G 2016 Appl. Math. Mech. 37 929

    [23]

    Zhang Y, Zaki T, Sherwin S, Wu X 2011 6th AIAA Theoretical Fluid Mechanics Conference Hawaii, USA, June 27-30, p3292

    [24]

    Luchini P 2013 J. Fluid. Mech. 737 349

    [25]

    Shen L, Lu C 2017 Appl. Math. Mech. 38 1213

  • [1]

    Saric W S, Reed H L, White E B 2003 Annu. Rev. Fluid. Mech. 35 413

    [2]

    Xu G L, Fu S 2012 Advances in Mechanics 42 262 (in Chinese)[徐国亮, 符松2012力学进展42 262]

    [3]

    Bippes H 1999 Prog. Aerosp. Sci. 35 363

    [4]

    Bippes H, Nitschke-Kowsky P 1990 AIAA J. 28 1758

    [5]

    Radeztsky Jr. R H, Reibert M S, Saric W S 1994 AIAA P. 2373

    [6]

    Radeztsky R H, Reibert M S, Saric W S 1999 AIAA J. 37 1370

    [7]

    Deyhle H, Bippes H 1996 J. Fluid. Mech. 316 73

    [8]

    Reibert M S, Saric W S, Carrillo Jr. R B, Chapman K 1996 AIAA P. 0184

    [9]

    Reibert M S, Saric W S 1997 AIAA P. 1816

    [10]

    Fedorov A V 1988 J. Appl. Mech. Tech. Phys. 29 643

    [11]

    Manuilovich S V 1989 Fluid. Dyn. 24 764

    [12]

    Crouch J D 1993 AIAA P. 0074

    [13]

    Choudhari M 1994 Theor. Comp. Fluid. Dyn. 6 1

    [14]

    Ng L L, Crouch J D 1999 Phys. Fluid. 11 432

    [15]

    Kurz H B E, Kloker M J 2014 J. Fluid. Mech. 755 62

    [16]

    Shen L Y, Lu C G 2017 Acta. Phys. Sin. 66 014703 (in Chinese)[沈露予, 陆昌根2017物理学报66 014703]

    [17]

    Schrader L U, Brandt L, Henningson D S 2009 J. Fluid. Mech. 618 209

    [18]

    Schrader L U, Brandt L, Mavriplis C, Henningson D S 2010 J. Fluid. Mech. 653 245

    [19]

    Tempelmann D, Schrader L U, Hanifi A, Brandt L, Henningson D S 2011 AIAA P. 3294

    [20]

    Tempelmann D, Schrader L U, Hanifi A, Brandt L, Henningson D S 2012 J. Fluid. Mech. 711 516

    [21]

    Borodulin V I, Ivanov A V, Kachanov Y S, Roschektaev A P 2013 J. Fluid. Mech. 716 487

    [22]

    Shen L Y, Lu C G 2016 Appl. Math. Mech. 37 929

    [23]

    Zhang Y, Zaki T, Sherwin S, Wu X 2011 6th AIAA Theoretical Fluid Mechanics Conference Hawaii, USA, June 27-30, p3292

    [24]

    Luchini P 2013 J. Fluid. Mech. 737 349

    [25]

    Shen L, Lu C 2017 Appl. Math. Mech. 38 1213

  • [1] 胡玉发, 易仕和, 刘小林, 徐席旺, 张震, 张臻. 壁面渗透气膜工质对圆锥高超声速边界层稳定性的影响. 物理学报, 2024, 73(12): 124701. doi: 10.7498/aps.73.20240369
    [2] 万兵兵, 胡伟波, 李晓虎, 黄文锋, 陈坚强, 涂国华. 高速钝锥对不同类型来流扰动的三维感受性. 物理学报, 2024, 73(23): 234701. doi: 10.7498/aps.73.20241383
    [3] 张博, 何霖, 易仕和. 超声速湍流边界层密度脉动小波分析. 物理学报, 2020, 69(21): 214702. doi: 10.7498/aps.69.20200748
    [4] 陆昌根, 沈露予, 朱晓清. 压力梯度对壁面局部吹吸边界层感受性的影响研究. 物理学报, 2019, 68(22): 224701. doi: 10.7498/aps.68.20190684
    [5] 陆昌根, 沈露予. 前缘曲率对三维边界层内被激发出非定常横流模态的影响研究. 物理学报, 2018, 67(21): 214702. doi: 10.7498/aps.67.20181343
    [6] 沈露予, 陆昌根. 前缘曲率变化对平板边界层感受性问题的影响. 物理学报, 2018, 67(18): 184703. doi: 10.7498/aps.67.20180593
    [7] 丁浩林, 易仕和, 朱杨柱, 赵鑫海, 何霖. 不同光线入射角度下超声速湍流边界层气动光学效应的实验研究. 物理学报, 2017, 66(24): 244201. doi: 10.7498/aps.66.244201
    [8] 何霖, 易仕和, 陆小革. 超声速湍流边界层密度场特性. 物理学报, 2017, 66(2): 024701. doi: 10.7498/aps.66.024701
    [9] 沈露予, 陆昌根. 三维边界层内定常横流涡的感受性研究. 物理学报, 2017, 66(1): 014703. doi: 10.7498/aps.66.014703
    [10] 黄茂静, 包芸. 湍流热对流近底板流态与温度边界层特性. 物理学报, 2016, 65(20): 204702. doi: 10.7498/aps.65.204702
    [11] 陆昌根, 沈露予. 无限薄平板边界层前缘感受性过程的数值研究. 物理学报, 2016, 65(19): 194701. doi: 10.7498/aps.65.194701
    [12] 陆昌根, 沈露予. 壁面局部吹吸边界层感受性的数值研究. 物理学报, 2015, 64(22): 224702. doi: 10.7498/aps.64.224702
    [13] 刘彧, 周进, 林志勇. 来流边界层效应下斜坡诱导的斜爆轰波. 物理学报, 2014, 63(20): 204701. doi: 10.7498/aps.63.204701
    [14] 全鹏程, 易仕和, 武宇, 朱杨柱, 陈植. 激波与层流/湍流边界层相互作用实验研究. 物理学报, 2014, 63(8): 084703. doi: 10.7498/aps.63.084703
    [15] 尹纪富, 尤云祥, 李巍, 胡天群. 电磁力控制湍流边界层分离圆柱绕流场特性数值分析. 物理学报, 2014, 63(4): 044701. doi: 10.7498/aps.63.044701
    [16] 冯玉霄, 黄群星, 梁军辉, 王飞, 严建华, 池涌. 三维燃烧介质和壁面温度的非接触联合重建研究. 物理学报, 2012, 61(13): 134702. doi: 10.7498/aps.61.134702
    [17] 姬伟杰, 童创明. 三维目标与粗糙面复合散射的广义稀疏矩阵平面迭代及规范网格算法. 物理学报, 2011, 60(1): 010301. doi: 10.7498/aps.60.010301
    [18] 连祺祥, 郭 辉. 湍流边界层中下扫流与“反发卡涡”. 物理学报, 2004, 53(7): 2226-2232. doi: 10.7498/aps.53.2226
    [19] 李睿劬, 李存标. 平板边界层中湍流的发生与混沌动力学之间的联系. 物理学报, 2002, 51(8): 1743-1749. doi: 10.7498/aps.51.1743
    [20] 林鸿荪. 片流边界层中气流及热转移. 物理学报, 1954, 10(1): 71-88. doi: 10.7498/aps.10.71
计量
  • 文章访问数:  5863
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-03
  • 修回日期:  2017-06-06
  • 刊出日期:  2017-10-05

/

返回文章
返回