搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电磁力控制湍流边界层分离圆柱绕流场特性数值分析

尹纪富 尤云祥 李巍 胡天群

引用本文:
Citation:

电磁力控制湍流边界层分离圆柱绕流场特性数值分析

尹纪富, 尤云祥, 李巍, 胡天群

Numerical analysis for the characteristics of flow control around a circular cylinder with a turbulent boundary layer separation using the electromagnetic force

Yin Ji-Fu, You Yun-Xiang, Li Wei, Hu Tian-Qun
PDF
导出引用
  • 在亚临界区高雷诺数Re=1.4×105下,采用脱体涡模拟结合湍流分离的方法 对弱电解质中电磁力作用下湍流边界层分离圆柱绕流场及其升(阻)力特性进行了数值模拟和分析. 结果表明,电磁力可以提高圆柱体湍流边界层内的流体动能,延缓圆柱体湍流边界层的流动分离,减弱圆柱体湍流绕流场中在流向和展向上大尺度漩涡的强度,减小圆柱体阻力时均值及其升力脉动幅值. 当电磁力作用参数大于某个临界值后,湍流边界层流动分离消失,在圆柱体尾部产生射流现象,从而电磁力对圆柱体产生净推力作用,出现负阻力现象,而且升力脉动幅值接近于零,出现圆柱体升力消失现象.
    A detached eddy simulation method with the turbulent separation is presented to simulate and analyze the characteristics for the flow around a circular cylinder with a turbulent boundary layer separation and its lift/drag coefficients in a weakly conductive fluid at a high subcritical Reynolds number 1.4×105 under an electromagnetic force. The results show that the electromagnetic force can increase the fluid kinetic energy near the turbulent boundary layer, delay the turbulent boundary layer separation of the flow around the circular cylinder, and weaken the intensity of the large-scale eddy in the turbulent flow around the circular cylinder in the streamwise and spanwise directions, reduce the time-average drag, and inhibit the lift fluctuation amplitude on the circular cylinder. Moreover, after the electromagnetic force parameter reaches a certain critical value, the turbulent boundary layer separation disappears and the jet phenomenon appears in the wake of the circular cylinder, so that the electromagnetic force produces the thrust action on the circular cylinder and the negative drag occurs, and the lift fluctuation amplitude declines to almost zero and the lift phenomenon on the circular cylinder disappears.
    • 基金项目: 国家自然科学基金(批准号:11272211)和上海交通大学海洋工程国家重点实验室研究基金(批准号:GP010819)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11272211) and the Research Foundation for State Key Laboratory of Ocean Engineering of Shanghai Jiaotong University, China (Grant No. GP010819).
    [1]

    Williamson C H K 1996 Annu. Rev. Fluids Mech. 28 477

    [2]

    Gad-el-Hak M, Bushnell D M 1991 J. Fluids Eng. 113 5

    [3]

    Zdravkovich M M 1981 J. Wind Eng. Ind. Aerod. 7 145

    [4]

    Kwon K, Choi H 1996 Phys. Fluids 8 479

    [5]

    Li Z, Navon I M, HussainiM Y, LeDimet F X 2003 Comput Fluids 32 149

    [6]

    Atktin C J, Mughal M S 2005 35th AIAA Fluid Dyna mics Conference Exhibit (Toronto: AIAA) p5263

    [7]

    Chen H 2011 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese) [陈虹 2011 博士学位论文 (武汉: 华中科技大学)]

    [8]

    Jukes T, Choi K S 2007 IUTAM Symposium on Unsteady Separated Flows and Their Control (Corfu: IUTAM) p539

    [9]

    Mei D J, Fan B C, Chen Y H, Ye J F 2010 Acta Phys. Sin. 59 8335 (in Chinese) [梅栋杰, 范宝春, 陈耀慧, 叶经方2010 物理学报59 8335]

    [10]

    Feng L H, Wang J J 2010 J. Fluid Mech. 662 232

    [11]

    Liu Z K, Zhou B M, Liu H X, Liu Z G, Huang Y F 2011 Acta Phys. Sin. 60 084701 (in Chinese) [刘宗凯, 周本谋, 刘会星, 刘志刚, 黄翼飞 2011 物理 学报 60 084701]

    [12]

    Weier T, Gerbeth G, Mutschke G, Platacis E, Lielausis O 1998 Exp. Therm. Fluid Sci. 16 84

    [13]

    Kim S J, Lee C M 2000 Exp. Fluids 28 252

    [14]

    Weier T, Fey U, Gerbeth Q, Mutschke G, Lielausis O, Platacis E 2001 Magnetohrodynamics 37 177

    [15]

    Kim S J, Lee C M 2001 Fluid Dyn. Res. 29 47

    [16]

    Oliver P Roger G 2001 Eur. J. Mech. B 20 255

    [17]

    Zhou B M, Fan B C, Chen Z H, Ye J F, Ding H X, Jin J M 2004 J. Exp. Mech. 19 242 (in Chinese) [周本谋, 范宝春, 陈志华, 叶经方, 丁汉新, 靳建明 2004 实验力学 19 242]

    [18]

    Zhang H, Fan B C, Chen Z H 2007 Eng. Mech. 24 164 (in Chinese) [张辉, 范宝春, 陈志华 2007 工程力学 24 164]

    [19]

    Zhang H, Fan B C, Chen Z H 2009 J. Exp. Mech. 24 427 (in Chinese) [张辉, 范宝春, 陈志华 2009 实验力学 24 427]

    [20]

    Yin J F, You Y X, Hu T Q, Zhao L M, Wang L, Zhou Y M, Chen H 2013 Chin. J. Theor. Appl. Mech. 45 493 (in Chinese) [尹纪富, 尤云祥, 胡天群, 赵良明, 王磊, 周友明, 陈虹 2013 力学学报 45 493]

    [21]

    Yin J F, Li W, You Y X, Hu T Q 2013 Chin. J. Hydrodyn. 28 495 (in Chinese) [尹纪富, 李巍, 尤云祥, 胡天群 2013 水动力学研究与进展 28 495]

    [22]

    Zhang H, Fan B C, Chen Z H, Li Y L 2011 Fluid Dyn. Res. 43 015506

    [23]

    Muk C O, Torbjorn U, Lars E H, Dag M 2009 Mar. Struct. 22 142

    [24]

    Mittal R, Balachandar S 1995 Phys. Fluids 7 1841

    [25]

    Travin A, Shur M, Strelets M, Spalart P 2000 Flow Turbul. Combust. 63 293

    [26]

    Hansen R P, Forsythe J R 2003 41st AIAA Aerospace Sciences Meeting and Exhibit (Reno: AIAA) p775

    [27]

    Krishnan V, Squires K D 2006 44th AIAA Aerospace Sciences Meeting and Exhibit (Reno: AIAA) p901

    [28]

    Dong S, Karniadakis G E 2005 J. Fluids Struct. 20 519

    [29]

    Benim A C, Pasqualotto E, Suh S H 2008 Prog. Comput. Fluid Dyn. 5 299

    [30]

    Zhang Z S, Cui G X, Xu C X 2005 Theory and Modeling of Turbulence (Beijing: Tsinghua University Press) p233 (in Chinese) [张兆顺, 崔桂香, 许春晓 2005 湍流理论与模拟 (北京: 清华大学出版社) 第233页]

    [31]

    Roshko A 1961 J. Fluid Mech. 10 345

    [32]

    Hunt J C R, Wray A, Moin P 1988 Eddies, Stream, and Convergence Zones in Turbulent Flows (Stanford: Center for Turbulence Research Report) p193

  • [1]

    Williamson C H K 1996 Annu. Rev. Fluids Mech. 28 477

    [2]

    Gad-el-Hak M, Bushnell D M 1991 J. Fluids Eng. 113 5

    [3]

    Zdravkovich M M 1981 J. Wind Eng. Ind. Aerod. 7 145

    [4]

    Kwon K, Choi H 1996 Phys. Fluids 8 479

    [5]

    Li Z, Navon I M, HussainiM Y, LeDimet F X 2003 Comput Fluids 32 149

    [6]

    Atktin C J, Mughal M S 2005 35th AIAA Fluid Dyna mics Conference Exhibit (Toronto: AIAA) p5263

    [7]

    Chen H 2011 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese) [陈虹 2011 博士学位论文 (武汉: 华中科技大学)]

    [8]

    Jukes T, Choi K S 2007 IUTAM Symposium on Unsteady Separated Flows and Their Control (Corfu: IUTAM) p539

    [9]

    Mei D J, Fan B C, Chen Y H, Ye J F 2010 Acta Phys. Sin. 59 8335 (in Chinese) [梅栋杰, 范宝春, 陈耀慧, 叶经方2010 物理学报59 8335]

    [10]

    Feng L H, Wang J J 2010 J. Fluid Mech. 662 232

    [11]

    Liu Z K, Zhou B M, Liu H X, Liu Z G, Huang Y F 2011 Acta Phys. Sin. 60 084701 (in Chinese) [刘宗凯, 周本谋, 刘会星, 刘志刚, 黄翼飞 2011 物理 学报 60 084701]

    [12]

    Weier T, Gerbeth G, Mutschke G, Platacis E, Lielausis O 1998 Exp. Therm. Fluid Sci. 16 84

    [13]

    Kim S J, Lee C M 2000 Exp. Fluids 28 252

    [14]

    Weier T, Fey U, Gerbeth Q, Mutschke G, Lielausis O, Platacis E 2001 Magnetohrodynamics 37 177

    [15]

    Kim S J, Lee C M 2001 Fluid Dyn. Res. 29 47

    [16]

    Oliver P Roger G 2001 Eur. J. Mech. B 20 255

    [17]

    Zhou B M, Fan B C, Chen Z H, Ye J F, Ding H X, Jin J M 2004 J. Exp. Mech. 19 242 (in Chinese) [周本谋, 范宝春, 陈志华, 叶经方, 丁汉新, 靳建明 2004 实验力学 19 242]

    [18]

    Zhang H, Fan B C, Chen Z H 2007 Eng. Mech. 24 164 (in Chinese) [张辉, 范宝春, 陈志华 2007 工程力学 24 164]

    [19]

    Zhang H, Fan B C, Chen Z H 2009 J. Exp. Mech. 24 427 (in Chinese) [张辉, 范宝春, 陈志华 2009 实验力学 24 427]

    [20]

    Yin J F, You Y X, Hu T Q, Zhao L M, Wang L, Zhou Y M, Chen H 2013 Chin. J. Theor. Appl. Mech. 45 493 (in Chinese) [尹纪富, 尤云祥, 胡天群, 赵良明, 王磊, 周友明, 陈虹 2013 力学学报 45 493]

    [21]

    Yin J F, Li W, You Y X, Hu T Q 2013 Chin. J. Hydrodyn. 28 495 (in Chinese) [尹纪富, 李巍, 尤云祥, 胡天群 2013 水动力学研究与进展 28 495]

    [22]

    Zhang H, Fan B C, Chen Z H, Li Y L 2011 Fluid Dyn. Res. 43 015506

    [23]

    Muk C O, Torbjorn U, Lars E H, Dag M 2009 Mar. Struct. 22 142

    [24]

    Mittal R, Balachandar S 1995 Phys. Fluids 7 1841

    [25]

    Travin A, Shur M, Strelets M, Spalart P 2000 Flow Turbul. Combust. 63 293

    [26]

    Hansen R P, Forsythe J R 2003 41st AIAA Aerospace Sciences Meeting and Exhibit (Reno: AIAA) p775

    [27]

    Krishnan V, Squires K D 2006 44th AIAA Aerospace Sciences Meeting and Exhibit (Reno: AIAA) p901

    [28]

    Dong S, Karniadakis G E 2005 J. Fluids Struct. 20 519

    [29]

    Benim A C, Pasqualotto E, Suh S H 2008 Prog. Comput. Fluid Dyn. 5 299

    [30]

    Zhang Z S, Cui G X, Xu C X 2005 Theory and Modeling of Turbulence (Beijing: Tsinghua University Press) p233 (in Chinese) [张兆顺, 崔桂香, 许春晓 2005 湍流理论与模拟 (北京: 清华大学出版社) 第233页]

    [31]

    Roshko A 1961 J. Fluid Mech. 10 345

    [32]

    Hunt J C R, Wray A, Moin P 1988 Eddies, Stream, and Convergence Zones in Turbulent Flows (Stanford: Center for Turbulence Research Report) p193

  • [1] 牛中国, 许相辉, 王建锋, 蒋甲利, 梁华. 飞翼模型纵向气动特性等离子体流动控制试验. 物理学报, 2022, 71(2): 024702. doi: 10.7498/aps.71.20211425
    [2] 陈蒋力, 陈少强, 任峰, 胡海豹. 基于壁面压力反馈的圆柱绕流减阻智能控制. 物理学报, 2022, 71(8): 084701. doi: 10.7498/aps.71.20212171
    [3] 董帅, 纪祥勇, 李春曦. 横向磁场作用下Taylor-Couette湍流流动的大涡模拟. 物理学报, 2021, 70(18): 184702. doi: 10.7498/aps.70.20210389
    [4] 牛中国, 许相辉, 王建峰, 蒋甲利, 梁华. 飞翼模型纵向气动特性等离子体流动控制试验研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211425
    [5] 李昊, 刘伟, 王圣业. 针对典型分离流动数值模拟的自适应耗散调节方法. 物理学报, 2020, 69(14): 144702. doi: 10.7498/aps.69.20200102
    [6] 王鹏, 沈赤兵. 等离子体合成射流对超声速混合层的混合增强. 物理学报, 2019, 68(17): 174701. doi: 10.7498/aps.68.20190683
    [7] 刘宗凯, 薄煜明, 王军, 崔珂. 电磁力滤波与快速反射镜光学补偿在潜航器光轴稳定控制中的应用. 物理学报, 2017, 66(8): 084704. doi: 10.7498/aps.66.084704
    [8] 王宏宇, 李军, 金迪, 代辉, 甘甜, 吴云. 激波/边界层干扰对等离子体合成射流的响应特性. 物理学报, 2017, 66(8): 084705. doi: 10.7498/aps.66.084705
    [9] 夏懿, 库晓珂, 沈苏华. 布朗运动和湍流扩散作用下槽流中纤维悬浮流动特性的研究. 物理学报, 2016, 65(19): 194702. doi: 10.7498/aps.65.194702
    [10] 张鑫, 黄勇, 王万波, 唐坤, 李华星. 对称式布局介质阻挡放电等离子体激励器诱导启动涡. 物理学报, 2016, 65(17): 174701. doi: 10.7498/aps.65.174701
    [11] 程霄翔, 赵林, 葛耀君. 高超临界雷诺数区间内二维圆柱绕流的实测研究. 物理学报, 2016, 65(21): 214701. doi: 10.7498/aps.65.214701
    [12] 刘梦珂, 张辉, 范宝春, 韩洋, 归明月. 电磁控制两自由度涡生振荡的机理研究. 物理学报, 2016, 65(24): 244702. doi: 10.7498/aps.65.244702
    [13] 赵光银, 李应红, 梁华, 化为卓, 韩孟虎. 纳秒脉冲表面介质阻挡等离子体激励唯象学仿真. 物理学报, 2015, 64(1): 015101. doi: 10.7498/aps.64.015101
    [14] 陈耀慧, 董祥瑞, 陈志华, 张辉, 栗保明, 范宝春. 翼型绕流的洛伦兹力控制机理. 物理学报, 2014, 63(3): 034701. doi: 10.7498/aps.63.034701
    [15] 梅栋杰, 范宝春, 黄乐萍, 董刚. 槽道湍流的展向振荡电磁力壁面减阻. 物理学报, 2010, 59(10): 6786-6792. doi: 10.7498/aps.59.6786
    [16] 梅栋杰, 范宝春, 陈耀慧, 叶经方. 槽道湍流展向振荡电磁力控制的实验研究. 物理学报, 2010, 59(12): 8335-8342. doi: 10.7498/aps.59.8335
    [17] 李钢, 李轶明, 徐燕骥, 张翼, 李汉明, 聂超群, 朱俊强. 介质阻挡放电等离子体对近壁区流场的控制的实验研究. 物理学报, 2009, 58(6): 4026-4033. doi: 10.7498/aps.58.4026
    [18] 陈耀慧, 范宝春, 陈志华, 周本谋. 翼型绕流电磁控制的实验和数值研究. 物理学报, 2008, 57(2): 648-653. doi: 10.7498/aps.57.648
    [19] 孙俊生, 武传松. 电磁力及其对MIG焊接熔池流场的影响. 物理学报, 2001, 50(2): 209-216. doi: 10.7498/aps.50.209
    [20] 严济慈, 方声恒. 空心水晶圆柱之绕周振动. 物理学报, 1936, 2(2): 145-153. doi: 10.7498/aps.2.145
计量
  • 文章访问数:  3329
  • PDF下载量:  15654
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-29
  • 修回日期:  2013-11-11
  • 刊出日期:  2014-02-05

电磁力控制湍流边界层分离圆柱绕流场特性数值分析

  • 1. 上海交通大学, 海洋工程国家重点实验室, 上海 200240
    基金项目: 国家自然科学基金(批准号:11272211)和上海交通大学海洋工程国家重点实验室研究基金(批准号:GP010819)资助的课题.

摘要: 在亚临界区高雷诺数Re=1.4×105下,采用脱体涡模拟结合湍流分离的方法 对弱电解质中电磁力作用下湍流边界层分离圆柱绕流场及其升(阻)力特性进行了数值模拟和分析. 结果表明,电磁力可以提高圆柱体湍流边界层内的流体动能,延缓圆柱体湍流边界层的流动分离,减弱圆柱体湍流绕流场中在流向和展向上大尺度漩涡的强度,减小圆柱体阻力时均值及其升力脉动幅值. 当电磁力作用参数大于某个临界值后,湍流边界层流动分离消失,在圆柱体尾部产生射流现象,从而电磁力对圆柱体产生净推力作用,出现负阻力现象,而且升力脉动幅值接近于零,出现圆柱体升力消失现象.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回