搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体合成射流对超声速混合层的混合增强

王鹏 沈赤兵

引用本文:
Citation:

等离子体合成射流对超声速混合层的混合增强

王鹏, 沈赤兵

Mixing enhancement for supersonic mixing layer by using plasma synthetic jet

Wang Peng, Shen Chi-Bing
PDF
HTML
导出引用
  • 采用实验加仿真方法研究了等离子体合成射流对超声速混合层的影响. 使用基于纳米粒子的平面激光散射技术(nanoparticle-based planar laser scattering, NPLS)、粒子图像测速技术 (particle image velocimetry, PIV)以及纹影手段获取了单次脉冲对混合层的影响. 采用二维数值仿真对布置在不同位置的高频激励器的混合效果以及激励器的性能进行了研究. 通过对比有扰动和无扰动的NPLS、PIV以及纹影实验结果, 发现等离子体合成射流对超声速混合层有明显的扰动, 射流喷出时会产生较强的斜激波. 对数值仿真结果的分析表明, 等离子体合成射流可以有效地增强混合层的厚度. 对比激励器布置在不同位置工况下的混合层厚度, 可以看出在激励器隔板末端对混合层的扰动效果最好, 混合层对在隔板末端的激励器扰动响应也是最快的. 对等离子体合成射流激励器的性能分析表明, 在隔板末端的激励器输出的能量最多. 通过分析等离子体合成射流的作用过程, 可以看出激励器在隔板上下表面布置的作用形式是通过作用来流进而影响混合层, 在隔板尾端布置的等离子体合成射流激励器直接作用在混合层上, 实现混合增强.
    Mixing enhancement for supersonic mixing layer is of great importance for developing scramjet engine. The growth rate of supersonic mixing layer is smaller than that of subsonic mixing layer. As the compressibility increases, the mixing enhancement becomes more difficult. Plasma synthetic jet is regarded as a promising flow control technology. The plasma synthetic jet generator can produce high energy jet. This generator has no moving parts and does not need additional gas source. It is the first time that plasma synthetic jet has been used to enhance the mixing in supersonic mixing layers. The influence of plasma synthetic jet on the supersonic mixing layer is investigated experimentally and numerically. The experiments are conducted in the low noise supersonic mixing layer wind tunnel. The Mach number of upper stream and lower stream are 1.37 and 2.39 respectively. The convective Mach number of this wind tunnel is 0.32. The plasma synthetic jet actuators are installed in the splitter plate. The distance between the jet hole and the splitter plate end is 15 mm. The nanoparticle-based planar laser scattering (NPLS), particle image velocimetry (PIV) and schlieren are used to obtain the response of the supersonic mixing layer to single pulse plasma synthetic jet perturbation. The NPLS successfully captures the large-scaled vortex structures induced by the plasma synthetic jet in the supersonic mixing layers. The effect of plasma synthetic jet is remarkable. The schlieren images show the process of the perturbation. An oblique shock wave is generated when the jet is ejected. The PIV is employed to obtain the influence of plasma synthetic jet on the velocity field. The y-velocity standard deviation increases due to the perturbation. The actuators’ mixing enhancement effects and actuators’ performances at three locations are investigated by two-dimensional numerical simulation. The three actuators are located on the upper, bottom and end surface of splitter plate respectively. The numerical simulation results show that the mixing layer thickness is increased by the plasma synthetic jet perturbation. There are two mechanisms of perturbations while actuators are located at different positions. The actuators installed on the upper and bottom surface of splitter plate influence the mixing layer through perturbing the upper and lower stream respectively. The actuator installed at the end of splitter plate affects the mixing layer directly. The response time of supersonic mixing layers to the perturbation of the actuator installed at the end of splitter plate is shorter than those of the others. The performance of each actuator is sensitive to the location.
      通信作者: 沈赤兵, cbshen@nudt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11572346)资助的课题.
      Corresponding author: Shen Chi-Bing, cbshen@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11572346).
    [1]

    Zang A, Tempel T, Yu K, Buckley S 2005 43rd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, 10−13 January, 2005 p1423

    [2]

    Gutmark E J, Schadow C S, Yu K H 1995 Annu. Rev. Fluid Mech. 27 375Google Scholar

    [3]

    Zhang C X, Liu Y, Fu B S, Yu X J 2018 Acta Astronaut. 153 50Google Scholar

    [4]

    Haimovitch Y, Gartenberg E, Roberts J A, Northam G 1994 30th Joint Propulsion Conference and Exhibit Indianapolis, IN, 27−29 June, 1994 p2940

    [5]

    Guirguis R, Grinstein F, Young T, Oran E, Kailasanath K 1987 25th AIAA Aerospace Sciences Meeting Reno, Nevada, 12−15 January, 1987 p0373

    [6]

    Seiner J M, Dash S M, Kenzakowski D C 2001 J. Propul. Power 17 1273Google Scholar

    [7]

    Collin E, Barre S, Bonnet J P 2004 Phys. Fluids 16 765Google Scholar

    [8]

    Fernando E M, Menon S 1993 AIAA J. 31 278Google Scholar

    [9]

    Kharitonov A, Lokotko A, Tchernyshyev A, Kopchenov V, Lomkov K, Rudakov A 2000 38th Aerospace Sciences Meeting and Exhibit Reno, Nevada, 10−13 January, 2000 p0559

    [10]

    Freeman A P, Catrakis H J 2009 J. Turbul. 10 1Google Scholar

    [11]

    Adelgren R G, Elliott G S, Crawford J B, Carter C D, Donbar J M, Grosjean D F 2005 AIAA J. 43 776Google Scholar

    [12]

    Zhang D, Tan J, Liang L 2015 Acta Astronaut. 117 440Google Scholar

    [13]

    Narayanaswamy V, Shin J, Clemens N, Raja L 2008 46th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 7−10, 2008 p285

    [14]

    Grossman K, Bohdan C, van Wie D 2003 41st Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 6−9 , 2003 p57

    [15]

    Grossman K, Cybyk B, van Wie D, Rigling M 2004 42nd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 5−8 , 2004 p89

    [16]

    王林, 夏智勋, 罗振兵, 周岩, 张宇 2014 物理学报 63 194702Google Scholar

    Wang L, Xia Z X, Luo Z B, Zhou Y, Zhang Y 2014 Acta Phys. Sin. 63 194702Google Scholar

    [17]

    Narayanaswamy V, Raja L L, Clemens N T 2012 Phys. Fluids 24 076101Google Scholar

    [18]

    Zhou Y, Xia Z X, Luo Z B, Wang L 2016 Sci. China Technol. Sc. 60 146

    [19]

    王宏宇, 李军, 金迪, 代辉, 甘甜, 吴云 2017 物理学报 66 084705Google Scholar

    Wang H Y, Li J, Jin D, Dai H, Can T, Wu Y 2017 Acta Phys. Sin. 66 084705Google Scholar

    [20]

    Hardy P, Barricau P, Caruana D, Gleyzes C, Belinger A, Cambronne J P 2010 40th Fluid Dynamics Conference and Exhibit Chicago, Illinois, 28 June−1 July, 2010 p5103

    [21]

    Huet M 2014 20th AIAA/CEAS Aeroacoustics Conference Atlanta, GA, June 16−20 , 2014 p2620

    [22]

    Chedevergne F, Léon O, Bodoc V, Caruana D 2015 Int. J. Heat Fluid Fl. 56 1Google Scholar

    [23]

    Bogdanoff D W 1983 AIAA J. 21 926Google Scholar

    [24]

    Papamoschou D 1991 AIAA J. 29 680

    [25]

    Arvind S, Jamey D J 2007 J. Phys. D: Appl. Phys. 40 637Google Scholar

    [26]

    Zhou Y, Xia Z X, Luo Z B, Wang L, Deng X 2017 Acta Astronaut. 133 95Google Scholar

    [27]

    Haack S, Taylor T, Z. Cybyk B, H. Foster C, Alvi F 2011 42nd AIAA Plasmadynamics and Lasers Conference Honolulu, Hawaii, 27−30 June, 2011 p3997

    [28]

    赵玉新 2008 博士学位论文(长沙: 国防科技大学)

    Zhao Y X 2008 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [29]

    罗振兵 2006 博士学位论文(长沙: 国防科技大学)

    Luo Z B 2006 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [30]

    Narayanaswamy V, Raja L L, Clemens N T 2010 AIAA J. 48 297Google Scholar

    [31]

    Freeman L J 2014 Master Thesis (California Polytechnic State University)

    [32]

    周岩 2018 博士学位论文 (长沙: 国防科技大学)

    Zhou Y 2018 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

  • 图 1  超声速混合层风洞示意图

    Fig. 1.  Schematic of the supersonic mixing layer wind tunnel.

    图 2  超声速混合层风洞实物图

    Fig. 2.  The test section of supersonic mixing layer wind tunnel.

    图 3  安装有等离子体合成射流激励器隔板在风洞中的位置 (a) 隔板在风洞中位置; (b) 激励器在隔板上的位置

    Fig. 3.  Schematic of the wind tunnel and the actuator mounted inside a plate: (a) Splitter plate in the wind tunnel; (b) actuator in the splitter plate.

    图 4  两电极等离子体合成射流激励器

    Fig. 4.  Two-electrode plasma synthetic actuator

    图 5  纹影系统示意图

    Fig. 5.  The schematic diagram of schlieren system

    图 6  等离子体合成射流试验系统的时序示意图

    Fig. 6.  Schematics of the experimental system sequence chart.

    图 7  纹影结果 (a) T0 + 0 μs; (b) T0 + 67 μs; (c) T0 + 233 μs

    Fig. 7.  Schlieren images: (a) T0 + 0 μs; (b) T0 + 67 μs; (c) T0 + 233 μs.

    图 8  等离子体合成射流对超声速混层作用的NPLS结果 (a) 未受扰动; (b) T0 + 180 μs; (c) T0 + 230 μs

    Fig. 8.  NPLS images of supersonic mixing layer under perturbation and unperturbation: (a) Unperturbation; (b) T0 + 180 μs; (c) T0 + 230 μs.

    图 9  PIV的实验结果 (a) 流向速度的平均结果; (b) T0 + 230 μs时刻流向速度的平均结果; (c) 横向速度标准差; (d) T0 + 230 μs时刻横向速度标准差

    Fig. 9.  PIV experimental results: (a) Averaged X-velocity; (b) averaged X-velocity at T0 + 230 μs; (c) Y-velocity standard deviation; (d) Y-velocity standard deviation at T0 + 230 μs.

    图 10  仿真物理模型 (a) 无扰动; (b) 激励器在隔板上表面; (c) 激励器在隔板尾端; (d) 激励器在隔板下表面

    Fig. 10.  Physical model: (a) Unperturbation; (b) the actuator at the upper surface of the splitter plate; (c) the actuator at the end surface of splitter plate; (d) the actuator at bottom surface of splitter plate.

    图 11  算例验证的计算模型及网格

    Fig. 11.  Calculation model and grid for code validation.

    图 12  网格无关性及算例验证

    Fig. 12.  Certification of grid independence and code validation

    图 13  (T0 + 67 μs)时刻纹影实验结果与数值纹影结果对比 (a) 纹影实验结果; (b) 数值纹影结果

    Fig. 13.  T0 + 67 μs, numerical and experimental schlierens: (a) Experimental schlieren; (b) numerical schlieren.

    图 14  (T0 + 180 μs)时刻NPLS结果与数值仿真密度场对比 (a) NPLS结果; (b) 数值仿真密度场

    Fig. 14.  T0 + 180 μs, contour of density and NPLS result: (a) NPLS result; (b) contour of density.

    图 15  (T0 + 555 μs)时刻密度场 (a) 未受扰动; (b) 激励器在隔板上表面; (c) 激励器在隔板尾端; (d) 激励器在隔板下表面

    Fig. 15.  Contours of density at T0 + 555 μs: (a) Unperturbation; (b) the actuator at the upper surface of the splitter plate; (c) the actuator at the end surface of the splitter plate; (d) the actuator at the bottom surface of the splitter plate.

    图 16  (T0 + 75 μs)时刻温度云图和流线 (a) 激励器在隔板上表面; (b) 激励器在隔板尾端

    Fig. 16.  Simulation of the temperature and flow: (a) The actuator at the upper surface of the splitter plate; (b) the actuator at the end surface of the splitter plate

    图 17  时均速度混合层厚度

    Fig. 17.  Time-averaged velocity thickness of mixing layer

    图 18  激励器出口参数 (a) 激励器出口质量流量; (b) 激励器出口速度; (c) 激励器出口动量率; (d) 激励器出口压力

    Fig. 18.  The parameters of actuator outlet: (a) The mass flow rate of actuator outlet; (b) the velocity of actuator outlet; (c) the momentum rate of actuator outlet; (d) the pressure of actuator outlet.

    图 19  激励器腔体内参数 (a) 激励器腔体密度; (b) 激励器腔体内温度; (c) 激励器腔体内压力

    Fig. 19.  Parameters of actuator cavity: (a) Density of the gas in the actuator chamber; (b) temperature of the gas in the actuator chamber; (c) pressure of the gas in the actuator chamber.

    表 1  压力匹配情况下校测流场参数

    Table 1.  Flow parameters of supersonic mixing layer.

    马赫数Ma速度U/m·s–1静温T/K总温T0/K运动黏度μ/
    10–5 m2·s–1
    1.37405.16218.393001.4312
    2.39567.18139.873000.9635
    下载: 导出CSV
  • [1]

    Zang A, Tempel T, Yu K, Buckley S 2005 43rd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, 10−13 January, 2005 p1423

    [2]

    Gutmark E J, Schadow C S, Yu K H 1995 Annu. Rev. Fluid Mech. 27 375Google Scholar

    [3]

    Zhang C X, Liu Y, Fu B S, Yu X J 2018 Acta Astronaut. 153 50Google Scholar

    [4]

    Haimovitch Y, Gartenberg E, Roberts J A, Northam G 1994 30th Joint Propulsion Conference and Exhibit Indianapolis, IN, 27−29 June, 1994 p2940

    [5]

    Guirguis R, Grinstein F, Young T, Oran E, Kailasanath K 1987 25th AIAA Aerospace Sciences Meeting Reno, Nevada, 12−15 January, 1987 p0373

    [6]

    Seiner J M, Dash S M, Kenzakowski D C 2001 J. Propul. Power 17 1273Google Scholar

    [7]

    Collin E, Barre S, Bonnet J P 2004 Phys. Fluids 16 765Google Scholar

    [8]

    Fernando E M, Menon S 1993 AIAA J. 31 278Google Scholar

    [9]

    Kharitonov A, Lokotko A, Tchernyshyev A, Kopchenov V, Lomkov K, Rudakov A 2000 38th Aerospace Sciences Meeting and Exhibit Reno, Nevada, 10−13 January, 2000 p0559

    [10]

    Freeman A P, Catrakis H J 2009 J. Turbul. 10 1Google Scholar

    [11]

    Adelgren R G, Elliott G S, Crawford J B, Carter C D, Donbar J M, Grosjean D F 2005 AIAA J. 43 776Google Scholar

    [12]

    Zhang D, Tan J, Liang L 2015 Acta Astronaut. 117 440Google Scholar

    [13]

    Narayanaswamy V, Shin J, Clemens N, Raja L 2008 46th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 7−10, 2008 p285

    [14]

    Grossman K, Bohdan C, van Wie D 2003 41st Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 6−9 , 2003 p57

    [15]

    Grossman K, Cybyk B, van Wie D, Rigling M 2004 42nd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 5−8 , 2004 p89

    [16]

    王林, 夏智勋, 罗振兵, 周岩, 张宇 2014 物理学报 63 194702Google Scholar

    Wang L, Xia Z X, Luo Z B, Zhou Y, Zhang Y 2014 Acta Phys. Sin. 63 194702Google Scholar

    [17]

    Narayanaswamy V, Raja L L, Clemens N T 2012 Phys. Fluids 24 076101Google Scholar

    [18]

    Zhou Y, Xia Z X, Luo Z B, Wang L 2016 Sci. China Technol. Sc. 60 146

    [19]

    王宏宇, 李军, 金迪, 代辉, 甘甜, 吴云 2017 物理学报 66 084705Google Scholar

    Wang H Y, Li J, Jin D, Dai H, Can T, Wu Y 2017 Acta Phys. Sin. 66 084705Google Scholar

    [20]

    Hardy P, Barricau P, Caruana D, Gleyzes C, Belinger A, Cambronne J P 2010 40th Fluid Dynamics Conference and Exhibit Chicago, Illinois, 28 June−1 July, 2010 p5103

    [21]

    Huet M 2014 20th AIAA/CEAS Aeroacoustics Conference Atlanta, GA, June 16−20 , 2014 p2620

    [22]

    Chedevergne F, Léon O, Bodoc V, Caruana D 2015 Int. J. Heat Fluid Fl. 56 1Google Scholar

    [23]

    Bogdanoff D W 1983 AIAA J. 21 926Google Scholar

    [24]

    Papamoschou D 1991 AIAA J. 29 680

    [25]

    Arvind S, Jamey D J 2007 J. Phys. D: Appl. Phys. 40 637Google Scholar

    [26]

    Zhou Y, Xia Z X, Luo Z B, Wang L, Deng X 2017 Acta Astronaut. 133 95Google Scholar

    [27]

    Haack S, Taylor T, Z. Cybyk B, H. Foster C, Alvi F 2011 42nd AIAA Plasmadynamics and Lasers Conference Honolulu, Hawaii, 27−30 June, 2011 p3997

    [28]

    赵玉新 2008 博士学位论文(长沙: 国防科技大学)

    Zhao Y X 2008 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [29]

    罗振兵 2006 博士学位论文(长沙: 国防科技大学)

    Luo Z B 2006 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [30]

    Narayanaswamy V, Raja L L, Clemens N T 2010 AIAA J. 48 297Google Scholar

    [31]

    Freeman L J 2014 Master Thesis (California Polytechnic State University)

    [32]

    周岩 2018 博士学位论文 (长沙: 国防科技大学)

    Zhou Y 2018 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

  • [1] 张震, 易仕和, 刘小林, 陈世康, 张臻. 高超声速条件下凸曲率壁面混合层的流动演化. 物理学报, 2024, 73(10): 104701. doi: 10.7498/aps.73.20240128
    [2] 牛中国, 许相辉, 王建锋, 蒋甲利, 梁华. 飞翼模型纵向气动特性等离子体流动控制试验. 物理学报, 2022, 71(2): 024702. doi: 10.7498/aps.71.20211425
    [3] 罗仕超, 吴里银, 常雨. 高超声速湍流流动磁流体动力学控制机理. 物理学报, 2022, 71(21): 214702. doi: 10.7498/aps.71.20220941
    [4] 王振兴, 曹志远, 李瑞, 陈峰, 孙丽琼, 耿英三, 王建华. 纵磁作用下真空电弧单阴极斑点等离子体射流三维混合模拟. 物理学报, 2021, 70(5): 055201. doi: 10.7498/aps.70.20201701
    [5] 牛中国, 许相辉, 王建峰, 蒋甲利, 梁华. 飞翼模型纵向气动特性等离子体流动控制试验研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211425
    [6] 唐冰亮, 郭善广, 宋国正, 罗彦浩. 脉冲电弧等离子体激励控制超声速平板边界层转捩实验. 物理学报, 2020, 69(15): 155201. doi: 10.7498/aps.69.20200216
    [7] 郭广明, 朱林, 邢博阳. 超声速混合层涡结构内部流体的密度分布特性. 物理学报, 2020, 69(14): 144701. doi: 10.7498/aps.69.20200255
    [8] 谢文科, 刘俊圣, 费家乐, 周全, 夏辉, 陈欣, 张盼, 彭一鸣, 于涛. 权重函数对关联方程估计超声速混合层波前方差精度的影响. 物理学报, 2019, 68(9): 094202. doi: 10.7498/aps.68.20182269
    [9] 张孝石, 许昊, 王聪, 陆宏志, 赵静. 水流冲击超声速气体射流实验研究. 物理学报, 2017, 66(5): 054702. doi: 10.7498/aps.66.054702
    [10] 刘强, 罗振兵, 邓雄, 杨升科, 蒋浩. 合成冷/热射流控制超声速边界层流动稳定性. 物理学报, 2017, 66(23): 234701. doi: 10.7498/aps.66.234701
    [11] 张冬冬, 谭建国, 李浩, 侯聚微. 基于三角波瓣混合器的超声速流场精细结构和掺混特性. 物理学报, 2017, 66(10): 104702. doi: 10.7498/aps.66.104702
    [12] 王宏宇, 李军, 金迪, 代辉, 甘甜, 吴云. 激波/边界层干扰对等离子体合成射流的响应特性. 物理学报, 2017, 66(8): 084705. doi: 10.7498/aps.66.084705
    [13] 刘梦珂, 张辉, 范宝春, 韩洋, 归明月. 电磁控制两自由度涡生振荡的机理研究. 物理学报, 2016, 65(24): 244702. doi: 10.7498/aps.65.244702
    [14] 张鑫, 黄勇, 王万波, 唐坤, 李华星. 对称式布局介质阻挡放电等离子体激励器诱导启动涡. 物理学报, 2016, 65(17): 174701. doi: 10.7498/aps.65.174701
    [15] 付佳, 易仕和, 王小虎, 张庆虎, 何霖. 高超声速平板边界层流动显示的试验研究. 物理学报, 2015, 64(1): 014704. doi: 10.7498/aps.64.014704
    [16] 赵光银, 李应红, 梁华, 化为卓, 韩孟虎. 纳秒脉冲表面介质阻挡等离子体激励唯象学仿真. 物理学报, 2015, 64(1): 015101. doi: 10.7498/aps.64.015101
    [17] 尹纪富, 尤云祥, 李巍, 胡天群. 电磁力控制湍流边界层分离圆柱绕流场特性数值分析. 物理学报, 2014, 63(4): 044701. doi: 10.7498/aps.63.044701
    [18] 武宇, 易仕和, 陈植, 张庆虎, 冈敦殿. 超声速层流/湍流压缩拐角流动结构的实验研究. 物理学报, 2013, 62(18): 184702. doi: 10.7498/aps.62.184702
    [19] 李钢, 李轶明, 徐燕骥, 张翼, 李汉明, 聂超群, 朱俊强. 介质阻挡放电等离子体对近壁区流场的控制的实验研究. 物理学报, 2009, 58(6): 4026-4033. doi: 10.7498/aps.58.4026
    [20] 袁行球, 李 辉, 赵太泽, 俞国扬, 郭文康, 须 平. 超声速等离子体射流的数值模拟. 物理学报, 2004, 53(8): 2638-2643. doi: 10.7498/aps.53.2638
计量
  • 文章访问数:  8363
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-06
  • 修回日期:  2019-06-09
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-05

/

返回文章
返回