搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纵磁作用下真空电弧单阴极斑点等离子体射流三维混合模拟

王振兴 曹志远 李瑞 陈峰 孙丽琼 耿英三 王建华

引用本文:
Citation:

纵磁作用下真空电弧单阴极斑点等离子体射流三维混合模拟

王振兴, 曹志远, 李瑞, 陈峰, 孙丽琼, 耿英三, 王建华

Three-dimensional hybrid simulation of single cathode spot vacuum arc plasma jet under axial magnetic field

Wang Zhen-Xing, Cao Zhi-Yuan, Li Rui, Chen Feng, Sun Li-Qiong, Geng Ying-San, Wang Jian-Hua
PDF
HTML
导出引用
  • 真空电弧的特性直接受到从阴极斑点喷射出的等离子体射流的影响, 对等离子体射流进行数值仿真有助于我们深入了解真空电弧的内部物理机制. 然而, 磁流体动力学和粒子云网格仿真方法受限于计算精度和计算效率的原因, 无法有效地应用于真空电弧等离子体射流仿真模拟. 本文开发了一套三维等离子体混合模拟算法, 并在此基础上建立了真空电弧单阴极斑点射流仿真模型, 模型中将离子作宏粒子考虑, 而电子作无质量流体处理, 仿真计算了自生电磁场与外施纵向磁场作用下等离子体的分布运动状态. 仿真结果表明, 单个阴极斑点情况下真空等离子体射流在离开阴极斑点后扩散至极板间, 其整体几何形状为圆锥形, 离子密度从阴极到阳极快速下降. 外施纵向磁场会压缩等离子体, 使得等离子体射流径向的扩散减少并且轴线上的离子密度升高. 随着外施纵向磁场的增大, 其对等离子体射流的压缩效应增强, 表现为等离子体射流的扩散角度逐渐减小. 此外, 外施纵向磁场对等离子体射流的影响也受到电弧电流大小的影响, 压缩效应随电弧电流的增加而逐渐减弱.
    Vacuum arc is a special metal vapor discharge phenomenon, because its discharge medium totally comes from the evaporation and ionization of electrode materials. In the case of low current, the vacuum arc is completely composed of plasma jets emitted from discrete cathode spots on the cathode surface and the current carried by each spot depends on the cathode material. When the arc current exceeds a certain value, a certain number of cathode spot plasma jets will appear. Vacuum arcs play a very important role in some industrial applications such as vacuum circuit breakers, vacuum coatings and electric thrusters. As an important plasma control method, the external axial magnetic field (AMF) has an important influence on the macroscopic morphology and microscopic parameter distribution of the vacuum arc. Various studies of vacuum arc under AMF have been carried out and some progress has been made. However, the existing literature about the simulation research of vacuum arc is mostly concentrated in the case of large current, and less attention is paid to the case of small current. The reason is that the traditional methods, magneto-hydrodynamics or particle-in-cell, are limited by either accuracy or efficiency, and cannot be effectively applied to the low current vacuum arc plasma jet simulations. In this paper, we develop a fully three-dimensional hybrid plasma simulation algorithm to study the single cathode spot vacuum arc plasma jet under AMF. In this model, ions are modelled as particles while electrons are treated as massless fluid, and the self-generated magnetic field is also considered. To simplify the condition, the cathode spot in our model only exists as a plasma jet source, thus the detailed mechanism of producing plasmas is neglected. And the movement of the cathode spot is not considered either. The results show that the single cathode spot plasma jet diffuses into the interelectrode in a cone shape after leaving the cathode spot, and the ion density drops rapidly from cathode to anode. Under the simulation conditions in this paper (I ≤ 150 A), the self-generated magnetic field will not have a significant influence on the plasma jet itself in the case of low current. The external AMF has a compressive effect on the diffusion of the vacuum arc plasma jet. Under the AMF, the radial movement of the ions is suppressed, and the decrease of the ion radial velocity leads to a smaller diffusion radius of the jet. This compression effect of the AMF on the plasma jet is related to both the intensity of the external AMF and the magnitude of the arc current. In the case of a constant arc current magnitude, the compression effect gradually increases as the value of the AMF intensity gradually increases; in the case of a constant value of the external AMF, the compression effect gradually decreases as the current gradually becomes larger.
      通信作者: 王振兴, zxwang@xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51937009, 51807147)和陕西省自然科学基金(批准号: 2019JM-158)资助的课题
      Corresponding author: Wang Zhen-Xing, zxwang@xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51937009, 51807147) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2019JM-158)
    [1]

    Beilis I I 2001 IEEE Trans. Plasma Sci. 29 657Google Scholar

    [2]

    王建华, 耿英三, 刘志远, 闫静 2017 高压电器 53 1Google Scholar

    Wang J H, Geng Y S, Liu Z Y, Yan J 2017 High Volt. Appar. 53 1Google Scholar

    [3]

    Sanders D M, Anders A 2000 Surf. Coat. Technol. 133 78Google Scholar

    [4]

    Geng J Y, Chen Y C, Sun S R, Huang W D, Wang H X 2020 Plasma Sci. Technol. 22 094012Google Scholar

    [5]

    Keidar M, Zhuang T, Shashurin A, Teel G, Chiu D, Lukas J, Haque S, Brieda L 2014 Plasma Phys. Controlled Fusion 57 014005Google Scholar

    [6]

    王立军, 贾申利, 杨泽, 史宗谦 2017 高压电器 3 22Google Scholar

    Wang L J, Jia S L, Yang Z, Shi Z Q 2017 High Volt. Appar. 3 22Google Scholar

    [7]

    Rondeel W G J 1975 J. Phys. D: Appl. Phys. 8 934Google Scholar

    [8]

    Keidar M, Schulman M B 2001 IEEE Trans. Plasma Sci. 29 684Google Scholar

    [9]

    王立军, 贾申利, 史宗谦, 荣命哲 2005 中国电机工程学报 25 113Google Scholar

    Wang L J, Jia S L, Shi Z Q, Rong M Z 2005 Chin. Soc. for Elec. Eng. 25 113Google Scholar

    [10]

    Jia S L, Zhang L, Wang L J, Chen B, Shi Z Q, Sun W 2011 IEEE Trans. Plasma Sci. 39 3233Google Scholar

    [11]

    Wang C, Shi Z Q, Wu B Z, Gao Z P, Jia S L, Wang L J 2016 J. Phys. D: Appl. Phys. 49 135203Google Scholar

    [12]

    李晗蔚, 孙安邦, 张幸, 姚聪伟, 常正实, 张冠军 2018 物理学报 4 143Google Scholar

    Li H W, Sun A B, Zhang X, Yao C W, Chang Z S, Zhang G J 2018 Acta Phys. Sin. 4 143Google Scholar

    [13]

    Shmelev D L, Uimanov I V 2015 IEEE Trans. Plasma Sci. 43 2261Google Scholar

    [14]

    Shmelev D L, Oreshkin V I, Uimanov I V 2019 IEEE Trans. Plasma Sci. 47 3478Google Scholar

    [15]

    Li C, Ebert U, Hundsdorfer W 2010 J. Comput. Phys. 229 200Google Scholar

    [16]

    Arai K, Takahashi S, Morimiya O, Niwa Y 2003 IEEE Trans. Plasma Sci. 31 929Google Scholar

    [17]

    Kutzner J, Miller H C 1992 J. Phys. D: Appl. Phys. 25 686Google Scholar

    [18]

    Winske D, Omidi N 1991 Hybrid Codes: Methods and Applications (New Mexico: Los Alamos National Lab.) pp103−160

    [19]

    Beilis I I, Keidar M, Boxman R L, Goldsmith S 1998 J. Appl. Phys. 83 709Google Scholar

    [20]

    Tóth G 2000 J. Comput. Phys. 161 605Google Scholar

    [21]

    Harned D S 1982 J. Comput. Phys. 47 452Google Scholar

    [22]

    Schade E, Shmelev D L 2003 IEEE Trans. Plasma Sci. 31 890Google Scholar

    [23]

    Kutzner J, Miller H C 1989 IEEE Trans. Plasma Sci. 17 688Google Scholar

  • 图 1  物理模型示意图

    Fig. 1.  The schematic of physical model.

    图 2  程序执行步骤

    Fig. 2.  Execution steps of the program.

    图 3  三维空间离子数密度分布

    Fig. 3.  The distribution of ion number density in 3D space.

    图 4  (a) 轴向电流密度分布; (b)自生磁感应强度分布 I = 30 A, Bz = 0 mT

    Fig. 4.  (a) The distribution of axial current density; (b) the distribution of self-generated azimuthal magnetic field I = 30 A, Bz = 0 mT

    图 5  I= 30 A时不同外施纵磁条件下离子数密度分布 (a) Bz = 0 mT; (b) Bz = 25 mT; (c) Bz = 50 mT; (d) Bz = 75 mT

    Fig. 5.  Ion number density distributions under different external AMFs at I= 30 A: (a) Bz = 0 mT; (b) Bz = 25 mT; (c) Bz = 50 mT; (d) Bz = 75 mT.

    图 6  不同外施纵磁条件下轴线上离子数密度变化

    Fig. 6.  Ion number density distributions along the axis under different external AMFs.

    图 7  不同外施磁场条件下离子沿x方向速度在x-z平面的相空间分布

    Fig. 7.  Phase diagram of ion velocity along x-direction in x-z plane under different external AMFs.

    图 8  Bz = 75 mT时不同电弧电流条件下离子数密度分布 (a) I = 30 A; (b) I = 60 A; (c) I = 90 A; (d) I = 120 A

    Fig. 8.  Ion number density distributions with different arc currents at Bz = 75 mT: (a) I = 30 A; (b) I = 60 A; (c) I = 90 A; (d) I = 120 A.

    图 9  轴线上阳极处离子数密度与阴极处离子数密度的比值

    Fig. 9.  The ratios of the ion number density at the anode to that at the cathode on the axis.

  • [1]

    Beilis I I 2001 IEEE Trans. Plasma Sci. 29 657Google Scholar

    [2]

    王建华, 耿英三, 刘志远, 闫静 2017 高压电器 53 1Google Scholar

    Wang J H, Geng Y S, Liu Z Y, Yan J 2017 High Volt. Appar. 53 1Google Scholar

    [3]

    Sanders D M, Anders A 2000 Surf. Coat. Technol. 133 78Google Scholar

    [4]

    Geng J Y, Chen Y C, Sun S R, Huang W D, Wang H X 2020 Plasma Sci. Technol. 22 094012Google Scholar

    [5]

    Keidar M, Zhuang T, Shashurin A, Teel G, Chiu D, Lukas J, Haque S, Brieda L 2014 Plasma Phys. Controlled Fusion 57 014005Google Scholar

    [6]

    王立军, 贾申利, 杨泽, 史宗谦 2017 高压电器 3 22Google Scholar

    Wang L J, Jia S L, Yang Z, Shi Z Q 2017 High Volt. Appar. 3 22Google Scholar

    [7]

    Rondeel W G J 1975 J. Phys. D: Appl. Phys. 8 934Google Scholar

    [8]

    Keidar M, Schulman M B 2001 IEEE Trans. Plasma Sci. 29 684Google Scholar

    [9]

    王立军, 贾申利, 史宗谦, 荣命哲 2005 中国电机工程学报 25 113Google Scholar

    Wang L J, Jia S L, Shi Z Q, Rong M Z 2005 Chin. Soc. for Elec. Eng. 25 113Google Scholar

    [10]

    Jia S L, Zhang L, Wang L J, Chen B, Shi Z Q, Sun W 2011 IEEE Trans. Plasma Sci. 39 3233Google Scholar

    [11]

    Wang C, Shi Z Q, Wu B Z, Gao Z P, Jia S L, Wang L J 2016 J. Phys. D: Appl. Phys. 49 135203Google Scholar

    [12]

    李晗蔚, 孙安邦, 张幸, 姚聪伟, 常正实, 张冠军 2018 物理学报 4 143Google Scholar

    Li H W, Sun A B, Zhang X, Yao C W, Chang Z S, Zhang G J 2018 Acta Phys. Sin. 4 143Google Scholar

    [13]

    Shmelev D L, Uimanov I V 2015 IEEE Trans. Plasma Sci. 43 2261Google Scholar

    [14]

    Shmelev D L, Oreshkin V I, Uimanov I V 2019 IEEE Trans. Plasma Sci. 47 3478Google Scholar

    [15]

    Li C, Ebert U, Hundsdorfer W 2010 J. Comput. Phys. 229 200Google Scholar

    [16]

    Arai K, Takahashi S, Morimiya O, Niwa Y 2003 IEEE Trans. Plasma Sci. 31 929Google Scholar

    [17]

    Kutzner J, Miller H C 1992 J. Phys. D: Appl. Phys. 25 686Google Scholar

    [18]

    Winske D, Omidi N 1991 Hybrid Codes: Methods and Applications (New Mexico: Los Alamos National Lab.) pp103−160

    [19]

    Beilis I I, Keidar M, Boxman R L, Goldsmith S 1998 J. Appl. Phys. 83 709Google Scholar

    [20]

    Tóth G 2000 J. Comput. Phys. 161 605Google Scholar

    [21]

    Harned D S 1982 J. Comput. Phys. 47 452Google Scholar

    [22]

    Schade E, Shmelev D L 2003 IEEE Trans. Plasma Sci. 31 890Google Scholar

    [23]

    Kutzner J, Miller H C 1989 IEEE Trans. Plasma Sci. 17 688Google Scholar

  • [1] 张雪雪, 贾鹏英, 冉俊霞, 李金懋, 孙换霞, 李雪辰. 辅助放电下刷状空气等离子体羽的放电特性和参数诊断. 物理学报, 2024, 73(8): 085201. doi: 10.7498/aps.73.20231946
    [2] 佟磊, 赵明亮, 张钰如, 宋远红, 王友年. 带有射频偏压源的感性耦合Ar/O2/Cl2等离子体放电的混合模拟研究. 物理学报, 2024, 73(4): 045201. doi: 10.7498/aps.73.20231369
    [3] 胡杨, 罗婧怡, 蔡雨烟, 卢新培. 外加磁场对螺旋等离子体的影响. 物理学报, 2023, 72(13): 130501. doi: 10.7498/aps.72.20222442
    [4] 牛中国, 许相辉, 王建锋, 蒋甲利, 梁华. 飞翼模型纵向气动特性等离子体流动控制试验. 物理学报, 2022, 71(2): 024702. doi: 10.7498/aps.71.20211425
    [5] 税敏, 席涛, 闫永宏, 于明海, 储根柏, 朱斌, 何卫华, 赵永强, 王少义, 范伟, 卢峰, 杨雷, 辛建婷, 周维民. 激光等离子体射流驱动亚毫米直径铝飞片及姿态诊断. 物理学报, 2022, 71(9): 095201. doi: 10.7498/aps.71.20212136
    [6] 牛中国, 许相辉, 王建峰, 蒋甲利, 梁华. 飞翼模型纵向气动特性等离子体流动控制试验研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211425
    [7] 杨丽君, 宋彩虹, 赵娜, 周帅, 武珈存, 贾鹏英. 大气压氩气刷形等离子体羽的特性研究. 物理学报, 2021, 70(15): 155201. doi: 10.7498/aps.70.20202091
    [8] 张亚容, 韩乾翰, 郭颖, 张菁, 石建军. 大气压脉冲放电等离子体射流特性及机理研究. 物理学报, 2021, 70(9): 095202. doi: 10.7498/aps.70.20202246
    [9] 张钰如, 高飞, 王友年. 低气压感性耦合等离子体源模拟研究进展. 物理学报, 2021, 70(9): 095206. doi: 10.7498/aps.70.20202247
    [10] 王鹏, 沈赤兵. 等离子体合成射流对超声速混合层的混合增强. 物理学报, 2019, 68(17): 174701. doi: 10.7498/aps.68.20190683
    [11] 郭恒, 张晓宁, 聂秋月, 李和平, 曾实, 李志辉. 亚大气压六相交流电弧放电等离子体射流特性数值模拟. 物理学报, 2018, 67(5): 055201. doi: 10.7498/aps.67.20172557
    [12] 郭恒, 苏运波, 李和平, 曾实, 聂秋月, 李占贤, 李志辉. 亚大气压六相交流电弧等离子体射流特性研究:实验测量. 物理学报, 2018, 67(4): 045201. doi: 10.7498/aps.67.20172556
    [13] 李刘合, 刘红涛, 罗辑, 许亿. 带状真空电弧磁过滤器等离子体分布特性及制备类金刚石膜研究. 物理学报, 2016, 65(6): 065202. doi: 10.7498/aps.65.065202
    [14] 杨成, 周昕. 液态水中的多种局域结构. 物理学报, 2016, 65(17): 176501. doi: 10.7498/aps.65.176501
    [15] 伍飞飞, 廖瑞金, 杨丽君, 刘兴华, 汪可, 周之. 棒-板电极直流负电晕放电特里切尔脉冲的微观过程分析. 物理学报, 2013, 62(11): 115201. doi: 10.7498/aps.62.115201
    [16] 廖瑞金, 伍飞飞, 刘兴华, 杨帆, 杨丽君, 周之, 翟蕾. 大气压直流正电晕放电暂态空间电荷分布仿真研究. 物理学报, 2012, 61(24): 245201. doi: 10.7498/aps.61.245201
    [17] 王晶, 马瑞玲, 王龙, 孟俊敏. 采用混合模型数值模拟从深海到浅海内波的传播. 物理学报, 2012, 61(6): 064701. doi: 10.7498/aps.61.064701
    [18] 吴 翊, 荣命哲, 杨 飞, 王小华, 马 强, 王伟宗. 引入6波段P-1辐射模型的三维空气电弧等离子体数值分析. 物理学报, 2008, 57(9): 5761-5767. doi: 10.7498/aps.57.5761
    [19] 方道腴. 在横向磁场中真空电弧后退速度和阴极温度的关系. 物理学报, 1983, 32(7): 838-844. doi: 10.7498/aps.32.838
    [20] 蔡诗东, 吴京生. 磁化等离子体的纵向电阻率. 物理学报, 1980, 29(2): 225-232. doi: 10.7498/aps.29.225
计量
  • 文章访问数:  5214
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-14
  • 修回日期:  2020-11-10
  • 上网日期:  2021-02-24
  • 刊出日期:  2021-03-05

/

返回文章
返回