搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带状真空电弧磁过滤器等离子体分布特性及制备类金刚石膜研究

李刘合 刘红涛 罗辑 许亿

引用本文:
Citation:

带状真空电弧磁过滤器等离子体分布特性及制备类金刚石膜研究

李刘合, 刘红涛, 罗辑, 许亿

Plasma distribution properties of vacuum ribbon-like cathodic arc plasma fliter and Raman studies of diamond-like carbon films perpared by it

Li Liu-He, Liu Hong-Tao, Luo Ji, Xu Yi
PDF
导出引用
  • 采用大尺寸矩形石墨靶作为真空阴极电弧源, 研制了带状真空电弧磁过滤器. 使用法拉第杯和朗缪尔探针对90 ℃弯曲磁过滤器中的带状等离子体出口所在平面的15个区域的离子能量和密度进行了测试; 用该带状真空电弧磁过滤器制备了类金刚石膜(diamond-like carbon, DLC); 对相应位置上的类金刚石膜进行了Raman分析和膜厚测量. 结果表明: 磁过滤器出口所在平面的15个划分区域中离子能量分布接近麦克斯韦分布, 离子能量分布与类金刚石膜的结构具有明显的对应特征, 离子密度分布与DLC膜膜厚分布相互之间具有相关性.
    As is well known, most filtered cathodic vacuum arc deposition technology adopts filters with various geometries to remove macro particles in the last three decades, but almost all of them have a circular cross-section. Compared with the traditional toroidal duct filters, the rectangular graphite cathodic arc source can have a larger area which can be an arc source of a ribbon-like cathodic arc plasma filter, which has a higher coating efficiency due to its larger area arc source and may be more suitable for a larger scale industrial production. Thus, the research on the plasma distribution properties within the vacuum ribbon-like cathodic arc plasma filter is of great significance. In this paper, a rectangular graphite cathodic arc source is used to produce the ribbon-like cathodic arc plasma. Within the filter, a 90 curved magnetic duct with a rectangular cross-section is used as the arc filter. The ribbon-like cathodic arc plasma is transmitted from cathode to the deposition area along the magnetic line produced by external coils. A Faraday cup ion energy analyzer and a Langmuir probe are used to characterize the distribution properties of the filtered plasma at 15 places on the exit plane. Ion energies and ion density at these positions are obtained. For the special retrograde motion of the cathode spot on the rectangular target surface, the ion energies and ion density data are not stable. In order to obtain representative values, the net results are the average value of 3 measurements. Diamond-like carbon (DLC) films are deposited by the ribbon-like cathodic arc plasma filter at the same exit plane and their structures are characterized by Raman shift. To compare the distinctness of the 15 Raman spectrums, each Raman spectrum of the DLC films is normalized and shown in a figure. Meanwhile, the thicknesses of all the DLC films are measured by step profiler. Results show that the ion energies are of Maxwell distributions at all the 15 places on the exit plane. The ion energies vary from 0 to 60 eV, most being in the range from 20 to 30 eV. The arc voltage is 30 eV, which exactly coincides with the ion energies. While Raman spectra of the DLC films show an obvious correspondence relationship with the ion energies as well as the ion density and the DLC film thickness. The nano-hardness of the DLC films lies in a range of 25-43 GPa. Although the ion energies, ion density, DLC film thickness and nano-hardness are slightly different at different locations, they are not significant. Owing to the relatively evenly distributed properties of the ribbon-like arc plasma this may open great opportunities for a large area filtered arc deposition technique.
      通信作者: 李刘合, liliuhe@buaa.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11275020)和国家科技重大专项(批准号: 2014zx04012012)资助的课题.
      Corresponding author: Li Liu-He, liliuhe@buaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11275020), and the National High Technology Research and Development Program of China (Grant No. 2014zx04012012).
    [1]

    Aksenov I I, Belous V A, Padalka V G, Khoroshikh V M 1978 Sov. J. Plasma Phys. 4 425

    [2]

    Bilek M M M, Yin Y, Mckenzie D R 1996 IEEE Trans. Plasma Sci. 24 1165

    [3]

    Boxman R L, Goldsmith S, Ben-Shalom A, Kaplan L, Arbilly D, Gidalevich E, Zhitomirsky V, Ishaya A, Keidar M, Beilis I I 1995 IEEE Trans. Plasma Sci. 23 939

    [4]

    Anders A, Anders S, Brown I G 1994 J. Appl. Phys. 75 4900

    [5]

    Shi X, Tay B K, Lau S P 2012 Int. J. Mod. Phys. B 14 136

    [6]

    Yuvakkumar R, Peranantham P, Nathanael A J, Nataraj D, Mangalaraj D, Sun I H, Peranantham P, Nataraj D 2015 J. Nanosci. Nanotechnol. 15 2523

    [7]

    Wang N, Komvopoulos K 2013 J. Mater. Res. 28 2124

    [8]

    Diaz B, Swiatowska J, Maurice V, Seyeux A, Harkonen E, Ritala M, Tervakangas S, Kolehmainen J, Marcus P 2013 Electrochim. Acta 90 232

    [9]

    Han L, Yang L, Yang L M C, Wang Y W, Zhao Y Q 2011 Acta Phys. Sin. 60 046802 (in Chinese) [韩亮, 杨立, 杨拉毛草, 王炎武, 赵玉清 2011 物理学报 60 046802]

    [10]

    Wen F, Huang N, Jing F J, Sun H, Cao Y 2011 Adv. Mater. Res. 287 2203

    [11]

    Li L H, Lu Q Y, Fu R K Y, Chu P K 2008 Surf. Coat. Technol. 203 887

    [12]

    Xue Q J, Wang L P 2012 Diamond-like Carbon Films Material (Beijing: Science Press) pp40-47 (in Chinese) [薛群基, 王立平 2012 类金刚石碳基薄膜材料 (北京: 科学出版社) 第 40-47 页]

    [13]

    Bootkul D, Supsermpol B, Saenphinit N, Aramwit C, Intarasiri S 2014 Appl. Surf. Sci. 310 284

    [14]

    Xu Z, Sun H, Leng Y X, Li X, Yang W, Huang N 2015 Appl. Surf. Sci. 328 319

    [15]

    Xu S, Flynn D, Tay B K, Prawer S, Nugent K W, Silva S R P, Lifshitz Y, Milne W I 1997 Philos. Mag. B 76 351

    [16]

    Choi J, Kato T 2003 J. Appl. Phys. 93 8722

    [17]

    Liu A P, Liu M, Yu J C, Qian G D, Tang W H 2015 Chin. Phys. B 24 056804

    [18]

    Bilek M M M, Mckenzie D R, Yin Y, Chhowalla M U, Milne W I 1996 IEEE Trans. Plasma Sci. 24 1291

    [19]

    Li L H, Xia L F, Ma X X, Sun Y, Li G, Yu W D 1999 Chin. J. Vac. Sci. Technol. 3 207 (in Chinese) [李刘合, 夏立芳, 马欣新, 孙跃, 李光, 于伟东 1999 真空科学与技术学报 3 207]

    [20]

    Xu S, Tay B K, Tan H S, Zhong L, Tu Y Q, Silva S R P, Milne W I 1996 J. Appl. Phys. 79 7234

    [21]

    Sun P, Hu M, Zhang F, Ji Y Q, Liu H S, Liu D D, Leng J 2015 Chin. Phys. B 24 067803

    [22]

    Zavaleyev V, Walkowicz J 2015 Thin Solid Films 581 32

    [23]

    Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (Second Edition) (Hoboken: John Wiley Sons, Inc.) pp185-186

    [24]

    D L Tang, R K Y Fu, X B Tian, P Peng, P K Chu 2003 Nucl. Instrum. Methods Phys. Res. Sect. B 206 808

    [25]

    Brown I G 1994 Rev. Sci. Instrum. 65 3061

    [26]

    Chu P K, Li L 2006 Mater. Chem. Phys. 96 253

    [27]

    Yang F Z, Shen L R, Wang S Q, Tang D L, Jin F Y, Liu H F 2013 Acta Phys. Sin. 62 017802 (in Chinese) [杨发展, 沈丽如, 王世庆, 唐德礼, 金凡亚, 刘海峰 2013 物理学报 62 017802]

  • [1]

    Aksenov I I, Belous V A, Padalka V G, Khoroshikh V M 1978 Sov. J. Plasma Phys. 4 425

    [2]

    Bilek M M M, Yin Y, Mckenzie D R 1996 IEEE Trans. Plasma Sci. 24 1165

    [3]

    Boxman R L, Goldsmith S, Ben-Shalom A, Kaplan L, Arbilly D, Gidalevich E, Zhitomirsky V, Ishaya A, Keidar M, Beilis I I 1995 IEEE Trans. Plasma Sci. 23 939

    [4]

    Anders A, Anders S, Brown I G 1994 J. Appl. Phys. 75 4900

    [5]

    Shi X, Tay B K, Lau S P 2012 Int. J. Mod. Phys. B 14 136

    [6]

    Yuvakkumar R, Peranantham P, Nathanael A J, Nataraj D, Mangalaraj D, Sun I H, Peranantham P, Nataraj D 2015 J. Nanosci. Nanotechnol. 15 2523

    [7]

    Wang N, Komvopoulos K 2013 J. Mater. Res. 28 2124

    [8]

    Diaz B, Swiatowska J, Maurice V, Seyeux A, Harkonen E, Ritala M, Tervakangas S, Kolehmainen J, Marcus P 2013 Electrochim. Acta 90 232

    [9]

    Han L, Yang L, Yang L M C, Wang Y W, Zhao Y Q 2011 Acta Phys. Sin. 60 046802 (in Chinese) [韩亮, 杨立, 杨拉毛草, 王炎武, 赵玉清 2011 物理学报 60 046802]

    [10]

    Wen F, Huang N, Jing F J, Sun H, Cao Y 2011 Adv. Mater. Res. 287 2203

    [11]

    Li L H, Lu Q Y, Fu R K Y, Chu P K 2008 Surf. Coat. Technol. 203 887

    [12]

    Xue Q J, Wang L P 2012 Diamond-like Carbon Films Material (Beijing: Science Press) pp40-47 (in Chinese) [薛群基, 王立平 2012 类金刚石碳基薄膜材料 (北京: 科学出版社) 第 40-47 页]

    [13]

    Bootkul D, Supsermpol B, Saenphinit N, Aramwit C, Intarasiri S 2014 Appl. Surf. Sci. 310 284

    [14]

    Xu Z, Sun H, Leng Y X, Li X, Yang W, Huang N 2015 Appl. Surf. Sci. 328 319

    [15]

    Xu S, Flynn D, Tay B K, Prawer S, Nugent K W, Silva S R P, Lifshitz Y, Milne W I 1997 Philos. Mag. B 76 351

    [16]

    Choi J, Kato T 2003 J. Appl. Phys. 93 8722

    [17]

    Liu A P, Liu M, Yu J C, Qian G D, Tang W H 2015 Chin. Phys. B 24 056804

    [18]

    Bilek M M M, Mckenzie D R, Yin Y, Chhowalla M U, Milne W I 1996 IEEE Trans. Plasma Sci. 24 1291

    [19]

    Li L H, Xia L F, Ma X X, Sun Y, Li G, Yu W D 1999 Chin. J. Vac. Sci. Technol. 3 207 (in Chinese) [李刘合, 夏立芳, 马欣新, 孙跃, 李光, 于伟东 1999 真空科学与技术学报 3 207]

    [20]

    Xu S, Tay B K, Tan H S, Zhong L, Tu Y Q, Silva S R P, Milne W I 1996 J. Appl. Phys. 79 7234

    [21]

    Sun P, Hu M, Zhang F, Ji Y Q, Liu H S, Liu D D, Leng J 2015 Chin. Phys. B 24 067803

    [22]

    Zavaleyev V, Walkowicz J 2015 Thin Solid Films 581 32

    [23]

    Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (Second Edition) (Hoboken: John Wiley Sons, Inc.) pp185-186

    [24]

    D L Tang, R K Y Fu, X B Tian, P Peng, P K Chu 2003 Nucl. Instrum. Methods Phys. Res. Sect. B 206 808

    [25]

    Brown I G 1994 Rev. Sci. Instrum. 65 3061

    [26]

    Chu P K, Li L 2006 Mater. Chem. Phys. 96 253

    [27]

    Yang F Z, Shen L R, Wang S Q, Tang D L, Jin F Y, Liu H F 2013 Acta Phys. Sin. 62 017802 (in Chinese) [杨发展, 沈丽如, 王世庆, 唐德礼, 金凡亚, 刘海峰 2013 物理学报 62 017802]

  • [1] 陆益敏, 汪雨洁, 徐曼曼, 王海, 奚琳. 磁场辅助激光生长类金刚石膜的微结构及光学性能. 物理学报, 2024, 73(10): 108101. doi: 10.7498/aps.73.20240145
    [2] 佟磊, 赵明亮, 张钰如, 宋远红, 王友年. 带有射频偏压源的感性耦合Ar/O2/Cl2等离子体放电的混合模拟研究. 物理学报, 2024, 73(4): 045201. doi: 10.7498/aps.73.20231369
    [3] 张利胜. 基于金纳米阵列表面等离子体驱动的光催化特性. 物理学报, 2021, 70(23): 235202. doi: 10.7498/aps.70.20210424
    [4] 王迪, 张德明, 张季, 王小飞, 张庆礼, 万松明, 殷绍唐. 碱金属阳离子对[B3O7]型非线性光学晶体结晶习性的影响. 物理学报, 2013, 62(15): 154203. doi: 10.7498/aps.62.154203
    [5] 厉巧巧, 韩文鹏, 赵伟杰, 鲁妍, 张昕, 谭平恒, 冯志红, 李佳. 缺陷单层和双层石墨烯的拉曼光谱及其激发光能量色散关系. 物理学报, 2013, 62(13): 137801. doi: 10.7498/aps.62.137801
    [6] 杨天勇, 孔春阳, 阮海波, 秦国平, 李万俊, 梁薇薇, 孟祥丹, 赵永红, 方亮, 崔玉亭. N离子注入富氧ZnO薄膜的p型导电及拉曼特性研究. 物理学报, 2013, 62(3): 037703. doi: 10.7498/aps.62.037703
    [7] 杨发展, 沈丽如, 王世庆, 唐德礼, 金凡亚, 刘海峰. 等离子体增强化学气相沉积法制备含氢类金刚石膜的紫外Raman光谱和X射线光电子能谱研究. 物理学报, 2013, 62(1): 017802. doi: 10.7498/aps.62.017802
    [8] 王静, 刘贵昌, 李红玲, 侯保荣. 铜基类金刚石膜功能梯度材料作为散热材料的研究. 物理学报, 2012, 61(5): 058102. doi: 10.7498/aps.61.058102
    [9] 臧航, 王志光, 庞立龙, 魏孔芳, 姚存峰, 申铁龙, 孙建荣, 马艺准, 缑洁, 盛彦斌, 朱亚滨. 离子注入ZnO薄膜的拉曼光谱研究. 物理学报, 2010, 59(7): 4831-4836. doi: 10.7498/aps.59.4831
    [10] 张洪华, 张崇宏, 李炳生, 周丽宏, 杨义涛, 付云翀. 碳化硅中氦离子高温注入引入的缺陷及其退火行为的光谱研究. 物理学报, 2009, 58(5): 3302-3308. doi: 10.7498/aps.58.3302
    [11] 赵栋才, 任 妮, 马占吉, 邱家稳, 肖更竭, 武生虎. 掺硅类金刚石膜的制备与力学性能研究. 物理学报, 2008, 57(3): 1935-1940. doi: 10.7498/aps.57.1935
    [12] 马国佳, 刘喜亮, 张华芳, 武洪臣, 彭丽平, 蒋艳莉. 乙炔气体流量对纳米TiC类金刚石复合膜的化学结构及力学性能影响. 物理学报, 2007, 56(4): 2377-2381. doi: 10.7498/aps.56.2377
    [13] 王 静, 刘贵昌, 汲大鹏, 徐 军, 邓新禄. 铜上采用过渡层沉积类金刚石薄膜的研究. 物理学报, 2006, 55(7): 3748-3755. doi: 10.7498/aps.55.3748
    [14] 刘艳红, 张家良, 王卫国, 李 建, 刘东平, 马腾才. CH4或CH4+Ar介质阻挡放电中的离子能量和类金刚石膜制备. 物理学报, 2006, 55(3): 1458-1463. doi: 10.7498/aps.55.1458
    [15] 高 鹏, 徐 军, 邓新绿, 王德和, 董 闯. 微波ECR全方位离子注入制备类金刚石碳膜的结构及摩擦学性能研究. 物理学报, 2005, 54(7): 3241-3246. doi: 10.7498/aps.54.3241
    [16] 彭鸿雁, 周传胜, 赵立新, 金曾孙, 张 冰, 陈宝玲, 陈玉强, 李敏君. 激光功率密度对类金刚石膜结构性能的影响. 物理学报, 2005, 54(9): 4294-4299. doi: 10.7498/aps.54.4294
    [17] 杨武保, 范松华, 张谷令, 马培宁, 张守忠, 杜 健. 非平衡磁控溅射法类金刚石薄膜的制备及分析. 物理学报, 2005, 54(10): 4944-4948. doi: 10.7498/aps.54.4944
    [18] 李之杰, 潘正瑛, 朱 靖, 魏 启, 王月霞, 臧亮坤, 周 亮, 刘提将. 离子束辅助沉积对类金刚石膜结构影响的计算机模拟. 物理学报, 2005, 54(5): 2233-2238. doi: 10.7498/aps.54.2233
    [19] 刘成森, 王德真. 空心圆管端点附近等离子体源离子注入过程中鞘层的时空演化. 物理学报, 2003, 52(1): 109-114. doi: 10.7498/aps.52.109
    [20] 杨武保, 范松华, 刘赤子, 张谷令, 王久丽, 杨思泽. 脉冲高能量密度等离子体法类金刚石膜的制备及分析. 物理学报, 2003, 52(1): 140-144. doi: 10.7498/aps.52.140
计量
  • 文章访问数:  6046
  • PDF下载量:  194
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-10
  • 修回日期:  2015-12-24
  • 刊出日期:  2016-03-05

/

返回文章
返回