-
本文基于流体动力学理论改进出一种新的棒-板电极负电晕放电混合数值模型, 模型中加入了27种主要碰撞反应, 并考虑了光电离和二次电子发射过程. 对棒-板间距3.3 mm, 施加电压-5.0 kV情况下进行数值计算, 得到负电晕放电的特里切尔脉冲. 重点分析了单个特里切尔脉冲持续过程中5个关键时刻的微观特征量发展规律, 丰富并量化描述了特里切尔脉冲的微观过程, 主要结论如下: 随着放电时间的发展, 电场集中分布区域向阳极移动且幅值变小, 这对电子崩的发展非常不利. 大部分放电区域都是电中性的, 只有在阴极鞘和阳极鞘附近有带正电的等离子体特性, 带负电的离子云随着放电时间的发展缓慢向阳极发散式移动. 整个特里切尔脉冲持续过程中, 阴极鞘内电子密度几乎为0; 特里切尔脉冲前期, 阴极鞘附近电子密度迅速增加至最大值并保持基本不变; 随着放电时间的增加, 放电间隙内电子密度整体增加, 并且向阳极发展. 在特里切尔脉冲后期, 电子的产生主要来自于N2和O2的碰撞电离, 电子的消失则主要由N2+的复合决定, O4+和O2-分别是数量最多的正离子和负离子.An improved multi-component two-dimensional hybrid model is presented for the simulation of Trichel pulse corona discharge. The model is based on the plasma hydrodynamics and chemical models, including 12 species and 27 reactions. In addition, the photoionization and secondary electron emission effects are taken into account. Simulation is carried out on a bar-plate electrode configuration with an inter-electrode gap of 3.3 mm, the positive potential applied to the bar being 5.0 kV, the pressure in air discharge being fixed at 1.0 atm, and the gas temperature assumed to be a constant (300 K). In this paper, some key microscopic characteristics such as electric field distribution, net charge density distribution, electron density distribution at 5 different instants during a Trichel pulse are analyzed emphatically. Further more, the electron generation and disappearing rates, positive and negative ion distribution characteristics along the axis of symmetry are also investigated in detail in the later Trichel pulse cycle. The results can give valuable insights into the physical mechanism of negative corona discharge.
[1] Liu Z Y 2005 Ultra-hig grid (Beijing: China Economic Publishig) (in Chinese) [刘振亚 2005 特高压电网(北京: 中国经济出版社)]
[2] Shu Y B, Hu Y 2007 Proceedings of the CSEE 27 1 (in Chinese) [舒印彪, 胡毅 2007 中国电机工程学报 27 1]
[3] Zheng Y S, He J L, Zhang B 2011 High Voltage Engineering 37 752 (in Chinese) [郑跃胜, 何金良, 张波 2011 高电压技术 37 752]
[4] In L, WU B, Zhang P, Wang Y Q 2004 Chin. Phys. Lett. 21 1993
[5] Stoffels E, Flikweert A J, Stoffels W W and Kroesen G M W 2002 Plasma Sources Sci. Technol. 11 383
[6] G W Trichel 1938 Phys. Rev. 54 1078
[7] Zentner R 1970 Z. Angew. Physik 29 294
[8] Soria H C, Pontiga F, Castellanos A 2007 J. Phys. D: Appl. Phys. 40 4552
[9] Loeb L B, Kip A F, Hudson G G 1941 Phys. Rev. 60 714
[10] Loeb L B 1965 Electrical coronas: their basic physical mechanisms (Berkeley: University of California Press) p226-230
[11] Lama W L, Gallo C F 1974 J. Appl. Phys. 45 103-13
[12] Michael A L, Allan J L 2007 Plasma discharge principle and materials processing (Beijing: Science Press) (in Chinese) [迈克尔 A 力伯曼,阿伦 J 里登伯格 2007等离子体放电原理与材料处理(北京: 科学出版社)]
[13] Kekez M M, Savic P, Lougheed G D 1982 J. Phys. D: Appl. Phys. 15 1963
[14] Tran T N, Golosnov I O, Levin P L, Georghiou G E 2009 IEEE Conf. on Electrical Insulation and Dielectric Phenomena, CEIDP '09 (Virginia Beach, VA, 18-21 October 2009) p 592-5
[15] Agostino R D, Favia P, Oehr C, Wertheimer M R 2005 Plasma Processes and Polymers 2 7
[16] Nahomy J, Ferreira C M, Gordiets B, Pagnon D, Touzeau M,Vialle M, 2010 J. Phys. D: Appl. Phys. 107 093304
[17] Pancheshnyi S V, Starikovskii A Y 2003 J. Phys. D: Appl. Phys. 36 268
[18] Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722
[19] Zheleznyak M D, Mnattskanyan A K 1977 Zhurnal Tekhnicheskoi Fiziki 47 2497
[20] Yu V S, Larsson A, Gubanski S M, Akyuz M 2001 J. Phys. D: Appl. Phys. 34 614
[21] Liu X H, He W, Yang F, Wang H Y, Liao R J, Xiao H G 2012 Chin. Phys. B 21 75201
[22] Philip D N, Janzen A R, Aziz R A 1972 J. Chem. Phys. 57 1100
[23] Brokaw R S 1969 Ind. Eng. Chem. Process Des. 8 240
[24] Bird R B, Stewart W E, Lightfoot E N 1960 Transport Phenomena (Madison: Madison Press)
[25] Farouk T, Farouk B, Gutsol A, Fridman A 2008 Plasma Sources Sci. Technol. 17 035015
[26] Curtiss C F, Bird R B 1999 Ind. Eng. Chem. Res. 38 2515
[27] Xu X J, Zhu D C 1996 Air discharge physical (Shanghai: Fudan University Press) (in Chinese) [徐学基, 诸定昌 1996 空气放电物理(上海: 复旦大学出版社)]
[28] Liu X H, He W, Yang F, Xiao H G, Ma J 2011 High Voltage Engineering 37 1614 (in Chinese) [刘兴华, 何为, 杨帆, 肖汉光, 马俊 2011 高电压技术 37 1614]
[29] Du H L, He L M, Lan Y u, Wang F 2011 Acta Phys. Sin. 60 115201 (in Chinese) [杜宏亮, 何立明, 兰宇丹, 王峰 2011 物理学报 60 115201]
[30] He W, Liu X H, Yang F, Wang H u, Liao R J, Xiao H G 2012 Jpn. J. Appl. Phys. 51 026001
[31] Tran T N, Golosnoy I O, Lewin P L, Georghiou G E 2011 J. Phys. D: Appl. Phys. 44 015203
[32] Yu D R, Qing S W, Yan G J, Duan P 2011 Chin. Phys. B 20 65204
[33] Wang P X, Fan F G, Zirilli F, Chen J H 2012 IEEE T. Plasma Sci. 40 421
[34] Antao D S, Staack D A, Fridman A, Farouk B 2009 Plasma Sources Sci. Technol. 18 035016
[35] Mahadev S, Raja L L 2010 J. Appl. Phys. 107 093304
-
[1] Liu Z Y 2005 Ultra-hig grid (Beijing: China Economic Publishig) (in Chinese) [刘振亚 2005 特高压电网(北京: 中国经济出版社)]
[2] Shu Y B, Hu Y 2007 Proceedings of the CSEE 27 1 (in Chinese) [舒印彪, 胡毅 2007 中国电机工程学报 27 1]
[3] Zheng Y S, He J L, Zhang B 2011 High Voltage Engineering 37 752 (in Chinese) [郑跃胜, 何金良, 张波 2011 高电压技术 37 752]
[4] In L, WU B, Zhang P, Wang Y Q 2004 Chin. Phys. Lett. 21 1993
[5] Stoffels E, Flikweert A J, Stoffels W W and Kroesen G M W 2002 Plasma Sources Sci. Technol. 11 383
[6] G W Trichel 1938 Phys. Rev. 54 1078
[7] Zentner R 1970 Z. Angew. Physik 29 294
[8] Soria H C, Pontiga F, Castellanos A 2007 J. Phys. D: Appl. Phys. 40 4552
[9] Loeb L B, Kip A F, Hudson G G 1941 Phys. Rev. 60 714
[10] Loeb L B 1965 Electrical coronas: their basic physical mechanisms (Berkeley: University of California Press) p226-230
[11] Lama W L, Gallo C F 1974 J. Appl. Phys. 45 103-13
[12] Michael A L, Allan J L 2007 Plasma discharge principle and materials processing (Beijing: Science Press) (in Chinese) [迈克尔 A 力伯曼,阿伦 J 里登伯格 2007等离子体放电原理与材料处理(北京: 科学出版社)]
[13] Kekez M M, Savic P, Lougheed G D 1982 J. Phys. D: Appl. Phys. 15 1963
[14] Tran T N, Golosnov I O, Levin P L, Georghiou G E 2009 IEEE Conf. on Electrical Insulation and Dielectric Phenomena, CEIDP '09 (Virginia Beach, VA, 18-21 October 2009) p 592-5
[15] Agostino R D, Favia P, Oehr C, Wertheimer M R 2005 Plasma Processes and Polymers 2 7
[16] Nahomy J, Ferreira C M, Gordiets B, Pagnon D, Touzeau M,Vialle M, 2010 J. Phys. D: Appl. Phys. 107 093304
[17] Pancheshnyi S V, Starikovskii A Y 2003 J. Phys. D: Appl. Phys. 36 268
[18] Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722
[19] Zheleznyak M D, Mnattskanyan A K 1977 Zhurnal Tekhnicheskoi Fiziki 47 2497
[20] Yu V S, Larsson A, Gubanski S M, Akyuz M 2001 J. Phys. D: Appl. Phys. 34 614
[21] Liu X H, He W, Yang F, Wang H Y, Liao R J, Xiao H G 2012 Chin. Phys. B 21 75201
[22] Philip D N, Janzen A R, Aziz R A 1972 J. Chem. Phys. 57 1100
[23] Brokaw R S 1969 Ind. Eng. Chem. Process Des. 8 240
[24] Bird R B, Stewart W E, Lightfoot E N 1960 Transport Phenomena (Madison: Madison Press)
[25] Farouk T, Farouk B, Gutsol A, Fridman A 2008 Plasma Sources Sci. Technol. 17 035015
[26] Curtiss C F, Bird R B 1999 Ind. Eng. Chem. Res. 38 2515
[27] Xu X J, Zhu D C 1996 Air discharge physical (Shanghai: Fudan University Press) (in Chinese) [徐学基, 诸定昌 1996 空气放电物理(上海: 复旦大学出版社)]
[28] Liu X H, He W, Yang F, Xiao H G, Ma J 2011 High Voltage Engineering 37 1614 (in Chinese) [刘兴华, 何为, 杨帆, 肖汉光, 马俊 2011 高电压技术 37 1614]
[29] Du H L, He L M, Lan Y u, Wang F 2011 Acta Phys. Sin. 60 115201 (in Chinese) [杜宏亮, 何立明, 兰宇丹, 王峰 2011 物理学报 60 115201]
[30] He W, Liu X H, Yang F, Wang H u, Liao R J, Xiao H G 2012 Jpn. J. Appl. Phys. 51 026001
[31] Tran T N, Golosnoy I O, Lewin P L, Georghiou G E 2011 J. Phys. D: Appl. Phys. 44 015203
[32] Yu D R, Qing S W, Yan G J, Duan P 2011 Chin. Phys. B 20 65204
[33] Wang P X, Fan F G, Zirilli F, Chen J H 2012 IEEE T. Plasma Sci. 40 421
[34] Antao D S, Staack D A, Fridman A, Farouk B 2009 Plasma Sources Sci. Technol. 18 035016
[35] Mahadev S, Raja L L 2010 J. Appl. Phys. 107 093304
计量
- 文章访问数: 7847
- PDF下载量: 1233
- 被引次数: 0