搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气压直流正电晕放电暂态空间电荷分布仿真研究

廖瑞金 伍飞飞 刘兴华 杨帆 杨丽君 周之 翟蕾

引用本文:
Citation:

大气压直流正电晕放电暂态空间电荷分布仿真研究

廖瑞金, 伍飞飞, 刘兴华, 杨帆, 杨丽君, 周之, 翟蕾

Numerical simulation of transient space charge distribution of DC positive corona discharge under atmospheric pressure air

Liao Rui-Jin, Wu Fei-Fei, Liu Xing-Hua, Yang Fan, Yang Li-Jun, Zhou Zhi, Zhai Lei
PDF
导出引用
  • 本文提出了流体-化学动理学二维正电晕放电混合模型, 该模型包含12种粒子间的27种化学反应, 并且考虑光电离的影响. 此外, 在实验室内对该模型开展试验验证, 单次脉冲波形及伏安特性曲线符合较好. 基于上述模型, 本文研究了在外施电压3 kV时棒-板电极正电晕放电过程中的电场分布、电子温度分布、 空间电荷分布的发展规律, 并对电晕放电过程中粒子的成分进行了详细分析, 讨论了电子、正负离子、中性粒子在放电过程中的生成规律及对电晕放电的影响. 结果表明: 在整个电晕放电过程中, 电子温度分布和电场强度分布曲线相似, 电子密度维持在1019 m-3左右, 只发现带正电的等离子体特征. O4+密度是放电过程中数量最多的正离子, O2+和N2+在二次电子发射过程中具有重要作用, O2- 离子和O分别是负离子和中性粒子中数量最多的粒子, 由于负离子和中性粒子在电晕放电过程中数量较小, 因而起的作用相对较小.
    Corona discharges are usually generated at sharp points, edges or on thin wires where the electric field is strongly concentrated. With the rapid development of extra and ultra high-voltage transmission lines, the air corona discharge becomes one of the critical problems associated with high-voltage lines, which can lead to the deterioration of insulation systems, power loss, radio noise. Corona discharge studies have been undertaken for many years, not only because of the scientific interest in the corona mechanism but also because of its practical engineering importance. Transient space charge distribution effect that is one of the important canses in the process of corona discharge, is closely related to the corona discharge mechanism and onset, self-sustaining. In this paper, we present an improved self-consistent, multi-component and two-dimensional plasma hybrid model for simulating the DC positive corona discharge under atmospheric environment. The model is based on the plasma hydrodynamics and the chemical dynamics, and it includes 12 species and 27 reactions. Besides, the photoionization effect is also considered in the proposed model. The simulation and the experiment on bar-plate electrode configuration with an inter-electrode gap of 5.0 mm at 2-5.5 kV are carried out. The discharge voltage-current characteristics and single pulse waveform are in good agreement with the experimental measurements. Based on this model, the electric field distribution, the electron temperature distribution, and the evolution of charged species distribution are investigated in detail. The results show that distributions of electron temperature and electric field have the same patterns, In the process of discharge, electron density is kept at 1019 m-3 or so. O4+ is dominant compared with the other charged heavy species, and O2+ and N2+ play the key role in secondary electron emission: the unmbers of O2- and O are the largest in negative ions and neutral particle respectively, they play a negligible role in discharge process.
    • 基金项目: 国家重点基础研究发展计划(973计划) (批准号: 2011CB209401)、 和中央高校基本科研业务费专项资金(批准号: CDJXS1215003) 和国家自然科学基金创新研究群体科学基金(批准号: 51021005)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB209401), the Fundamental Research Funds for the Central Universities (Grant No. CDJXS1215003), and the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 51021005).
    [1]

    Yang B C, Liu X B, Dai Y S 2002 High Voltage Engineering (Chongqing: Chongqing University Press) (in Chinese) [杨保初, 刘晓波, 戴玉松 2002 高电压技术 (重庆: 重庆大学出版社) ]

    [2]

    Liu Z Y 2005 Ultra-Hig Grid (Beijing: China Economic Publishig) (in Chinese) [刘振亚 2005 特高压电网 (北京: 中国经济出版社)]

    [3]

    Shu Y B, Hu Y 2007 Proceedings of the CSEE 27 1 (in Chinese) [舒印彪, 胡毅 2007 中国电机工程学报 27 1]

    [4]

    Zheng Y S He J L, Zhang B 2011 High Voltage Engineering 3 752 (in Chinese) [郑跃胜, 何金良, 张波 2011 高电压技术 3 752]

    [5]

    Qiu C R, Wang N Q 1994 Electrical Equipment Partial Discharge and Testing Technology (Beijing: China Machine Press) (in Chinese) [邱昌容, 王乃庆 1994 电工设备局部放电及其测试技术 (北京: 机械工业出版社) ]

    [6]

    Bai X Y, Bai M D, Zhang Z T 2003 China Basic Science 6 30 (in Chinese) [白希尧, 白敏冬, 张芝涛 2003 中国基础科学 6 30]

    [7]

    Michael A L Allan J L 2007 Plasma Discharge Principle and Materials Processing (Beijing: Science Press) (in Chinese) [迈克尔 A 力伯曼, 阿伦 J 里登伯格 2007 等离子体放电原理与材料处理 (北京: 科学出版社)]

    [8]

    Hu Q, Shu L C, Jiang X L 2010 High Voltage Engineering 36 1669 (in Chinese) [胡琴, 舒立春, 蒋兴良 2010 高电压技术 36 1669]

    [9]

    Liu Y P You S H, Lv F C 2010 High Voltage Engineering 36 2424 (in Chinese) [胡琴, 舒立春, 蒋兴良 2010 高电压技术 36 2424]

    [10]

    Davies A J, Davies C S, Evans C J 1971 Proc. Inst. Electrical Eng. 118 816

    [11]

    Passchier J D P Goedheer W J 1993 J. Appl. Phys. 73 1073

    [12]

    Lymberopoulos D P, Economou D J 1993 J. Appl. Phys. 73 3668

    [13]

    Lymberopoulos D P, Economou D J 1993 Appl. Phys. Lett. 63 2478

    [14]

    Bera K, Farouk B, Lee Y H 1998 JSME International Journal 41 132

    [15]

    Bera K, Farouk B, Lee Y H 1999 Plasma Sources Sci. Technol. 8 412

    [16]

    Bera K, Farouk B, Lee Y H 1999 J. Electrochem. Soc. 146 3264

    [17]

    Bera K, Farouk B, Vitello P 2001 J. Phys. D: Appl. Phys. 34 1479

    [18]

    Agostino R D, Favia P, Oehr C Wertheimer M R 2005 Plasma Processes and Polymers 2 7

    [19]

    Gordiets B F, Ferreira C M Guerra V L Loureiro J M A H Nahomy J 1995 IEEE Trans. Plasma Sci. 23 750

    [20]

    Nahomy J, Ferreira C M, Gordiets B, Pagnon D, Touzeau M,Vialle M 2010 J. Phys. D: Appl. Phys 107 093304

    [21]

    Zhang J, Adamiak K 2008 IEEE Trans. Ind. Appl. 44 494

    [22]

    Hagelaar G J M Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722

    [23]

    Zheleznyak M D, Mnattskanyan A K 1977 Zhurnal Tekhnicheskoi Fiziki 47 2497

    [24]

    Yu V S, Larsson A, Gubanski S M, Akyuz M 2001 J. Phys. D: Appl. Phys. 34 614

    [25]

    Philip D N, Janzen A R, Aziz R A 1972 J. Chem. Phys. 57 1100

    [26]

    Brokaw R S 1969 Ind. Eng. Chem. Process Des. 8 240

    [27]

    Bird R B, Stewart W E, Lightfoot E N 1960 Transport Phenomena (Madison: Madison Press)

    [28]

    Farouk T, Farouk B, Gutsol A, Fridman A 2008 Plasma Sources Sci. Technol. 17 035015

    [29]

    Curtiss C F, Bird R B 1999 Ind. Eng. Chem. Res. 38 2515

    [30]

    Xu X J, Zhu D C 1996 Air Discharge Physical (Shanghai: Fudan University Press) (in Chinese) [徐学基, 诸定昌 1996 空气放电物理 (上海: 复旦大学出版社)]

    [31]

    Yao P L 1994 Plasma Physics (Beijing: Science Press) (in Chinese) [姚平录 1994 等离子体物理学 (北京: 科学出版社)]

    [32]

    Gordiets B F, Ferreira C M, Guerra V L, Louriero M 1995 IEEE Trans. Plasma Sci. 23 750

    [33]

    Mahadev S, Raja L L 2010 J. Appl. Phys. 107 093304

    [34]

    Liu X H, He W, Yang F, Xiao H G,Ma J 2011 High Voltage Engineering 37 1614 (in Chinese) [刘兴华, 何为, 杨帆, 肖汉光, 马俊 2011 高电压技术 37 1614]

    [35]

    Tran T N, Golosnoy I O, Lewin P L, Georghiou G E 2009 IEEE Conf. on Electrical Insulation and Dielectric Phenomena Virginia USA, 2009 p559

    [36]

    Tran T N, Golosnoy I O, Lewin P L, Georghiou G E 2011 J. Phys. D: Appl. Phys. 44 015203

    [37]

    Li Q, Li H F, Sun X R, Zhang W Y, Wang H 2010 High Voltage Engineering 36 2739 (in Chinese) [李庆, 李海凤, 孙晓荣, 张文月, 王昊 2010 高电压技术 36 2739]

    [38]

    Arkhipenko V I, Zgirovskii S M, Kirillov A A, Simonchick L V 2002 Plasma Phys. Rep. 28 858

    [39]

    Marode E, Bastien F, Bakker M 1979 J. Appl. Phys. 50 140

    [40]

    Sigmond R S 1984 J. Appl. Phys. 56 1355

  • [1]

    Yang B C, Liu X B, Dai Y S 2002 High Voltage Engineering (Chongqing: Chongqing University Press) (in Chinese) [杨保初, 刘晓波, 戴玉松 2002 高电压技术 (重庆: 重庆大学出版社) ]

    [2]

    Liu Z Y 2005 Ultra-Hig Grid (Beijing: China Economic Publishig) (in Chinese) [刘振亚 2005 特高压电网 (北京: 中国经济出版社)]

    [3]

    Shu Y B, Hu Y 2007 Proceedings of the CSEE 27 1 (in Chinese) [舒印彪, 胡毅 2007 中国电机工程学报 27 1]

    [4]

    Zheng Y S He J L, Zhang B 2011 High Voltage Engineering 3 752 (in Chinese) [郑跃胜, 何金良, 张波 2011 高电压技术 3 752]

    [5]

    Qiu C R, Wang N Q 1994 Electrical Equipment Partial Discharge and Testing Technology (Beijing: China Machine Press) (in Chinese) [邱昌容, 王乃庆 1994 电工设备局部放电及其测试技术 (北京: 机械工业出版社) ]

    [6]

    Bai X Y, Bai M D, Zhang Z T 2003 China Basic Science 6 30 (in Chinese) [白希尧, 白敏冬, 张芝涛 2003 中国基础科学 6 30]

    [7]

    Michael A L Allan J L 2007 Plasma Discharge Principle and Materials Processing (Beijing: Science Press) (in Chinese) [迈克尔 A 力伯曼, 阿伦 J 里登伯格 2007 等离子体放电原理与材料处理 (北京: 科学出版社)]

    [8]

    Hu Q, Shu L C, Jiang X L 2010 High Voltage Engineering 36 1669 (in Chinese) [胡琴, 舒立春, 蒋兴良 2010 高电压技术 36 1669]

    [9]

    Liu Y P You S H, Lv F C 2010 High Voltage Engineering 36 2424 (in Chinese) [胡琴, 舒立春, 蒋兴良 2010 高电压技术 36 2424]

    [10]

    Davies A J, Davies C S, Evans C J 1971 Proc. Inst. Electrical Eng. 118 816

    [11]

    Passchier J D P Goedheer W J 1993 J. Appl. Phys. 73 1073

    [12]

    Lymberopoulos D P, Economou D J 1993 J. Appl. Phys. 73 3668

    [13]

    Lymberopoulos D P, Economou D J 1993 Appl. Phys. Lett. 63 2478

    [14]

    Bera K, Farouk B, Lee Y H 1998 JSME International Journal 41 132

    [15]

    Bera K, Farouk B, Lee Y H 1999 Plasma Sources Sci. Technol. 8 412

    [16]

    Bera K, Farouk B, Lee Y H 1999 J. Electrochem. Soc. 146 3264

    [17]

    Bera K, Farouk B, Vitello P 2001 J. Phys. D: Appl. Phys. 34 1479

    [18]

    Agostino R D, Favia P, Oehr C Wertheimer M R 2005 Plasma Processes and Polymers 2 7

    [19]

    Gordiets B F, Ferreira C M Guerra V L Loureiro J M A H Nahomy J 1995 IEEE Trans. Plasma Sci. 23 750

    [20]

    Nahomy J, Ferreira C M, Gordiets B, Pagnon D, Touzeau M,Vialle M 2010 J. Phys. D: Appl. Phys 107 093304

    [21]

    Zhang J, Adamiak K 2008 IEEE Trans. Ind. Appl. 44 494

    [22]

    Hagelaar G J M Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722

    [23]

    Zheleznyak M D, Mnattskanyan A K 1977 Zhurnal Tekhnicheskoi Fiziki 47 2497

    [24]

    Yu V S, Larsson A, Gubanski S M, Akyuz M 2001 J. Phys. D: Appl. Phys. 34 614

    [25]

    Philip D N, Janzen A R, Aziz R A 1972 J. Chem. Phys. 57 1100

    [26]

    Brokaw R S 1969 Ind. Eng. Chem. Process Des. 8 240

    [27]

    Bird R B, Stewart W E, Lightfoot E N 1960 Transport Phenomena (Madison: Madison Press)

    [28]

    Farouk T, Farouk B, Gutsol A, Fridman A 2008 Plasma Sources Sci. Technol. 17 035015

    [29]

    Curtiss C F, Bird R B 1999 Ind. Eng. Chem. Res. 38 2515

    [30]

    Xu X J, Zhu D C 1996 Air Discharge Physical (Shanghai: Fudan University Press) (in Chinese) [徐学基, 诸定昌 1996 空气放电物理 (上海: 复旦大学出版社)]

    [31]

    Yao P L 1994 Plasma Physics (Beijing: Science Press) (in Chinese) [姚平录 1994 等离子体物理学 (北京: 科学出版社)]

    [32]

    Gordiets B F, Ferreira C M, Guerra V L, Louriero M 1995 IEEE Trans. Plasma Sci. 23 750

    [33]

    Mahadev S, Raja L L 2010 J. Appl. Phys. 107 093304

    [34]

    Liu X H, He W, Yang F, Xiao H G,Ma J 2011 High Voltage Engineering 37 1614 (in Chinese) [刘兴华, 何为, 杨帆, 肖汉光, 马俊 2011 高电压技术 37 1614]

    [35]

    Tran T N, Golosnoy I O, Lewin P L, Georghiou G E 2009 IEEE Conf. on Electrical Insulation and Dielectric Phenomena Virginia USA, 2009 p559

    [36]

    Tran T N, Golosnoy I O, Lewin P L, Georghiou G E 2011 J. Phys. D: Appl. Phys. 44 015203

    [37]

    Li Q, Li H F, Sun X R, Zhang W Y, Wang H 2010 High Voltage Engineering 36 2739 (in Chinese) [李庆, 李海凤, 孙晓荣, 张文月, 王昊 2010 高电压技术 36 2739]

    [38]

    Arkhipenko V I, Zgirovskii S M, Kirillov A A, Simonchick L V 2002 Plasma Phys. Rep. 28 858

    [39]

    Marode E, Bastien F, Bakker M 1979 J. Appl. Phys. 50 140

    [40]

    Sigmond R S 1984 J. Appl. Phys. 56 1355

  • [1] 张钰如, 高飞, 王友年. 低气压感性耦合等离子体源模拟研究进展. 物理学报, 2021, 70(9): 095206. doi: 10.7498/aps.70.20202247
    [2] 王振兴, 曹志远, 李瑞, 陈峰, 孙丽琼, 耿英三, 王建华. 纵磁作用下真空电弧单阴极斑点等离子体射流三维混合模拟. 物理学报, 2021, 70(5): 055201. doi: 10.7498/aps.70.20201701
    [3] 赵大帅, 孙志, 孙兴, 孙怀得, 韩柏. 基于分形理论的微间隙空气放电. 物理学报, 2021, 70(20): 205207. doi: 10.7498/aps.70.20210362
    [4] 郭榕榕, 林金海, 刘莉莉, 李世韦, 王尘, 林海军. CdZnTe晶体中深能级缺陷对空间电荷分布特性的影响. 物理学报, 2020, 69(22): 226103. doi: 10.7498/aps.69.20200553
    [5] 袁端磊, 闵道敏, 黄印, 谢东日, 王海燕, 杨芳, 朱志豪, 费翔, 李盛涛. 掺杂含量对环氧纳米复合电介质陷阱与空间电荷的影响. 物理学报, 2017, 66(9): 097701. doi: 10.7498/aps.66.097701
    [6] 刘康淋, 廖瑞金, 赵学童. 声脉冲法空间电荷测量系统的研究. 物理学报, 2015, 64(16): 164301. doi: 10.7498/aps.64.164301
    [7] 刘玉峰, 丁艳军, 彭志敏, 黄宇, 杜艳君. 激光诱导击穿空气等离子体时间分辨特性的光谱研究. 物理学报, 2014, 63(20): 205205. doi: 10.7498/aps.63.205205
    [8] 伍飞飞, 廖瑞金, 杨丽君, 刘兴华, 汪可, 周之. 棒-板电极直流负电晕放电特里切尔脉冲的微观过程分析. 物理学报, 2013, 62(11): 115201. doi: 10.7498/aps.62.115201
    [9] 屠德民, 王霞, 吕泽鹏, 吴锴, 彭宗仁. 以能带理论诠释直流聚乙烯绝缘中空间电荷的形成和抑制机理. 物理学报, 2012, 61(1): 017104. doi: 10.7498/aps.61.017104
    [10] 陈暄, 安振连, 刘晨霞, 张冶文, 郑飞虎. 表层氟化温度对聚乙烯中空间电荷积累的影响. 物理学报, 2012, 61(13): 138201. doi: 10.7498/aps.61.138201
    [11] 王晶, 马瑞玲, 王龙, 孟俊敏. 采用混合模型数值模拟从深海到浅海内波的传播. 物理学报, 2012, 61(6): 064701. doi: 10.7498/aps.61.064701
    [12] 安振连, 刘晨霞, 陈暄, 郑飞虎, 张冶文. 表层氟化聚乙烯中的空间电荷. 物理学报, 2012, 61(9): 098201. doi: 10.7498/aps.61.098201
    [13] 廖瑞金, 周天春, George Chen, 杨丽君. 聚合物材料空间电荷陷阱模型及参数. 物理学报, 2012, 61(1): 017201. doi: 10.7498/aps.61.017201
    [14] 陈曦, 王霞, 吴锴, 彭宗仁, 成永红. 温度梯度场对电声脉冲法空间电荷测量波形的影响. 物理学报, 2010, 59(10): 7327-7332. doi: 10.7498/aps.59.7327
    [15] 吕晓桂, 任春生, 马腾才, 朱海龙, 钱沐扬, 王德真. 石英管对空气中锥-板结构纳秒脉冲放电的影响. 物理学报, 2010, 59(11): 7917-7921. doi: 10.7498/aps.59.7917
    [16] 肖春, 张冶文, 林家齐, 郑飞虎, 安振连, 雷清泉. 聚乙烯薄膜中空间电荷短路放电复合率的发光法研究. 物理学报, 2009, 58(9): 6459-6464. doi: 10.7498/aps.58.6459
    [17] 赵敏, 安振连, 姚俊兰, 解晨, 夏钟福. 孔洞聚丙烯驻极体膜中空间电荷与孔洞击穿电荷的俘获特性. 物理学报, 2009, 58(1): 482-487. doi: 10.7498/aps.58.482
    [18] 杨 强, 安振连, 郑飞虎, 张冶文. 线性低密度聚乙烯中空间电荷陷阱的能量分布与空间分布的关系. 物理学报, 2008, 57(6): 3834-3839. doi: 10.7498/aps.57.3834
    [19] 安振连, 杨 强, 郑飞虎, 张冶文. 低密度聚乙烯热压成型过程中的空间电荷. 物理学报, 2007, 56(9): 5502-5507. doi: 10.7498/aps.56.5502
    [20] 郑飞虎, 张冶文, 吴长顺, 李吉晓, 夏钟福. 用于固体介质中空间电荷的压电压力波法与电声脉冲法. 物理学报, 2003, 52(5): 1137-1142. doi: 10.7498/aps.52.1137
计量
  • 文章访问数:  8564
  • PDF下载量:  1341
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-11
  • 修回日期:  2012-07-06
  • 刊出日期:  2012-12-05

大气压直流正电晕放电暂态空间电荷分布仿真研究

  • 1. 输配电装备及系统安全与新技术国家重点实验室(重庆大学), 重庆市 400044;
  • 2. 淄博供电公司, 山东省电力集团公司, 淄博 255000
    基金项目: 国家重点基础研究发展计划(973计划) (批准号: 2011CB209401)、 和中央高校基本科研业务费专项资金(批准号: CDJXS1215003) 和国家自然科学基金创新研究群体科学基金(批准号: 51021005)资助的课题.

摘要: 本文提出了流体-化学动理学二维正电晕放电混合模型, 该模型包含12种粒子间的27种化学反应, 并且考虑光电离的影响. 此外, 在实验室内对该模型开展试验验证, 单次脉冲波形及伏安特性曲线符合较好. 基于上述模型, 本文研究了在外施电压3 kV时棒-板电极正电晕放电过程中的电场分布、电子温度分布、 空间电荷分布的发展规律, 并对电晕放电过程中粒子的成分进行了详细分析, 讨论了电子、正负离子、中性粒子在放电过程中的生成规律及对电晕放电的影响. 结果表明: 在整个电晕放电过程中, 电子温度分布和电场强度分布曲线相似, 电子密度维持在1019 m-3左右, 只发现带正电的等离子体特征. O4+密度是放电过程中数量最多的正离子, O2+和N2+在二次电子发射过程中具有重要作用, O2- 离子和O分别是负离子和中性粒子中数量最多的粒子, 由于负离子和中性粒子在电晕放电过程中数量较小, 因而起的作用相对较小.

English Abstract

参考文献 (40)

目录

    /

    返回文章
    返回