搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹波在非磁化等离子体中的传输特性研究

郑灵 赵青 刘述章 邢晓俊

引用本文:
Citation:

太赫兹波在非磁化等离子体中的传输特性研究

郑灵, 赵青, 刘述章, 邢晓俊

Studies of terahertz wave propagation in non-magnetized plasma

Zheng Ling, Zhao Qing, Liu Shu-Zhang, Xing Xiao-Jun
PDF
导出引用
  • 本文对太赫兹波在非磁化等离子体中的传输特性进行了理论和实验研究, 得到了非磁化等离子体中太赫兹波传输特性随太赫兹波频率、等离子体密度、 碰撞频率和厚度的变化规律. 发现了一些新的现象: 随着太赫兹波频率增加, 反射率曲线出现周期性振荡, 振荡周期为0.03 THz. 随着太赫兹波频率增加, 振荡幅度增加; 随着等离子体密度增加, 振荡幅度减小; 随着等离子体碰撞频率增加,振荡幅度增加. 反射率曲线出现振荡的原因是电磁波在z=0和z=-d界面处的多次反射所致. 以激波管为实验平台进行了0.22 THz太赫兹波在等离子体中传输特性的实验研究, 实验结果和理论结果符合较好. 理论和实验结果均表明, 采用太赫兹来实现地面与飞行器之间的通信互联是解决黑障问题的可选途径之一.
    The space crafts, such as spaceship, space shuttle and so on, will face a famous blackout problem when they re-enter the earth's atmosphere at high velocity. The plasma sheath severely affects the propagation of the incident electromagnetic wave and causes severe electromagnetic wave attenuation, which results in the communication failures between the space crafts and the ground control center. It is important to study the properties of terahertz wave propagation in non-magnetized plasma, for using the terahertz wave communication is an alternative method to solve the reentry blackout problem. The terahertz wave propagation characteristics in non-magnetized plasma are studied in this paper. The variations of the terahertz wave propagation properties with the terahertz wave frequency, plasma density, plasma collision frequency and the thickness of the plasma are acquired. Some new phenomena are found i.e., there appears periodic oscillation on the reflectivity curve with the increase of terahertz wave frequency, and the period of oscillation is 0.03THz. The oscillation amplitude increases with the increase of terahertz frequency, decreases with the increase of plasma density, and increases with the increase of plasma collision frequency. The oscillation is attributed to the multiple reflections of the electromagnetic wave at the interfaces at z=0 and z=-d. The terahertz wave propagation properties in plasma are studied experimentally with the shock tube, and the experimental results match well with the theoretical ones. Both the theoretical and experimental results indicate that using terahertz wave communication is an effective way to solve the reentry blackout problem.
    • 基金项目: 国家重点基础研究发展计划(973计划)(批准号: 2011CB301805)、 国家国际科技合作专项项目(批准号: 2011DFA63190)、国家高技术研究发展计划(863计划)(批准号: 2011AA7022016)和微细加工光学技术国家重点实验室基金(批准号: M160104012011E11)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB301805), the National Special Projects of International Scientific and Technological Cooperation (Grant No. 2011DFA63190), the National High Technology Research and Development Program of China (Grant No. 2011AA7022016), and the Foundation of the State Key Laboratory of Optical Technologies for Microfabrication (Grant No. M160104012011E11).
    [1]

    Mitchell F H 1967 Proc. IEEE 55 619

    [2]

    Rybak J P, Churchill R J 1971 IEEE Trans. Aerospace Electron. Syst. AES-7 879

    [3]

    Zeng X J, Yu Z F, Bu S Q, Liu S, Ma P, Shi A H, Liang S C 2010 Acta Aerodyn. Sin. 28 645

    [4]

    Keidar M, Kim M, Boyd I D 2008 J. Spacecraft Rockets 45 445

    [5]

    Liu J F, Xi X L, Wan G B, Wang L L 2011 IEEE Tran. Plasma Sci. 39 852

    [6]

    Kim M, Keidar M, Boyd I D 2008 J. Spacecraft Rockets 45 1223

    [7]

    Thoma C, Rose D V, Miller C L, Clark R E, Hughes T P 2009 J. Appl. Phys. 106 043301

    [8]

    Chen Y Y, Song Y, Li Z H, H A Z 2011 Chin. Phys. B 20 034201

    [9]

    Kim M, Keidar M, Boyd I D 2008 IEEE Tran. Plasma Sci. 36 1198

    [10]

    Yang Y C 2010 M. S. Dissertation (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese) [杨永常 2010 硕士学位论文 (南京: 南京航空航天大学)]

    [11]

    Schexnayder C J, Evans J S, Huber P W 1970 NASA SP-252 277

    [12]

    Wang Y 2011 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [王玥 2011 博士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [13]

    Shen J E, Rong J, Liu W X 2006 Infrared Laser Eng. 35 342 (in Chinese) [申金娥, 荣健, 刘文鑫 2006 红外与激光工程 35 342]

    [14]

    Koch M 2007 Terahertz Frequency Detection and Identification of Materials and Object (Braunschweig) p325

    [15]

    Wang G Q, Wang J G, Li X Z, Fan R Y, Wang X Z, Wang X F, Tong C J 2010 Acta Phys. Sin. 59 8459 (in Chinese) [王光强, 王建国, 李小泽, 范如玉, 王行舟, 王雪峰, 童长江 2010 物理学报 59 8459]

    [16]

    Yang H W, Chen R S, Zhang Y 2006 Acta Phys. Sin. 55 3464 (in Chinese) [杨宏伟, 陈如山, 张云 2006 物理学报 53 3464]

    [17]

    Liu S B, Mo J J, Yuan N C 2004 Acta Phys. Sin. 53 778 (in Chinese) [刘少斌, 莫锦军, 袁乃昌 2004 物理学报 53 778]

    [18]

    Zheng L, Zhao Q, Liu S Z, Ma P, Huang C, Tang Y F, Chen X L, Xing X J, Zhang C Y, Luo X G 2012 Prog. Electromagn. Res. M 24 179

    [19]

    Zheng L, Zhao Q 2011 2011 International Conference on Electronic & Mechanical Engineering and Information Technology Harbin, China August 12-14, 2011 p4535

    [20]

    Ma C G, Zhao Q, Luo X G, He G, Zheng L, Liu J W 2011 Acta Phys. Sin. 60 055201 (in Chinese) [马春光, 赵青, 罗先刚, 何果, 郑灵, 刘建卫 2011 物理学报 60 055201]

    [21]

    Tosun Z, Akbar D, Altan H 2009 34th International Conference on Infrared, Millimeter, and Terhertz Waves Busan, Korea, September 21-25, 2009, p1

    [22]

    Yuan C X, Zhou Z X, Xiang X L, Sun H G, Pu S Z 2010 Phys. Plasmas 17 113304

    [23]

    Yang H W, Tang W C, Kong X K 2007 Int. J. Infrared Milli. Waves 28 547

    [24]

    Liu S B, Mo J J, Yuan N C 2002 Int. J. Infrared Milli. Waves 23 1803

    [25]

    Chaudhury B, Chaturvedi S 2006 Phys. Plasmas 13 123302

    [26]

    Yuan C X, Zhou Z X, Sun H G 2010 IEEE Tran. Plasma Sci. 38 3348

    [27]

    Jamison S P, Shen J L, Jones D R, Issac R C, Ersfeld B, Clark D, Jaroszynski D A 2003 J. Appl. Phys. 93 4334

  • [1]

    Mitchell F H 1967 Proc. IEEE 55 619

    [2]

    Rybak J P, Churchill R J 1971 IEEE Trans. Aerospace Electron. Syst. AES-7 879

    [3]

    Zeng X J, Yu Z F, Bu S Q, Liu S, Ma P, Shi A H, Liang S C 2010 Acta Aerodyn. Sin. 28 645

    [4]

    Keidar M, Kim M, Boyd I D 2008 J. Spacecraft Rockets 45 445

    [5]

    Liu J F, Xi X L, Wan G B, Wang L L 2011 IEEE Tran. Plasma Sci. 39 852

    [6]

    Kim M, Keidar M, Boyd I D 2008 J. Spacecraft Rockets 45 1223

    [7]

    Thoma C, Rose D V, Miller C L, Clark R E, Hughes T P 2009 J. Appl. Phys. 106 043301

    [8]

    Chen Y Y, Song Y, Li Z H, H A Z 2011 Chin. Phys. B 20 034201

    [9]

    Kim M, Keidar M, Boyd I D 2008 IEEE Tran. Plasma Sci. 36 1198

    [10]

    Yang Y C 2010 M. S. Dissertation (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese) [杨永常 2010 硕士学位论文 (南京: 南京航空航天大学)]

    [11]

    Schexnayder C J, Evans J S, Huber P W 1970 NASA SP-252 277

    [12]

    Wang Y 2011 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [王玥 2011 博士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [13]

    Shen J E, Rong J, Liu W X 2006 Infrared Laser Eng. 35 342 (in Chinese) [申金娥, 荣健, 刘文鑫 2006 红外与激光工程 35 342]

    [14]

    Koch M 2007 Terahertz Frequency Detection and Identification of Materials and Object (Braunschweig) p325

    [15]

    Wang G Q, Wang J G, Li X Z, Fan R Y, Wang X Z, Wang X F, Tong C J 2010 Acta Phys. Sin. 59 8459 (in Chinese) [王光强, 王建国, 李小泽, 范如玉, 王行舟, 王雪峰, 童长江 2010 物理学报 59 8459]

    [16]

    Yang H W, Chen R S, Zhang Y 2006 Acta Phys. Sin. 55 3464 (in Chinese) [杨宏伟, 陈如山, 张云 2006 物理学报 53 3464]

    [17]

    Liu S B, Mo J J, Yuan N C 2004 Acta Phys. Sin. 53 778 (in Chinese) [刘少斌, 莫锦军, 袁乃昌 2004 物理学报 53 778]

    [18]

    Zheng L, Zhao Q, Liu S Z, Ma P, Huang C, Tang Y F, Chen X L, Xing X J, Zhang C Y, Luo X G 2012 Prog. Electromagn. Res. M 24 179

    [19]

    Zheng L, Zhao Q 2011 2011 International Conference on Electronic & Mechanical Engineering and Information Technology Harbin, China August 12-14, 2011 p4535

    [20]

    Ma C G, Zhao Q, Luo X G, He G, Zheng L, Liu J W 2011 Acta Phys. Sin. 60 055201 (in Chinese) [马春光, 赵青, 罗先刚, 何果, 郑灵, 刘建卫 2011 物理学报 60 055201]

    [21]

    Tosun Z, Akbar D, Altan H 2009 34th International Conference on Infrared, Millimeter, and Terhertz Waves Busan, Korea, September 21-25, 2009, p1

    [22]

    Yuan C X, Zhou Z X, Xiang X L, Sun H G, Pu S Z 2010 Phys. Plasmas 17 113304

    [23]

    Yang H W, Tang W C, Kong X K 2007 Int. J. Infrared Milli. Waves 28 547

    [24]

    Liu S B, Mo J J, Yuan N C 2002 Int. J. Infrared Milli. Waves 23 1803

    [25]

    Chaudhury B, Chaturvedi S 2006 Phys. Plasmas 13 123302

    [26]

    Yuan C X, Zhou Z X, Sun H G 2010 IEEE Tran. Plasma Sci. 38 3348

    [27]

    Jamison S P, Shen J L, Jones D R, Issac R C, Ersfeld B, Clark D, Jaroszynski D A 2003 J. Appl. Phys. 93 4334

  • [1] 张海宝, 陈强. 非热等离子体材料表面处理及功能化研究进展. 物理学报, 2021, 70(9): 095203. doi: 10.7498/aps.70.20202233
    [2] 赵繁涛, 宋健, 张津硕, 漆亮文, 赵崇霄, 王德真. 磁化同轴枪操作参数对球马克产生及等离子体特性的影响. 物理学报, 2021, 70(20): 205202. doi: 10.7498/aps.70.20210709
    [3] 李郝, 杨鑫, 张正平. THz波在不同角度磁化的非均匀磁化等离子体中的传输特性分析. 物理学报, 2021, 70(7): 075202. doi: 10.7498/aps.70.20201450
    [4] 杨雄, 程谋森, 王墨戈, 李小康. 螺旋波等离子体放电三维直接数值模拟. 物理学报, 2017, 66(2): 025201. doi: 10.7498/aps.66.025201
    [5] 李文秋, 王刚, 苏小保. 非磁化冷等离子体柱中的模式辐射特性分析. 物理学报, 2017, 66(5): 055201. doi: 10.7498/aps.66.055201
    [6] 陈伟, 郭立新, 李江挺, 淡荔. 时空非均匀等离子体鞘套中太赫兹波的传播特性. 物理学报, 2017, 66(8): 084102. doi: 10.7498/aps.66.084102
    [7] 刘明伟, 龚顺风, 李劲, 姜春蕾, 张禹涛, 周并举. 低密等离子体通道中的非共振激光直接加速. 物理学报, 2015, 64(14): 145201. doi: 10.7498/aps.64.145201
    [8] 陈文波, 龚学余, 路兴强, 冯军, 廖湘柏, 黄国玉, 邓贤君. 基于动理论模型的一维等离子体电磁波传输特性分析. 物理学报, 2014, 63(21): 214101. doi: 10.7498/aps.63.214101
    [9] 成玉国, 程谋森, 王墨戈, 李小康. 磁场对螺旋波等离子体波和能量吸收影响的数值研究. 物理学报, 2014, 63(3): 035203. doi: 10.7498/aps.63.035203
    [10] 郑灵, 赵青, 罗先刚, 马平, 刘述章, 黄成, 邢晓俊, 张春艳, 陈旭霖. 等离子体中电磁波传输特性理论与实验研究. 物理学报, 2012, 61(15): 155203. doi: 10.7498/aps.61.155203
    [11] 董太源, 叶坤涛, 刘维清. 表面波等离子体源的发展现状. 物理学报, 2012, 61(14): 145202. doi: 10.7498/aps.61.145202
    [12] 王玥, 王暄, 贺训军, 梅金硕, 陈明华, 殷景华, 雷清泉. 太赫兹波段表面等离子光子学研究进展. 物理学报, 2012, 61(13): 137301. doi: 10.7498/aps.61.137301
    [13] 周先春, 林万涛, 林一骅, 莫嘉琪. 大气非均匀量子等离子体孤波解. 物理学报, 2012, 61(24): 240202. doi: 10.7498/aps.61.240202
    [14] 马春光, 赵青, 罗先刚, 何果, 郑灵, 刘建卫. 毫米波在等离子体中的衰减特性研究. 物理学报, 2011, 60(5): 055201. doi: 10.7498/aps.60.055201
    [15] 章海锋, 刘少斌, 孔祥鲲. TM模式下二维非磁化等离子体光子晶体的禁带调制特性分析. 物理学报, 2011, 60(5): 055209. doi: 10.7498/aps.60.055209
    [16] 章海锋, 刘少斌, 孔祥鲲. 横磁模式下二维非磁化等离子体光子晶体的线缺陷特性研究. 物理学报, 2011, 60(2): 025215. doi: 10.7498/aps.60.025215
    [17] 邹 秀, 刘惠平, 谷秀娥. 磁化等离子体的鞘层结构. 物理学报, 2008, 57(8): 5111-5116. doi: 10.7498/aps.57.5111
    [18] 王 彬, 谢文楷. 等离子体加载耦合腔慢波结构色散分析. 物理学报, 2007, 56(12): 7138-7146. doi: 10.7498/aps.56.7138
    [19] 张 民, 吴振森. 脉冲波在空间等离子体介质中传播的矩分析及其应用. 物理学报, 2007, 56(10): 5937-5944. doi: 10.7498/aps.56.5937
    [20] 谢鸿全, 刘濮鲲. 磁化等离子体填充螺旋线的色散方程. 物理学报, 2006, 55(5): 2397-2402. doi: 10.7498/aps.55.2397
计量
  • 文章访问数:  4746
  • PDF下载量:  1563
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-13
  • 修回日期:  2012-07-09
  • 刊出日期:  2012-12-05

太赫兹波在非磁化等离子体中的传输特性研究

  • 1. 电子科技大学物理电子学院, 成都 610054
    基金项目: 国家重点基础研究发展计划(973计划)(批准号: 2011CB301805)、 国家国际科技合作专项项目(批准号: 2011DFA63190)、国家高技术研究发展计划(863计划)(批准号: 2011AA7022016)和微细加工光学技术国家重点实验室基金(批准号: M160104012011E11)资助的课题.

摘要: 本文对太赫兹波在非磁化等离子体中的传输特性进行了理论和实验研究, 得到了非磁化等离子体中太赫兹波传输特性随太赫兹波频率、等离子体密度、 碰撞频率和厚度的变化规律. 发现了一些新的现象: 随着太赫兹波频率增加, 反射率曲线出现周期性振荡, 振荡周期为0.03 THz. 随着太赫兹波频率增加, 振荡幅度增加; 随着等离子体密度增加, 振荡幅度减小; 随着等离子体碰撞频率增加,振荡幅度增加. 反射率曲线出现振荡的原因是电磁波在z=0和z=-d界面处的多次反射所致. 以激波管为实验平台进行了0.22 THz太赫兹波在等离子体中传输特性的实验研究, 实验结果和理论结果符合较好. 理论和实验结果均表明, 采用太赫兹来实现地面与飞行器之间的通信互联是解决黑障问题的可选途径之一.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回