搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

THz波在不同角度磁化的非均匀磁化等离子体中的传输特性分析

李郝 杨鑫 张正平

引用本文:
Citation:

THz波在不同角度磁化的非均匀磁化等离子体中的传输特性分析

李郝, 杨鑫, 张正平

Analysis of transmission characteristics of THz waves magnetized at different angles in non-uniform magnetized plasma

Li Hao, Yang Xin, Zhang Zheng-Ping
PDF
HTML
导出引用
  • 为利用太赫兹波解决飞行器再入过程遇到的“黑障”问题, 以散射矩阵方法为基础, 分别以非均匀磁化等离子体的磁化方向、电子密度、外加磁场强度和碰撞频率为变量, 研究了垂直入射情形下它们对太赫兹波传输行为的影响. 结果表明: 这些参数对太赫兹波传输性能影响明显, 例如按某一方向改变磁化角度对左极化和右极化太赫兹波的传输功率有相反的影响; 降低磁化强度能一定程度地避开等离子体对右极化波的吸收; 而降低碰撞频率能缩小等离子体对右极化波的吸收频带. 通过调整这些参数, 有望在一定程度上缓解黑障现象.
    When a hypersonic vehicle flies, it will have friction with the atmosphere, ionizing the surrounding air, and producing a plasma sheath containing a large number of free electrons. The plasma sheath will cause the electromagnetic wave to seriously attenuate, which will result in communication interruption and other problems. With the gradual realization of terahertz wave technology, its high penetrability and anti-interference performance provides an important way to solve the blackout problem. Thus, the using of the terahertz wave to solve the blackout problem encountered during vehicle reentry is of great significance to studying the transmission performance of terahertz wave in the plasma sheath. This article refers to the public data of the plasma sheath during the reentry of the RAM vehicle. Considering the asymmetry of the sheath density distribution, a double Gaussian distribution is used to simulate the longitudinal electron density distribution. Based on the SMM algorithm, the article uses the magnetization direction, electron density, external magnetic field strength, collision frequency of the non-uniformly magnetized plasma as variables, and their effects on left-hand and right-hand polarized terahertz wave under normal incidence are studied. The results show that these parameters have obvious effects on the transmission performance of terahertz wave in high-density plasma sheath. The right-hand polarized terahertz wave will produce a power absorption peak near the cyclotron frequency due to cyclotron resonance. Changing the magnetization angle in a certain direction will bring an opposite effect on the transmission rate to left-hand polarized and right-hand polarized terahertz wave. Reducing the magnetization intensity can avoid the absorption peak of the right-hand polarized wave by the plasma to a certain extent. Increasing the magnetization can increase the transmission power of the left-hand polarized wave to a certain extent. Moreover, reducing the collision frequency can narrow the absorption band of the right-hand polarized wave in the plasma and increase the transmission power of left-hand polarized wave. In general, the transmission performance of left-hand polarized terahertz wave in non-uniformly magnetized plasma is better than that of right-hand polarized terahertz wave. These results provide a theoretical basis for investigating the blackout phenomenon. The adjusting of these parameters studied in the article is expected to be able to alleviate the blackout problem to a certain extent.
      通信作者: 张正平, zpzhang@gzu.edu.cn
    • 基金项目: 半导体功率器件可靠性教育部工程研究中心开放基金(批准号: ERCMEKFJJ2019-(05))、贵州大学自然科学基金(批准号: (2019)62)和贵州省MEMS传感器及系统应用科技创新人才团队(批准号:QKHPTRC[2018]5616)资助的课题
      Corresponding author: Zhang Zheng-Ping, zpzhang@gzu.edu.cn
    • Funds: Project supported by the Open Foundation of Semiconductor Power Device Reliability Engineering Research Center of Ministry of Education, China (Grant No. ERCMEKFJJ2019-(05)), the Natural Science Foundation of Guizhou University, China (Grant No. (2019)62), and MEMS Sensor and System Application Technology Innovation Talent Team of Guizhou Province, China (Grant No. QKHPTRC[2018]5616).
    [1]

    Gupta R N, Yos J M, Thompson R A, Lee K P 1990 A Review of Reaction Rates and Thermodynamic and Transport Properties for an 11-species Air Model for Chemical and Thermal Nonequilibrium Calculations to 30000 K (Hampton: Langley Research Center) NASA-RP-1232

    [2]

    姚博 2019 博士学位论文 (西安: 西安电子科技大学)

    Yao B 2019 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [3]

    杨楠, 杜海伟 2014 红外与毫米波学报 33 237Google Scholar

    Yang N, Du H W 2014 J. Infrared Millimeter Waves 33 237Google Scholar

    [4]

    Huang S J, Li F 2004 Int. J. Infrared Millimeter Waves 25 815Google Scholar

    [5]

    陈伟, 郭立新, 李江挺, 淡荔 2017 物理学报 66 084102Google Scholar

    Chen W, Guo L X, Li J T, Dan L 2017 Acta Phys. Sin. 66 084102Google Scholar

    [6]

    Chen W, Guo L X, Li J T, Liu S H 2016 IEEE Trans. Plasma Sci. 44 3235Google Scholar

    [7]

    Cheng G X, Liu L 2010 IEEE Trans. Plasma Sci. 38 3109Google Scholar

    [8]

    Jazi B, Rahmani Z, Shokri B 2013 IEEE Trans. Plasma Sci. 41 290Google Scholar

    [9]

    曹建章, 李景镇, 陈国瑞 2002 电波科学学报 17 125Google Scholar

    Cao J Z, Li J Z, Chen G R 2002 Chin. J. Radio Sci. 17 125Google Scholar

    [10]

    林敏, 徐浩军, 魏小龙, 梁华, 张艳华 2015 物理学报 64 055201Google Scholar

    Lin M, Xu H J, Wei X L, Liang H, Zhang Y H 2015 Acta Phys. Sin. 64 055201Google Scholar

    [11]

    Helaly A, Soliman E A, Megahed A A 1997 IEE Proc. MIicrow. Antennas Propag. 144 61Google Scholar

    [12]

    Hu B J, Wei G, Lai S L 1999 IEEE Trans. Plasma Sci. 27 1131Google Scholar

    [13]

    Chen X, Li K, Liu Y, Zhou Y, Li X, Liu Y 2017 IEEE Trans. Plasma Sci. 45 3166Google Scholar

    [14]

    Guo L X, Guo L J 2017 Phys. Plasmas 24 112119Google Scholar

    [15]

    Zhang Y Y, Xu G J, Zheng Z Q 2019 Optik 182 618Google Scholar

    [16]

    Dunn M G, Kang S W 1973 Theoretical and Experimental Studies of Reentry Plasmas (Washington: National Aeronautics and Space Administration) NASA-CR-2232

    [17]

    Liu J F, Xi X L, Wang L L 2011 IEEE Trans. Plasma Sci. 39 852Google Scholar

    [18]

    Tian Y X, Yan W Z, Gu X L, Jin X L, Li J Q, Li B 2017 AIP Adv. 7 125325Google Scholar

    [19]

    Heald M A, Wharton C B, Furth H P 1965 Phys. Today 18 72Google Scholar

    [20]

    Yeh C, Rusch W V T 1965 J. Appl. Phys. 36 2302Google Scholar

    [21]

    孙朋飞 2019 硕士学位论文 (西安: 西安电子科技大学)

    Sun P F 2019 M. S. Thesis (Xi’an: Xidian University) (in Chinese)

    [22]

    薄勇, 赵青, 罗先刚, 刘颖, 陈禹旭, 刘建卫 2016 物理学报 65 035201Google Scholar

    Bo Y, Zhao Q, Luo X G, Liu Y, Chen Y X, Liu J W 2016 Acta Phys. Sin. 65 035201Google Scholar

  • 图 1  太赫兹波在分层等离子体中传播的模型图

    Fig. 1.  Model diagram of THz waves propagation in the layered plasma.

    图 2  电子密度分布与等离子体厚度的关系

    Fig. 2.  Electron density profile versus plasma thickness.

    图 3  THz波归一化传输功率与外加磁场角度的关系 (a), (b)右极化; (c), (d)左极化

    Fig. 3.  Relationship between normalized transmission power of THz wave and external magnetic field angle: (a), (b) Right-handed polarization; (c), (d) left-handed polarization.

    图 4  THz波归一化反射、传输、吸收功率与电子密度最大值的关系 (a), (b), (c)右极化; (d), (e), (f)左极化

    Fig. 4.  Relationship between normalized reflection, transmission, and absorption power of the THz wave and the maximum value of electron density: (a), (b), (c) Right-handed polarization; (d), (e), (f) left-handed polarization.

    图 5  THz波归一化传输功率与外加磁场强度的关系 (a), (b)右极化; (c), (d)左极化

    Fig. 5.  Relationship between normalized transmission power of THz wave and applied magnetic field intensity: (a), (b) Right-handed polarization; (c), (d) left-handed polarization.

    图 6  THz波归一化传输功率与碰撞频率的关系 (a), (b)右极化; (c), (d)左极化

    Fig. 6.  Relationship between normalized transmission power of THz wave and collision frequency: (a), (b) Right-handed polarization; (c), (d) left-handed polarization.

  • [1]

    Gupta R N, Yos J M, Thompson R A, Lee K P 1990 A Review of Reaction Rates and Thermodynamic and Transport Properties for an 11-species Air Model for Chemical and Thermal Nonequilibrium Calculations to 30000 K (Hampton: Langley Research Center) NASA-RP-1232

    [2]

    姚博 2019 博士学位论文 (西安: 西安电子科技大学)

    Yao B 2019 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [3]

    杨楠, 杜海伟 2014 红外与毫米波学报 33 237Google Scholar

    Yang N, Du H W 2014 J. Infrared Millimeter Waves 33 237Google Scholar

    [4]

    Huang S J, Li F 2004 Int. J. Infrared Millimeter Waves 25 815Google Scholar

    [5]

    陈伟, 郭立新, 李江挺, 淡荔 2017 物理学报 66 084102Google Scholar

    Chen W, Guo L X, Li J T, Dan L 2017 Acta Phys. Sin. 66 084102Google Scholar

    [6]

    Chen W, Guo L X, Li J T, Liu S H 2016 IEEE Trans. Plasma Sci. 44 3235Google Scholar

    [7]

    Cheng G X, Liu L 2010 IEEE Trans. Plasma Sci. 38 3109Google Scholar

    [8]

    Jazi B, Rahmani Z, Shokri B 2013 IEEE Trans. Plasma Sci. 41 290Google Scholar

    [9]

    曹建章, 李景镇, 陈国瑞 2002 电波科学学报 17 125Google Scholar

    Cao J Z, Li J Z, Chen G R 2002 Chin. J. Radio Sci. 17 125Google Scholar

    [10]

    林敏, 徐浩军, 魏小龙, 梁华, 张艳华 2015 物理学报 64 055201Google Scholar

    Lin M, Xu H J, Wei X L, Liang H, Zhang Y H 2015 Acta Phys. Sin. 64 055201Google Scholar

    [11]

    Helaly A, Soliman E A, Megahed A A 1997 IEE Proc. MIicrow. Antennas Propag. 144 61Google Scholar

    [12]

    Hu B J, Wei G, Lai S L 1999 IEEE Trans. Plasma Sci. 27 1131Google Scholar

    [13]

    Chen X, Li K, Liu Y, Zhou Y, Li X, Liu Y 2017 IEEE Trans. Plasma Sci. 45 3166Google Scholar

    [14]

    Guo L X, Guo L J 2017 Phys. Plasmas 24 112119Google Scholar

    [15]

    Zhang Y Y, Xu G J, Zheng Z Q 2019 Optik 182 618Google Scholar

    [16]

    Dunn M G, Kang S W 1973 Theoretical and Experimental Studies of Reentry Plasmas (Washington: National Aeronautics and Space Administration) NASA-CR-2232

    [17]

    Liu J F, Xi X L, Wang L L 2011 IEEE Trans. Plasma Sci. 39 852Google Scholar

    [18]

    Tian Y X, Yan W Z, Gu X L, Jin X L, Li J Q, Li B 2017 AIP Adv. 7 125325Google Scholar

    [19]

    Heald M A, Wharton C B, Furth H P 1965 Phys. Today 18 72Google Scholar

    [20]

    Yeh C, Rusch W V T 1965 J. Appl. Phys. 36 2302Google Scholar

    [21]

    孙朋飞 2019 硕士学位论文 (西安: 西安电子科技大学)

    Sun P F 2019 M. S. Thesis (Xi’an: Xidian University) (in Chinese)

    [22]

    薄勇, 赵青, 罗先刚, 刘颖, 陈禹旭, 刘建卫 2016 物理学报 65 035201Google Scholar

    Bo Y, Zhao Q, Luo X G, Liu Y, Chen Y X, Liu J W 2016 Acta Phys. Sin. 65 035201Google Scholar

  • [1] 陈乐迪, 范仁浩, 刘雨, 唐贡惠, 马中丽, 彭茹雯, 王牧. 基于柔性超构材料宽带调控太赫兹波的偏振态. 物理学报, 2022, 71(18): 187802. doi: 10.7498/aps.71.20220801
    [2] 彭晓昱, 周欢. 太赫兹波生物效应. 物理学报, 2022, (): . doi: 10.7498/aps.71.20211996
    [3] 侯磊, 王俊喃, 王磊, 施卫. α-乳糖水溶液太赫兹吸收光谱实验研究及模拟分析. 物理学报, 2021, 70(24): 243202. doi: 10.7498/aps.70.20211716
    [4] 宁辉, 王凯程, 王少萌, 宫玉彬. 强场太赫兹波作用下氢气分子振动动力学研究. 物理学报, 2021, 70(24): 243101. doi: 10.7498/aps.70.20211482
    [5] 王红霞, 张清华, 侯维君, 魏一苇. 不同模态沙尘暴对太赫兹波的衰减分析. 物理学报, 2021, 70(6): 064101. doi: 10.7498/aps.70.20201393
    [6] 彭晓昱, 周欢. 太赫兹波生物效应. 物理学报, 2021, 70(24): 240701. doi: 10.7498/aps.70.20211996
    [7] 王磊, 肖芮文, 葛士军, 沈志雄, 吕鹏, 胡伟, 陆延青. 太赫兹液晶材料与器件研究进展. 物理学报, 2019, 68(8): 084205. doi: 10.7498/aps.68.20182275
    [8] 陈伟, 郭立新, 李江挺, 淡荔. 时空非均匀等离子体鞘套中太赫兹波的传播特性. 物理学报, 2017, 66(8): 084102. doi: 10.7498/aps.66.084102
    [9] 莫漫漫, 文岐业, 陈智, 杨青慧, 李胜, 荆玉兰, 张怀武. 基于圆台结构的超宽带极化不敏感太赫兹吸收器. 物理学报, 2013, 62(23): 237801. doi: 10.7498/aps.62.237801
    [10] 孙丹丹, 陈智, 文岐业, 邱东鸿, 赖伟恩, 董凯, 赵碧辉, 张怀武. 二氧化钒薄膜低温制备及其太赫兹调制特性研究. 物理学报, 2013, 62(1): 017202. doi: 10.7498/aps.62.017202
    [11] 司黎明, 侯吉旋, 刘埇, 吕昕. 基于负微分电阻碳纳米管的太赫兹波有源超材料特性参数提取. 物理学报, 2013, 62(3): 037806. doi: 10.7498/aps.62.037806
    [12] 张会云, 刘蒙, 尹贻恒, 吴志心, 申端龙, 张玉萍. 基于格林函数法研究金属线栅在太赫兹波段的散射特性. 物理学报, 2013, 62(19): 194207. doi: 10.7498/aps.62.194207
    [13] 王玥, 王暄, 贺训军, 梅金硕, 陈明华, 殷景华, 雷清泉. 太赫兹波段表面等离子光子学研究进展. 物理学报, 2012, 61(13): 137301. doi: 10.7498/aps.61.137301
    [14] 郑灵, 赵青, 刘述章, 邢晓俊. 太赫兹波在非磁化等离子体中的传输特性研究. 物理学报, 2012, 61(24): 245202. doi: 10.7498/aps.61.245202
    [15] 陆金星, 黄志明, 黄敬国, 王兵兵, 沈学民. 相位失配与材料吸收对利用GaSe差频产生太赫兹波功率影响的研究. 物理学报, 2011, 60(2): 024209. doi: 10.7498/aps.60.024209
    [16] 王玥, 吴群, 吴昱明, 傅佳辉, 王东兴, 王岩, 李乐伟. 碳纳米管辐射太赫兹波的理论分析与数值验证. 物理学报, 2011, 60(5): 057801. doi: 10.7498/aps.60.057801
    [17] 张戎, 曹俊诚. 光子晶体对太赫兹波的调制特性研究. 物理学报, 2010, 59(6): 3924-3929. doi: 10.7498/aps.59.3924
    [18] 李忠洋, 姚建铨, 李俊, 邴丕彬, 徐德刚, 王鹏. 基于闪锌矿晶体中受激电磁耦子散射产生可调谐太赫兹波的理论研究. 物理学报, 2010, 59(9): 6237-6242. doi: 10.7498/aps.59.6237
    [19] 王玥, 吴群, 施卫, 贺训军, 殷景华. 基于纳观域碳纳米管的太赫兹波天线研究. 物理学报, 2009, 58(2): 919-924. doi: 10.7498/aps.58.919
    [20] 孙红起, 赵国忠, 张存林, 杨国桢. 不同中心波长飞秒脉冲激发InAs表面辐射太赫兹波的机理研究. 物理学报, 2008, 57(2): 790-795. doi: 10.7498/aps.57.790
计量
  • 文章访问数:  5522
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-01
  • 修回日期:  2020-11-24
  • 上网日期:  2021-03-21
  • 刊出日期:  2021-04-05

/

返回文章
返回