-
When a hypersonic vehicle flies, it will have friction with the atmosphere, ionizing the surrounding air, and producing a plasma sheath containing a large number of free electrons. The plasma sheath will cause the electromagnetic wave to seriously attenuate, which will result in communication interruption and other problems. With the gradual realization of terahertz wave technology, its high penetrability and anti-interference performance provides an important way to solve the blackout problem. Thus, the using of the terahertz wave to solve the blackout problem encountered during vehicle reentry is of great significance to studying the transmission performance of terahertz wave in the plasma sheath. This article refers to the public data of the plasma sheath during the reentry of the RAM vehicle. Considering the asymmetry of the sheath density distribution, a double Gaussian distribution is used to simulate the longitudinal electron density distribution. Based on the SMM algorithm, the article uses the magnetization direction, electron density, external magnetic field strength, collision frequency of the non-uniformly magnetized plasma as variables, and their effects on left-hand and right-hand polarized terahertz wave under normal incidence are studied. The results show that these parameters have obvious effects on the transmission performance of terahertz wave in high-density plasma sheath. The right-hand polarized terahertz wave will produce a power absorption peak near the cyclotron frequency due to cyclotron resonance. Changing the magnetization angle in a certain direction will bring an opposite effect on the transmission rate to left-hand polarized and right-hand polarized terahertz wave. Reducing the magnetization intensity can avoid the absorption peak of the right-hand polarized wave by the plasma to a certain extent. Increasing the magnetization can increase the transmission power of the left-hand polarized wave to a certain extent. Moreover, reducing the collision frequency can narrow the absorption band of the right-hand polarized wave in the plasma and increase the transmission power of left-hand polarized wave. In general, the transmission performance of left-hand polarized terahertz wave in non-uniformly magnetized plasma is better than that of right-hand polarized terahertz wave. These results provide a theoretical basis for investigating the blackout phenomenon. The adjusting of these parameters studied in the article is expected to be able to alleviate the blackout problem to a certain extent.
-
Keywords:
- terahertz wave /
- non-uniform magnetized plasma /
- scattering matrix method /
- magnetization angle
[1] Gupta R N, Yos J M, Thompson R A, Lee K P 1990 A Review of Reaction Rates and Thermodynamic and Transport Properties for an 11-species Air Model for Chemical and Thermal Nonequilibrium Calculations to 30000 K (Hampton: Langley Research Center) NASA-RP-1232
[2] 姚博 2019 博士学位论文 (西安: 西安电子科技大学)
Yao B 2019 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)
[3] 杨楠, 杜海伟 2014 红外与毫米波学报 33 237Google Scholar
Yang N, Du H W 2014 J. Infrared Millimeter Waves 33 237Google Scholar
[4] Huang S J, Li F 2004 Int. J. Infrared Millimeter Waves 25 815Google Scholar
[5] 陈伟, 郭立新, 李江挺, 淡荔 2017 物理学报 66 084102Google Scholar
Chen W, Guo L X, Li J T, Dan L 2017 Acta Phys. Sin. 66 084102Google Scholar
[6] Chen W, Guo L X, Li J T, Liu S H 2016 IEEE Trans. Plasma Sci. 44 3235Google Scholar
[7] Cheng G X, Liu L 2010 IEEE Trans. Plasma Sci. 38 3109Google Scholar
[8] Jazi B, Rahmani Z, Shokri B 2013 IEEE Trans. Plasma Sci. 41 290Google Scholar
[9] 曹建章, 李景镇, 陈国瑞 2002 电波科学学报 17 125Google Scholar
Cao J Z, Li J Z, Chen G R 2002 Chin. J. Radio Sci. 17 125Google Scholar
[10] 林敏, 徐浩军, 魏小龙, 梁华, 张艳华 2015 物理学报 64 055201Google Scholar
Lin M, Xu H J, Wei X L, Liang H, Zhang Y H 2015 Acta Phys. Sin. 64 055201Google Scholar
[11] Helaly A, Soliman E A, Megahed A A 1997 IEE Proc. MIicrow. Antennas Propag. 144 61Google Scholar
[12] Hu B J, Wei G, Lai S L 1999 IEEE Trans. Plasma Sci. 27 1131Google Scholar
[13] Chen X, Li K, Liu Y, Zhou Y, Li X, Liu Y 2017 IEEE Trans. Plasma Sci. 45 3166Google Scholar
[14] Guo L X, Guo L J 2017 Phys. Plasmas 24 112119Google Scholar
[15] Zhang Y Y, Xu G J, Zheng Z Q 2019 Optik 182 618Google Scholar
[16] Dunn M G, Kang S W 1973 Theoretical and Experimental Studies of Reentry Plasmas (Washington: National Aeronautics and Space Administration) NASA-CR-2232
[17] Liu J F, Xi X L, Wang L L 2011 IEEE Trans. Plasma Sci. 39 852Google Scholar
[18] Tian Y X, Yan W Z, Gu X L, Jin X L, Li J Q, Li B 2017 AIP Adv. 7 125325Google Scholar
[19] Heald M A, Wharton C B, Furth H P 1965 Phys. Today 18 72Google Scholar
[20] Yeh C, Rusch W V T 1965 J. Appl. Phys. 36 2302Google Scholar
[21] 孙朋飞 2019 硕士学位论文 (西安: 西安电子科技大学)
Sun P F 2019 M. S. Thesis (Xi’an: Xidian University) (in Chinese)
[22] 薄勇, 赵青, 罗先刚, 刘颖, 陈禹旭, 刘建卫 2016 物理学报 65 035201Google Scholar
Bo Y, Zhao Q, Luo X G, Liu Y, Chen Y X, Liu J W 2016 Acta Phys. Sin. 65 035201Google Scholar
-
-
[1] Gupta R N, Yos J M, Thompson R A, Lee K P 1990 A Review of Reaction Rates and Thermodynamic and Transport Properties for an 11-species Air Model for Chemical and Thermal Nonequilibrium Calculations to 30000 K (Hampton: Langley Research Center) NASA-RP-1232
[2] 姚博 2019 博士学位论文 (西安: 西安电子科技大学)
Yao B 2019 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)
[3] 杨楠, 杜海伟 2014 红外与毫米波学报 33 237Google Scholar
Yang N, Du H W 2014 J. Infrared Millimeter Waves 33 237Google Scholar
[4] Huang S J, Li F 2004 Int. J. Infrared Millimeter Waves 25 815Google Scholar
[5] 陈伟, 郭立新, 李江挺, 淡荔 2017 物理学报 66 084102Google Scholar
Chen W, Guo L X, Li J T, Dan L 2017 Acta Phys. Sin. 66 084102Google Scholar
[6] Chen W, Guo L X, Li J T, Liu S H 2016 IEEE Trans. Plasma Sci. 44 3235Google Scholar
[7] Cheng G X, Liu L 2010 IEEE Trans. Plasma Sci. 38 3109Google Scholar
[8] Jazi B, Rahmani Z, Shokri B 2013 IEEE Trans. Plasma Sci. 41 290Google Scholar
[9] 曹建章, 李景镇, 陈国瑞 2002 电波科学学报 17 125Google Scholar
Cao J Z, Li J Z, Chen G R 2002 Chin. J. Radio Sci. 17 125Google Scholar
[10] 林敏, 徐浩军, 魏小龙, 梁华, 张艳华 2015 物理学报 64 055201Google Scholar
Lin M, Xu H J, Wei X L, Liang H, Zhang Y H 2015 Acta Phys. Sin. 64 055201Google Scholar
[11] Helaly A, Soliman E A, Megahed A A 1997 IEE Proc. MIicrow. Antennas Propag. 144 61Google Scholar
[12] Hu B J, Wei G, Lai S L 1999 IEEE Trans. Plasma Sci. 27 1131Google Scholar
[13] Chen X, Li K, Liu Y, Zhou Y, Li X, Liu Y 2017 IEEE Trans. Plasma Sci. 45 3166Google Scholar
[14] Guo L X, Guo L J 2017 Phys. Plasmas 24 112119Google Scholar
[15] Zhang Y Y, Xu G J, Zheng Z Q 2019 Optik 182 618Google Scholar
[16] Dunn M G, Kang S W 1973 Theoretical and Experimental Studies of Reentry Plasmas (Washington: National Aeronautics and Space Administration) NASA-CR-2232
[17] Liu J F, Xi X L, Wang L L 2011 IEEE Trans. Plasma Sci. 39 852Google Scholar
[18] Tian Y X, Yan W Z, Gu X L, Jin X L, Li J Q, Li B 2017 AIP Adv. 7 125325Google Scholar
[19] Heald M A, Wharton C B, Furth H P 1965 Phys. Today 18 72Google Scholar
[20] Yeh C, Rusch W V T 1965 J. Appl. Phys. 36 2302Google Scholar
[21] 孙朋飞 2019 硕士学位论文 (西安: 西安电子科技大学)
Sun P F 2019 M. S. Thesis (Xi’an: Xidian University) (in Chinese)
[22] 薄勇, 赵青, 罗先刚, 刘颖, 陈禹旭, 刘建卫 2016 物理学报 65 035201Google Scholar
Bo Y, Zhao Q, Luo X G, Liu Y, Chen Y X, Liu J W 2016 Acta Phys. Sin. 65 035201Google Scholar
计量
- 文章访问数: 5328
- PDF下载量: 79
- 被引次数: 0