搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强场太赫兹波作用下氢气分子振动动力学研究

宁辉 王凯程 王少萌 宫玉彬

引用本文:
Citation:

强场太赫兹波作用下氢气分子振动动力学研究

宁辉, 王凯程, 王少萌, 宫玉彬

Vibrational dynamics of hydrogen molecules under intense THz waves

Ning Hui, Wang Kai-Cheng, Wang Shao-Meng, Gong Yu-Bin
PDF
HTML
导出引用
  • 利用电磁场与分子体系的相互作用可以研究分子的物理性质及其动力学问题. 不断发展的太赫兹技术提供了能够产生亚皮秒定向强电场的太赫兹源, 其产生的强场太赫兹波拥有与分子局部电场环境相当的电场强度, 且定向电场的亚皮秒时间尺度也能覆盖众多超快物理化学反应过程. 目前太赫兹波与分子的相互作用还主要局限于共振相互作用, 即电磁波通过偶极相互作用, 使分子在不同的振转能级发生跃迁. 本文基于密度泛函理论计算和薛定谔方程的时域有限差分求解方法, 研究了强太赫兹波电场对氢分子的强场非共振作用. 结果显示, 在强场太赫兹波亚皮秒定向强电场的作用下, 氢分子将产生诱导偶极矩, 此偶极矩与外加太赫兹场作用, 引起质子概率密度分布的波动及振动能级布居数的变化. 本文基于非极性双原子分子氢气与强场太赫兹波的非共振作用, 展示了一种独特的电磁波与分子相互作用的途径, 对研究生物体非极性分子及极性较弱的分子在强太赫兹场下的动力学研究提供了方法.
    The physical properties and dynamics of molecules can be studied by the interaction between electromagnetic field and molecular system. The continuous development of terahertz technology provides a terahertz source capable of generating a sub-picosecond directional intense electric field. The generated intense-field terahertz wave has the same electric field intensity as the molecular local electric field environment, and on a sub-picosecond time scale of the directional electric field there can happen many ultrafast physical and chemical reactions. At present, the interaction between terahertz waves and molecules is limited mainly to the resonance interaction, that is, the molecules transition at different vibrational levels, caused through dipole interaction. In this work, based on the density functional theory calculation and the finite difference time domain solution method of Schrödinger equation, the intense non-resonance effect of intense terahertz wave electric field on hydrogen molecules is studied. The results show that under the action of intense terahertz wave sub-picosecond directional intense electric field, hydrogen molecule will produce an induced dipole moment. This dipole interacts with the external terahertz field, resulting in the fluctuation of proton probability density distribution and the change of vibration energy level population. Based on the non-resonant interaction between non-polar diatomic molecule hydrogen and intense terahertz wave, a unique way of producing the interaction between electromagnetic waves and molecules is displayed in this work, which is a method of studying the dynamics of non-polar molecules and molecules with weak polarity in intense terahertz field.
      通信作者: 宫玉彬, ybgong@uestc.edu.cn
    • 基金项目: 国家自然科学基金(批准号61921002, 61988102)资助的课题
      Corresponding author: Gong Yu-Bin, ybgong@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61921002, 61988102)
    [1]

    Stapelfeldt H 2003 Eur. Phys. J. D 26 15Google Scholar

    [2]

    Sakai H, Safvan C P, Larsen J J, Hilligsoe K M, Hald K, Stapelfeldt H 1999 J. Chem. Phys. 110 10235Google Scholar

    [3]

    Wunderlich C, Figger H, Hänsch T W 1996 Chem. Phys. Lett. 256 43Google Scholar

    [4]

    Ohmura H, Saito N, Morishita T 2014 Phys. Rev. A 89 013405Google Scholar

    [5]

    Trump C, Rottke H, Wittmann M, Korn G, Sandner W, Lein M, Engel V 2000 Phys. Rev. A 62 063402Google Scholar

    [6]

    Rottke H, Trump C, Wittmann M, et al. 2002 Phys. Rev. Lett. 89 013001Google Scholar

    [7]

    Kling M F, Siedschlag C, Znakovskaya I, Verhoef A J, Zherebtsov S, Krausz F, Lezius M, Vrakking M J J 2008 Mol. Phys. 106 455Google Scholar

    [8]

    Förster J, Vanne Y V, Saenz A 2014 Phys. Rev. A 90 053424

    [9]

    Zhang X C, Shkurinov A, Zhang Y 2017 Nat. Photonics 11 16Google Scholar

    [10]

    Hafez H A, Chai X, Ibrahim A, Mondal S, Férachou D, Ropagnol X, Ozaki T 2016 J. Opt. 18 093004Google Scholar

    [11]

    Shaik S, Mandal D, Ramanan R 2016 Nat. Chem. 8 1091Google Scholar

    [12]

    Zeng Y, Zhou C, Song L, Lu X, Li Z, Ding Y, Bai Y, Xu Y, Leng Y, Tian Y, Liu J, Li R, Xu Z 2020 45th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) Buffalo, New York, USA, November 8–13 2020 p1

    [13]

    Kampfrath T, Tanaka K, Nelson K A 2013 Nat. Photonics 7 680Google Scholar

    [14]

    Salumbides E J, Dickenson G D, Ivanov T I, Ubachs W 2011 Phys. Rev. Lett. 107 043005Google Scholar

    [15]

    Dickenson G D, Niu M L, Salumbides E J, Komasa J, Eikema K S, Pachucki K, Ubachs W 2013 Phys. Rev. Lett. 110 193601Google Scholar

    [16]

    Liu J J, Salumbides E J, Hollenstein U, Koelemeij J C J, Eikema K S E, Ubachs W, Merkt F 2009 J. Chem. Phys. 130 174306Google Scholar

    [17]

    Saenz A 2000 Phys. Rev. A 61 051402

    [18]

    Puchalski M, Komasa J, Pachucki K 2017 Phys. Rev. A 95 052506Google Scholar

    [19]

    Šmydke J, Ajay J, Remacle F, Levine R D 2017 Electronic and Nuclear Dynamics for a Non-Equilibrium Electronic State: The Ultrafast Pumping of N2 // Tadjer A, Pavlov R, Maruani J, Brändas E J, Delgado-Barrio G 2017 Quantum Systems in Physics, Chemistry, and Biology: Advances in Concepts and Applications (Vol. 30) (Cham: Springer International Publishing AG) p195

    [20]

    Calvert C R, Bryan W A, Newell W R, Williams I D 2010 Phys. Rep. 491 1Google Scholar

    [21]

    Neese F 2011 Wiley Interdiscip. Rev. Comput. Mol. Sci. 2 73Google Scholar

    [22]

    Becerril R, Guzman F S, Rendon-Romero A, Valdez-Alvarado S 2008 Rev. Mex. Fis. E 54 120

    [23]

    Wang K C, Yang L X, Wang S M, Guo L H, Ma J L, Tang J C, Bo W F, Wu Z, Zeng B Q, Gong Y B 2020 Phys. Chem. Chem. Phys. 22 9316Google Scholar

    [24]

    Neese F 2017 Wiley Interdiscip. Rev. Comput. Mol. Sci. 8 1Google Scholar

    [25]

    Stephens P J, Devlin F J, Chabalowski C F, Frisch M J 1994 J. Phys. Chem. 98 11623Google Scholar

    [26]

    Weigend F, Ahlrichs R 2005 Phys. Chem. Chem. Phys. 7 3297Google Scholar

    [27]

    Goerigk L, Grimme S 2011 J. Chem. Theory Comput. 7 291Google Scholar

    [28]

    Caldeweyher E, Bannwarth C, Grimme S 2017 J. Chem. Phys. 147 034112Google Scholar

    [29]

    Caldeweyher E, Ehlert S, Hansen A, Neugebauer H, Spicher S, Bannwarth C, Grimme S 2019 J. Chem. Phys. 150 154122Google Scholar

    [30]

    Cohen-Tannoudji C, Diu B, Laloë F 2019 Quantum Mechanics, Volume 1: Basic Concepts, Tools, and Applications (Vol. 1, 2nd Ed.) (New Jersey: John Wiley & Sons) p529

    [31]

    Valkunas L, Abramavicius D, Mancal T 2013 Molecular Excitation Dynamics and Relaxation: Quantum Theory and Spectroscopy (New Jersey: John Wiley & Sons) p280

    [32]

    Swope W C, Andersen H C, Berens P H, Wilson K R 1982 J. Chem. Phys. 76 637Google Scholar

    [33]

    刘成卜, 邓从豪 1985 山东大学学报(自然科学版) 2 104

    Liu C B, Deng C H 1985 Journal of Shandong University (Natural Science Edition) 2 104

  • 图 1  氢分子的计算模型(球体表示氢原子), 两个氢核的连线平行于z

    Fig. 1.  Calculation model of hydrogen molecules (spheres represent hydrogen atoms), two hydrogen nuclei are parallel to the z axis.

    图 2  无外加电场时氢分子势能面(黑色曲线)及各能级概率密度分布曲线(彩色曲线), 氢分子的前3个本征振动模式由3条彩色曲线表示, 图例的数字代表氢分子每个本征模的能量E, 这里将势能面最低点设置为0

    Fig. 2.  Without external electric field, the potential energy surface of hydrogen molecule (black curve) and the probability density distribution curve of each energy level (color curves). The first three eigen vibration modes of hydrogen molecule are represented by three color curves, the number in the legend represents the energy of each eigenmode of the hydrogen molecule, and the lowest point of potential energy surface is set to 0.

    图 3  氢分子的势能面随外加电场强度与键长的变化图. 这幅图是用三次样条插值方法绘制, 颜色块代表能量, 单位是eV. 在电场强度增加至45 GV/m附近时, 最小势能点发生移动, 新的最小势能点出现在2.8 Å附近. 为了更清楚地展示势能面, 大于5 eV的体系势能用深红色表示

    Fig. 3.  Variation of potential energy surface of hydrogen molecule with applied electric field intensity and bond length. This map is drawn by cubic spline interpolation method. The color block represents energy in eV. When the electric field intensity increases to 45 GV/m, the minimum potential energy point moves, and the new minimum energy point appears near 2.8 Å. In order to show the potential energy surface more clearly, the potential energy of the system greater than 5 eV is expressed in dark red.

    图 4  本文计算所使用的4个太赫兹高斯脉冲场的波形图, 幅值分别为35 GV/m (红色、紫色线)和60 GV/m (蓝色、黑色线), 脉宽分别为90 fs (红色、蓝色线)和20 fs (紫色、黑色线)

    Fig. 4.  Waveforms of four THz pulse fields are calculated, the amplitudes are 35 GV/m (red, purple lines), 60 GV/m (blue, black lines), pulse width are 90 fs (red, blue lines), 20 fs (purple, black lines).

    图 5  脉宽为90与20 fs的太赫兹脉冲波经傅里叶变换后的频谱图, 纵轴代表归一化的功率密度

    Fig. 5.  Spectrum of THz pulse waves with 90 fs and 20 fs pulse width after fast Fourier transform. The longitudinal axis represents normalized power density.

    图 6  氢分子在幅值为35 GV/m的z方向高斯定向强场作用下质子概率密度分布的演化图, 施加的高斯脉冲电场的脉宽分别为(a) 90 fs与(b) 20 fs, 高斯脉冲中心设置在0.4 ps, 颜色条代表质子概率密度

    Fig. 6.  Evolution diagram of proton probability density distribution of hydrogen molecule under the action of Gaussian directional intense field in z direction with amplitude of 35 GV/m. The pulse widths of applied Gaussian pulse electric field are (a) 90 fs and (b) 20 fs, respectively. The Gaussian pulse center is set at 0.4 ps, and the color strip represents the proton probability density.

    图 7  氢分子在幅值为35 GV/m的z方向高斯定向强场作用下能级布居数分布的演化图, 施加的高斯脉冲电场的脉宽分别为(a) 90 fs与(b) 20 fs, 高斯脉冲中心设置在0.4 ps, 不同颜色的曲线代表不同能级的布居数

    Fig. 7.  Evolution diagram of the energy level population distribution of hydrogen molecule under the action of the Gaussian directional intense field in the z direction with the amplitude of 35 GV/m. The pulse widths of the applied Gaussian pulse electric field are (a) 90 fs and (b) 20 fs, respectively. The Gaussian pulse center is set at 0.4 ps. Curves of different colors represent populations of different energy levels.

    图 8  氢分子在幅值为60 GV/m的z方向高斯定向强场作用下质子概率密度分布的演化图, 施加的高斯脉冲电场的脉宽分别为(a) 90 fs与(b) 20 fs, 高斯脉冲中心设置在0.4 ps, 颜色条代表质子概率密度

    Fig. 8.  Evolution diagram of proton probability density distribution of hydrogen molecule under the action of Gaussian directional intense field in z direction with amplitude of 60 GV/m. The pulse widths of applied Gaussian pulse electric field are (a) 90 fs and (b) 20 fs, respectively. The Gaussian pulse center is set at 0.4 ps, and the color strip represents the proton probability density.

    图 9  氢分子在幅值为60 GV/m的z方向高斯定向强场作用下能级布居数分布的演化图, 施加的高斯脉冲电场的脉宽分别为(a) 90 fs与(b) 20 fs, 高斯脉冲中心设置在0.4 ps, 不同颜色的曲线代表不同能级的布居数

    Fig. 9.  Evolution diagram of the energy level population distribution of hydrogen molecule under the action of the Gaussian directional strong field in the z direction with the amplitude of 60 GV/m. The pulse widths of the applied Gaussian pulse electric field are (a) 90 fs and (b) 20 fs, respectively. The Gaussian pulse center is set at 0.4 ps. Curves of different colors represent populations of different energy levels

  • [1]

    Stapelfeldt H 2003 Eur. Phys. J. D 26 15Google Scholar

    [2]

    Sakai H, Safvan C P, Larsen J J, Hilligsoe K M, Hald K, Stapelfeldt H 1999 J. Chem. Phys. 110 10235Google Scholar

    [3]

    Wunderlich C, Figger H, Hänsch T W 1996 Chem. Phys. Lett. 256 43Google Scholar

    [4]

    Ohmura H, Saito N, Morishita T 2014 Phys. Rev. A 89 013405Google Scholar

    [5]

    Trump C, Rottke H, Wittmann M, Korn G, Sandner W, Lein M, Engel V 2000 Phys. Rev. A 62 063402Google Scholar

    [6]

    Rottke H, Trump C, Wittmann M, et al. 2002 Phys. Rev. Lett. 89 013001Google Scholar

    [7]

    Kling M F, Siedschlag C, Znakovskaya I, Verhoef A J, Zherebtsov S, Krausz F, Lezius M, Vrakking M J J 2008 Mol. Phys. 106 455Google Scholar

    [8]

    Förster J, Vanne Y V, Saenz A 2014 Phys. Rev. A 90 053424

    [9]

    Zhang X C, Shkurinov A, Zhang Y 2017 Nat. Photonics 11 16Google Scholar

    [10]

    Hafez H A, Chai X, Ibrahim A, Mondal S, Férachou D, Ropagnol X, Ozaki T 2016 J. Opt. 18 093004Google Scholar

    [11]

    Shaik S, Mandal D, Ramanan R 2016 Nat. Chem. 8 1091Google Scholar

    [12]

    Zeng Y, Zhou C, Song L, Lu X, Li Z, Ding Y, Bai Y, Xu Y, Leng Y, Tian Y, Liu J, Li R, Xu Z 2020 45th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) Buffalo, New York, USA, November 8–13 2020 p1

    [13]

    Kampfrath T, Tanaka K, Nelson K A 2013 Nat. Photonics 7 680Google Scholar

    [14]

    Salumbides E J, Dickenson G D, Ivanov T I, Ubachs W 2011 Phys. Rev. Lett. 107 043005Google Scholar

    [15]

    Dickenson G D, Niu M L, Salumbides E J, Komasa J, Eikema K S, Pachucki K, Ubachs W 2013 Phys. Rev. Lett. 110 193601Google Scholar

    [16]

    Liu J J, Salumbides E J, Hollenstein U, Koelemeij J C J, Eikema K S E, Ubachs W, Merkt F 2009 J. Chem. Phys. 130 174306Google Scholar

    [17]

    Saenz A 2000 Phys. Rev. A 61 051402

    [18]

    Puchalski M, Komasa J, Pachucki K 2017 Phys. Rev. A 95 052506Google Scholar

    [19]

    Šmydke J, Ajay J, Remacle F, Levine R D 2017 Electronic and Nuclear Dynamics for a Non-Equilibrium Electronic State: The Ultrafast Pumping of N2 // Tadjer A, Pavlov R, Maruani J, Brändas E J, Delgado-Barrio G 2017 Quantum Systems in Physics, Chemistry, and Biology: Advances in Concepts and Applications (Vol. 30) (Cham: Springer International Publishing AG) p195

    [20]

    Calvert C R, Bryan W A, Newell W R, Williams I D 2010 Phys. Rep. 491 1Google Scholar

    [21]

    Neese F 2011 Wiley Interdiscip. Rev. Comput. Mol. Sci. 2 73Google Scholar

    [22]

    Becerril R, Guzman F S, Rendon-Romero A, Valdez-Alvarado S 2008 Rev. Mex. Fis. E 54 120

    [23]

    Wang K C, Yang L X, Wang S M, Guo L H, Ma J L, Tang J C, Bo W F, Wu Z, Zeng B Q, Gong Y B 2020 Phys. Chem. Chem. Phys. 22 9316Google Scholar

    [24]

    Neese F 2017 Wiley Interdiscip. Rev. Comput. Mol. Sci. 8 1Google Scholar

    [25]

    Stephens P J, Devlin F J, Chabalowski C F, Frisch M J 1994 J. Phys. Chem. 98 11623Google Scholar

    [26]

    Weigend F, Ahlrichs R 2005 Phys. Chem. Chem. Phys. 7 3297Google Scholar

    [27]

    Goerigk L, Grimme S 2011 J. Chem. Theory Comput. 7 291Google Scholar

    [28]

    Caldeweyher E, Bannwarth C, Grimme S 2017 J. Chem. Phys. 147 034112Google Scholar

    [29]

    Caldeweyher E, Ehlert S, Hansen A, Neugebauer H, Spicher S, Bannwarth C, Grimme S 2019 J. Chem. Phys. 150 154122Google Scholar

    [30]

    Cohen-Tannoudji C, Diu B, Laloë F 2019 Quantum Mechanics, Volume 1: Basic Concepts, Tools, and Applications (Vol. 1, 2nd Ed.) (New Jersey: John Wiley & Sons) p529

    [31]

    Valkunas L, Abramavicius D, Mancal T 2013 Molecular Excitation Dynamics and Relaxation: Quantum Theory and Spectroscopy (New Jersey: John Wiley & Sons) p280

    [32]

    Swope W C, Andersen H C, Berens P H, Wilson K R 1982 J. Chem. Phys. 76 637Google Scholar

    [33]

    刘成卜, 邓从豪 1985 山东大学学报(自然科学版) 2 104

    Liu C B, Deng C H 1985 Journal of Shandong University (Natural Science Edition) 2 104

  • [1] 陈乐迪, 范仁浩, 刘雨, 唐贡惠, 马中丽, 彭茹雯, 王牧. 基于柔性超构材料宽带调控太赫兹波的偏振态. 物理学报, 2022, 71(18): 187802. doi: 10.7498/aps.71.20220801
    [2] 彭晓昱, 周欢. 太赫兹波生物效应. 物理学报, 2022, (): . doi: 10.7498/aps.71.20211996
    [3] 侯磊, 王俊喃, 王磊, 施卫. α-乳糖水溶液太赫兹吸收光谱实验研究及模拟分析. 物理学报, 2021, 70(24): 243202. doi: 10.7498/aps.70.20211716
    [4] 王红霞, 张清华, 侯维君, 魏一苇. 不同模态沙尘暴对太赫兹波的衰减分析. 物理学报, 2021, 70(6): 064101. doi: 10.7498/aps.70.20201393
    [5] 彭晓昱, 周欢. 太赫兹波生物效应. 物理学报, 2021, 70(24): 240701. doi: 10.7498/aps.70.20211996
    [6] 李郝, 杨鑫, 张正平. THz波在不同角度磁化的非均匀磁化等离子体中的传输特性分析. 物理学报, 2021, 70(7): 075202. doi: 10.7498/aps.70.20201450
    [7] 王磊, 肖芮文, 葛士军, 沈志雄, 吕鹏, 胡伟, 陆延青. 太赫兹液晶材料与器件研究进展. 物理学报, 2019, 68(8): 084205. doi: 10.7498/aps.68.20182275
    [8] 张斌, 赵健, 赵增秀. 基于多组态含时Hartree-Fock方法研究电子关联对于H2分子强场电离的影响. 物理学报, 2018, 67(10): 103301. doi: 10.7498/aps.67.20172701
    [9] 陈伟, 郭立新, 李江挺, 淡荔. 时空非均匀等离子体鞘套中太赫兹波的传播特性. 物理学报, 2017, 66(8): 084102. doi: 10.7498/aps.66.084102
    [10] 张会云, 刘蒙, 尹贻恒, 吴志心, 申端龙, 张玉萍. 基于格林函数法研究金属线栅在太赫兹波段的散射特性. 物理学报, 2013, 62(19): 194207. doi: 10.7498/aps.62.194207
    [11] 孙丹丹, 陈智, 文岐业, 邱东鸿, 赖伟恩, 董凯, 赵碧辉, 张怀武. 二氧化钒薄膜低温制备及其太赫兹调制特性研究. 物理学报, 2013, 62(1): 017202. doi: 10.7498/aps.62.017202
    [12] 司黎明, 侯吉旋, 刘埇, 吕昕. 基于负微分电阻碳纳米管的太赫兹波有源超材料特性参数提取. 物理学报, 2013, 62(3): 037806. doi: 10.7498/aps.62.037806
    [13] 王玥, 王暄, 贺训军, 梅金硕, 陈明华, 殷景华, 雷清泉. 太赫兹波段表面等离子光子学研究进展. 物理学报, 2012, 61(13): 137301. doi: 10.7498/aps.61.137301
    [14] 郑灵, 赵青, 刘述章, 邢晓俊. 太赫兹波在非磁化等离子体中的传输特性研究. 物理学报, 2012, 61(24): 245202. doi: 10.7498/aps.61.245202
    [15] 陆金星, 黄志明, 黄敬国, 王兵兵, 沈学民. 相位失配与材料吸收对利用GaSe差频产生太赫兹波功率影响的研究. 物理学报, 2011, 60(2): 024209. doi: 10.7498/aps.60.024209
    [16] 王玥, 吴群, 吴昱明, 傅佳辉, 王东兴, 王岩, 李乐伟. 碳纳米管辐射太赫兹波的理论分析与数值验证. 物理学报, 2011, 60(5): 057801. doi: 10.7498/aps.60.057801
    [17] 李忠洋, 姚建铨, 李俊, 邴丕彬, 徐德刚, 王鹏. 基于闪锌矿晶体中受激电磁耦子散射产生可调谐太赫兹波的理论研究. 物理学报, 2010, 59(9): 6237-6242. doi: 10.7498/aps.59.6237
    [18] 张戎, 曹俊诚. 光子晶体对太赫兹波的调制特性研究. 物理学报, 2010, 59(6): 3924-3929. doi: 10.7498/aps.59.3924
    [19] 王玥, 吴群, 施卫, 贺训军, 殷景华. 基于纳观域碳纳米管的太赫兹波天线研究. 物理学报, 2009, 58(2): 919-924. doi: 10.7498/aps.58.919
    [20] 孙红起, 赵国忠, 张存林, 杨国桢. 不同中心波长飞秒脉冲激发InAs表面辐射太赫兹波的机理研究. 物理学报, 2008, 57(2): 790-795. doi: 10.7498/aps.57.790
计量
  • 文章访问数:  5803
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-11
  • 修回日期:  2021-09-15
  • 上网日期:  2021-09-22
  • 刊出日期:  2021-12-20

/

返回文章
返回