搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同模态沙尘暴对太赫兹波的衰减分析

王红霞 张清华 侯维君 魏一苇

引用本文:
Citation:

不同模态沙尘暴对太赫兹波的衰减分析

王红霞, 张清华, 侯维君, 魏一苇

Analysis of terahertz wave attenuated by sand and dust storms with different modes

Wang Hong-Xia, Zhang Qing-Hua, Hou Wei-Jun, Wei Yi-Wei
PDF
HTML
导出引用
  • 太赫兹波空间传输特性研究对于太赫兹波在空间中的应用具有重要意义. 为研究太赫兹波在沙尘暴天气中的传输特性, 本文根据沙尘粒子尺度的对数正态分布, 应用Mie散射理论和Monte Carlo方法, 分析了国内不同地域的六种干沙模态沙尘暴对1—10 THz频段太赫兹波的衰减特性, 给出了消光参量和衰减率与频率的关系. 结果表明, 随着频率的增大, 1—10 THz频段太赫兹波的衰减率呈先增加后减小的趋势, 沙尘暴的模态不同, 太赫兹波衰减较强的频段范围有所不同. 为了分析沙粒含水量对太赫兹波传输衰减的影响, 计算了不同尺寸的沙尘粒子3个效率因子与含水量的关系, 发现粒子尺寸不同, 含水量对消光的影响也不同; 应用Monte Carlo方法计算了两种湿沙模态的沙尘暴对1—10 THz频段太赫兹波的衰减, 给出了衰减率与含水量及频率的关系. 结果表明, 随沙粒含水量增大, 沙尘暴对太赫兹波衰减较强的频段向低频方向移动, 含水量小于5%时, 太赫兹波衰减率随含水量增大显著增强, 湿度较大的沙尘暴天气对太赫兹波的传输衰减影响更大.
    The research on space transmission characteristics of terahertz wave is of great significance for the application of terahertz wave in space. In order to study the transmission characteristics of terahertz wave in sand and dust storm weather, according to the lognormal distribution of dust particle sizes, Mie scattering theory and Monte Carlo method are used to analyze the attenuation characteristics of six dry sand modes of sand and dust storm in different regions of China in a frequency band of 1–10 THz, and the relationship of the extinction parameters and attenuation rate to the frequency is given. The results show that with the increase of frequency, the attenuation rate of 1–10 THz terahertz wave first increases and then decreases. Different mode of sand and dust storm leads to different frequency range of strong attenuation of terahertz wave. In order to analyze the influence of sand dust particle moisture content on terahertz wave propagation attenuation, the relationship of three efficiency factors to water content of sand dust particles with different sizes is calculated. The results show that the influence of water content on extinction is different from that of the particle size. Monte Carlo method is used to calculate the attenuation of terahertz wave by sand and dust storm in two kinds of wet sand modes, and the relationship of the attenuation rate and water content to the frequency is given, the results are compared with those from the dry sand mode, showing that the albedo of wet sand mode is obviously lower than that of dry sand mode with the same size distribution. The absorption of wet sand particles increases with water content increasing. The extinction of wet sand and dust storm results from scattering and absorption. With the increase of water content in sand particles, the frequency band with strong attenuation of terahertz wave by wet sand and dust storm moves toward low frequency. When the water content is less than 5%, the attenuation rate of terahertz wave increases significantly with the increase of water content. Sand and dust storms with higher humidity have a greater influence on the transmission attenuation of terahertz wave.
      通信作者: 王红霞, redlightw@163.com
      Corresponding author: Wang Hong-Xia, redlightw@163.com
    [1]

    Sarieddeen H, Alouini M S, Al-Naffouri T Y 2019 IEEE J. Sel. Areas Commun. 37 2040Google Scholar

    [2]

    Chong H, Yi C 2018 IEEE Commun. Mag. 56 96Google Scholar

    [3]

    Jiang Y, Deng B, Wang H 2016 IEEE Photonics Technol. Lett. 28 1684Google Scholar

    [4]

    Hu B B, Nuss M C 1995 Opt. Lett. 20 1716Google Scholar

    [5]

    Mellinger J S, Yang Y, Mandehgar M 2012 Opt. Express 20 6788Google Scholar

    [6]

    Elsheikh E A A, Islam M R, Habaebi M H 2017 IEEE Trans. Anten. Propag. 65 4200Google Scholar

    [7]

    Chen H Y, Ku C C 2011 IEEE Antennas Wirel. Propag. Lett. 10 469Google Scholar

    [8]

    Chiou M M, Kiang J F 2016 IEEE Geosci. Remote Sens. Lett. 13 1Google Scholar

    [9]

    Chu T S 2013 Bell Labs Tech. J. 58 549Google Scholar

    [10]

    Li X C, Gao X, Wang J 2019 Chin. Phys. B 28 34208Google Scholar

    [11]

    Dong Q F, Li Y L, Xu J D, Zhang H, Wang M J 2013 IEEE Trans. Anten. Propag. 61 910Google Scholar

    [12]

    吴振森, 由金光, 杨瑞科 2004 中国激光 31 1075Google Scholar

    Wu Zh S, You J G, Yang R K 2004 Chin. J. Las. 31 1075Google Scholar

    [13]

    王红霞, 孙红辉, 张清华 2020 红外与激光工程 49 20201022Google Scholar

    Wang H X, Sun H H, Zhang Q H 2020 Infrared Laser Eng. 49 20201022Google Scholar

    [14]

    杨瑞科, 李茜茜, 姚荣辉 2016 物理学报 65 094205Google Scholar

    Yang R K, Li Q Q, Yao R H 2016 Acta Phys. Sin. 65 094205Google Scholar

    [15]

    李宇晔, 王新柯, 张平 2008 激光与红外 9 921Google Scholar

    Li Y H, Wang H K, Zhang P 2008 Laser Infr. 9 921Google Scholar

    [16]

    许文忠, 钟凯, 梅嘉林 2015 红外与激光工程 44 523Google Scholar

    Xu W Z, Zhong K, Mei J L 2015 Infrared Laser Eng. 44 523Google Scholar

    [17]

    董群锋, 郭立新, 李应乐, 王明军 2018 太赫兹科学与电子信息学报 16 599Google Scholar

    Dong Q F, Guo L X, Li Y L, Wang M J 2018 J. Terahertz Sci. Electron. Inf. Technol. 16 599Google Scholar

    [18]

    周旺, 周东方, 侯德亭 2005 强激光与粒子束 17 1259

    Zhou W, Zhong D F, Hou D T 2005 High Pow. Las. Part. Beam. 17 1259

    [19]

    Sihvola A H, Kong J A 1988 IEEE Trans. Geosci. Remote Sens. 26 420Google Scholar

    [20]

    Liebe H J, Hufford G A, Manabe T 1991 Int. J. Infrared Millimeter Waves 12 659Google Scholar

    [21]

    Ahmed A S 1987 IEE Proc. H 134 55Google Scholar

    [22]

    董庆生 1997 电波科学学报 12 15

    Dong Q S 1997 Chin. J. Radio Sci. 12 15

    [23]

    Ansari A J, Evans B G 1982 IEE Proc. F 129 315Google Scholar

    [24]

    Seyoung M, Dongyun K, Eunji S 2008 Appl. Opt. 47 336Google Scholar

    [25]

    王红霞, 竹有章, 田涛, 李爱君 2013 物理学报 62 024214Google Scholar

    Wang H X, Zhu Y Z, Tian T, Li A J 2013 Acta Phys. Sin. 62 024214Google Scholar

    [26]

    高志文, 周又和, 郑晓静 2008 中国科学G辑 38 955

    Gao Z W, Zhou Y H, Zheng X J 2008 Sci. Chin. Ser. G 38 955

    [27]

    Prahl S A, Keijzer M, Jacques S L 1989 SPIE Proceedings IS 5 102

    [28]

    Binzoni T, Leung T S, Gandjbakhche A H 2006 Phys. Med. Biol. 51 313Google Scholar

  • 图 1  消光效率因子与频率的关系

    Fig. 1.  Relationship between extinction efficiency factor and frequency.

    图 2  效率因子与沙粒直径的关系(1 THz)

    Fig. 2.  Relationship between efficiency factor and sand diameter (1 THz).

    图 3  效率因子与沙粒含水量的关系(1 THz)

    Fig. 3.  Relationship between efficiency factor and sand moisture content (1 THz).

    图 4  六种干沙模态沙尘暴对太赫兹波的衰减与频率的关系 (a) ω vs. f ; (b) g vs. f ; (c) μ vs. f ; (d) A vs. f

    Fig. 4.  Relationship of THz wave attenuation caused by six dry sand and dust storms to frequency: (a) ω vs. f ; (b) g vs. f ; (c) μ vs. f ; (d) A vs. f .

    图 5  黄土沙尘暴对太赫兹波的衰减与含水量的关系 (a) ω vs. p; (b) g vs. p; (c) μ vs. p; (d) A vs. p

    Fig. 5.  Relationship between THz wave attenuation and water content of loess sand and dust storms: (a) ω vs. p; (b) g vs. p; (c) μ vs. p; (d) A vs. p.

    图 6  海岸沙尘暴对太赫兹波的衰减与含水量的关系 (a) ω vs. p; (b) g vs. p; (c) μ vs. p; (d) A vs. p

    Fig. 6.  Relationship between THz wave attenuation and water content of coastal sand and dust storms: (a) ω vs. p; (b) g vs. p; (c) μ vs. p; (d) A vs. p.

    图 7  不同含水量的黄土沙尘暴对太赫兹波的衰减与频率的关系 (a) ω vs. f ; (b) g vs. f ; (c) μ vs. f ; (d) A vs. f

    Fig. 7.  Relationship of THz wave attenuation caused by loess sand and dust storms with different water content to frequency: (a) ω vs. f ; (b) g vs. f ; (c) μ vs. f ; (d) A vs. f .

    图 8  不同含水量的海岸沙尘暴对太赫兹波的衰减与频率的关系 (a) ω vs. p; (b) g vs. p; (c) μ vs. p; (d) A vs. p

    Fig. 8.  Relationship between THz wave attenuation caused by coastal sand and dust storms with different water content to frequency: (a) ω vs. p; (b) g vs. p; (c) μ vs. p; (d) A vs. p.

    表 1  沙粒的尺度分布参数

    Table 1.  Size distribution parameters of sand particles.

    Sand sourcem0σ
    Loess–3.080.491
    Maowusu–2.960.380
    Tengger–2.310.296
    Taklimakan–2.260.276
    Gansu–2.190.279
    Coast–1.830.166
    下载: 导出CSV
  • [1]

    Sarieddeen H, Alouini M S, Al-Naffouri T Y 2019 IEEE J. Sel. Areas Commun. 37 2040Google Scholar

    [2]

    Chong H, Yi C 2018 IEEE Commun. Mag. 56 96Google Scholar

    [3]

    Jiang Y, Deng B, Wang H 2016 IEEE Photonics Technol. Lett. 28 1684Google Scholar

    [4]

    Hu B B, Nuss M C 1995 Opt. Lett. 20 1716Google Scholar

    [5]

    Mellinger J S, Yang Y, Mandehgar M 2012 Opt. Express 20 6788Google Scholar

    [6]

    Elsheikh E A A, Islam M R, Habaebi M H 2017 IEEE Trans. Anten. Propag. 65 4200Google Scholar

    [7]

    Chen H Y, Ku C C 2011 IEEE Antennas Wirel. Propag. Lett. 10 469Google Scholar

    [8]

    Chiou M M, Kiang J F 2016 IEEE Geosci. Remote Sens. Lett. 13 1Google Scholar

    [9]

    Chu T S 2013 Bell Labs Tech. J. 58 549Google Scholar

    [10]

    Li X C, Gao X, Wang J 2019 Chin. Phys. B 28 34208Google Scholar

    [11]

    Dong Q F, Li Y L, Xu J D, Zhang H, Wang M J 2013 IEEE Trans. Anten. Propag. 61 910Google Scholar

    [12]

    吴振森, 由金光, 杨瑞科 2004 中国激光 31 1075Google Scholar

    Wu Zh S, You J G, Yang R K 2004 Chin. J. Las. 31 1075Google Scholar

    [13]

    王红霞, 孙红辉, 张清华 2020 红外与激光工程 49 20201022Google Scholar

    Wang H X, Sun H H, Zhang Q H 2020 Infrared Laser Eng. 49 20201022Google Scholar

    [14]

    杨瑞科, 李茜茜, 姚荣辉 2016 物理学报 65 094205Google Scholar

    Yang R K, Li Q Q, Yao R H 2016 Acta Phys. Sin. 65 094205Google Scholar

    [15]

    李宇晔, 王新柯, 张平 2008 激光与红外 9 921Google Scholar

    Li Y H, Wang H K, Zhang P 2008 Laser Infr. 9 921Google Scholar

    [16]

    许文忠, 钟凯, 梅嘉林 2015 红外与激光工程 44 523Google Scholar

    Xu W Z, Zhong K, Mei J L 2015 Infrared Laser Eng. 44 523Google Scholar

    [17]

    董群锋, 郭立新, 李应乐, 王明军 2018 太赫兹科学与电子信息学报 16 599Google Scholar

    Dong Q F, Guo L X, Li Y L, Wang M J 2018 J. Terahertz Sci. Electron. Inf. Technol. 16 599Google Scholar

    [18]

    周旺, 周东方, 侯德亭 2005 强激光与粒子束 17 1259

    Zhou W, Zhong D F, Hou D T 2005 High Pow. Las. Part. Beam. 17 1259

    [19]

    Sihvola A H, Kong J A 1988 IEEE Trans. Geosci. Remote Sens. 26 420Google Scholar

    [20]

    Liebe H J, Hufford G A, Manabe T 1991 Int. J. Infrared Millimeter Waves 12 659Google Scholar

    [21]

    Ahmed A S 1987 IEE Proc. H 134 55Google Scholar

    [22]

    董庆生 1997 电波科学学报 12 15

    Dong Q S 1997 Chin. J. Radio Sci. 12 15

    [23]

    Ansari A J, Evans B G 1982 IEE Proc. F 129 315Google Scholar

    [24]

    Seyoung M, Dongyun K, Eunji S 2008 Appl. Opt. 47 336Google Scholar

    [25]

    王红霞, 竹有章, 田涛, 李爱君 2013 物理学报 62 024214Google Scholar

    Wang H X, Zhu Y Z, Tian T, Li A J 2013 Acta Phys. Sin. 62 024214Google Scholar

    [26]

    高志文, 周又和, 郑晓静 2008 中国科学G辑 38 955

    Gao Z W, Zhou Y H, Zheng X J 2008 Sci. Chin. Ser. G 38 955

    [27]

    Prahl S A, Keijzer M, Jacques S L 1989 SPIE Proceedings IS 5 102

    [28]

    Binzoni T, Leung T S, Gandjbakhche A H 2006 Phys. Med. Biol. 51 313Google Scholar

  • [1] 陈乐迪, 范仁浩, 刘雨, 唐贡惠, 马中丽, 彭茹雯, 王牧. 基于柔性超构材料宽带调控太赫兹波的偏振态. 物理学报, 2022, 71(18): 187802. doi: 10.7498/aps.71.20220801
    [2] 彭晓昱, 周欢. 太赫兹波生物效应. 物理学报, 2022, (): . doi: 10.7498/aps.71.20211996
    [3] 宁辉, 王凯程, 王少萌, 宫玉彬. 强场太赫兹波作用下氢气分子振动动力学研究. 物理学报, 2021, 70(24): 243101. doi: 10.7498/aps.70.20211482
    [4] 彭晓昱, 周欢. 太赫兹波生物效应. 物理学报, 2021, 70(24): 240701. doi: 10.7498/aps.70.20211996
    [5] 陈伟, 郭立新, 李江挺, 淡荔. 时空非均匀等离子体鞘套中太赫兹波的传播特性. 物理学报, 2017, 66(8): 084102. doi: 10.7498/aps.66.084102
    [6] 胡帅, 高太长, 李浩, 刘磊, 程天际, 张婷. 大气折射对可见光波段辐射传输特性的影响. 物理学报, 2015, 64(18): 184203. doi: 10.7498/aps.64.184203
    [7] 胡帅, 高太长, 刘磊, 易红亮, 贲勋. 偏振光在非球形气溶胶中传输特性的Monte Carlo仿真. 物理学报, 2015, 64(9): 094201. doi: 10.7498/aps.64.094201
    [8] 司黎明, 侯吉旋, 刘埇, 吕昕. 基于负微分电阻碳纳米管的太赫兹波有源超材料特性参数提取. 物理学报, 2013, 62(3): 037806. doi: 10.7498/aps.62.037806
    [9] 焦学敬, 欧阳方平, 彭盛霖, 李建平, 段吉安, 胡友旺. 碳纳米管对接成异质结器件的计算模拟. 物理学报, 2013, 62(10): 106101. doi: 10.7498/aps.62.106101
    [10] 梁善勇, 王江安, 宗思光, 吴荣华, 马治国, 王晓宇, 王乐东. 基于多重散射强度和偏振特征的舰船尾流气泡激光探测方法. 物理学报, 2013, 62(6): 060704. doi: 10.7498/aps.62.060704
    [11] 梁善勇, 王江安, 张峰, 吴荣华, 宗思光, 王雨虹, 王乐东. 基于舰船尾流激光雷达的Monte Carlo模型及方差消减方法研究. 物理学报, 2013, 62(1): 015205. doi: 10.7498/aps.62.015205
    [12] 赵太飞, 柯熙政. Monte Carlo方法模拟非直视紫外光散射覆盖范围. 物理学报, 2012, 61(11): 114208. doi: 10.7498/aps.61.114208
    [13] 陆金星, 黄志明, 黄敬国, 王兵兵, 沈学民. 相位失配与材料吸收对利用GaSe差频产生太赫兹波功率影响的研究. 物理学报, 2011, 60(2): 024209. doi: 10.7498/aps.60.024209
    [14] 王玥, 吴群, 吴昱明, 傅佳辉, 王东兴, 王岩, 李乐伟. 碳纳米管辐射太赫兹波的理论分析与数值验证. 物理学报, 2011, 60(5): 057801. doi: 10.7498/aps.60.057801
    [15] 李忠洋, 姚建铨, 李俊, 邴丕彬, 徐德刚, 王鹏. 基于闪锌矿晶体中受激电磁耦子散射产生可调谐太赫兹波的理论研究. 物理学报, 2010, 59(9): 6237-6242. doi: 10.7498/aps.59.6237
    [16] 张戎, 曹俊诚. 光子晶体对太赫兹波的调制特性研究. 物理学报, 2010, 59(6): 3924-3929. doi: 10.7498/aps.59.3924
    [17] 王玥, 吴群, 施卫, 贺训军, 殷景华. 基于纳观域碳纳米管的太赫兹波天线研究. 物理学报, 2009, 58(2): 919-924. doi: 10.7498/aps.58.919
    [18] 张玉萍, 张会云, 耿优福, 谭晓玲, 姚建铨. 太赫兹波在有限电导率金属空芯波导中的传输特性. 物理学报, 2009, 58(10): 7030-7033. doi: 10.7498/aps.58.7030
    [19] 孙红起, 赵国忠, 张存林, 杨国桢. 不同中心波长飞秒脉冲激发InAs表面辐射太赫兹波的机理研究. 物理学报, 2008, 57(2): 790-795. doi: 10.7498/aps.57.790
    [20] 姚细林, 王新兵, 赖建军. 微空心阴极放电的Monte Carlo模拟研究. 物理学报, 2003, 52(6): 1450-1454. doi: 10.7498/aps.52.1450
计量
  • 文章访问数:  5681
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-24
  • 修回日期:  2020-10-18
  • 上网日期:  2021-03-04
  • 刊出日期:  2021-03-20

/

返回文章
返回