搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自旋回波探测的地面磁共振T2谱正反演策略

杨玉晶 叶瑞 赵汗青 万玲 林婷婷

引用本文:
Citation:

基于自旋回波探测的地面磁共振T2谱正反演策略

杨玉晶, 叶瑞, 赵汗青, 万玲, 林婷婷

A modeling and inversion method of spin echoes to measure magnetic resonance sounding transverse relaxation time in surface applications

Yang Yu-Jing, Ye Rui, Zhao Han-Qing, Wan Ling, Lin Ting-Ting
PDF
HTML
导出引用
  • 作为新兴地球物理方法之一, 地面磁共振技术具有直接探测优势. 但由于其发展时间较短, 相关建模及反演方法介绍较少, 传统的自由感应衰减探测方法不仅精度有限, 且适应性较差. 近年来, 应用自旋回波信号直接探测横向弛豫时间是地面磁共振领域的研究热点. 本文推导了其灵敏度核函数及正演公式, 引入线性空间反演方案, 即通过奇异值分解将含噪自旋回波信号由时间域变换至空间域. 为避免矩阵病态问题, 采用奇异值滤波法抑制分解病态程度, 并联合同时迭代重建技术进一步提升空间域矩阵求解精度. 结合非线性拟合对空间域矩阵参数进行提取, 实现含水层对应含水量、横向弛豫时间的有效估计. 通过模拟野外实验并进行数据解释, 证实了该方案能够有效降低浅层含水量至1.5%, 横向弛豫时间估测误差至0.02 s. 本文的研究成果, 将为地面横向弛豫时间探测及相关理论发展及方法在水文地质调查方面的推广应用提供有力支撑.
    Surface magnetic resonance sounding (MRS) has generally been considered to be an efficient tool for hydrological investigations. As is well known, the effective relaxation time $ T_2^*$ which characterizes the decay rate of MRS free-decay-induction (FID) signal and is used to measure pore-scale properties, is particularly limited for several special cases (e.g. areas with magnetic rock subsurfaces). Recent years, the transverse relaxation time $ T_2$ obtained from spin-echo signal was adopted to implement the surface MRS, and showed great potentials for estimating the porosity and permeability. However, owning to the short period of development, the related modeling and inversion strategies are rarely introduced and summarized. Actually, the general practice for surface MRS $ T_2$ measurement fits the spin-echo by the exponential function and the fitting line was directly used as the FID signal for inversion. This scheme not only limits the precision of interpretation, but also loses part of valid information about original field data. Aiming at these problems, in this paper, we introduce the calculation of forward model and thus a two-stage framework with singular value decomposition (SVD) linear inversion involved is derived to quantify the $ T_2$ distributed with depth. Considering the fact that the inversion result of SVD is always strongly affected by the noise level, an improved method which combines the simultaneous iterative reconstruction technology (SIRT) with SVD is proposed. To be specific, we compare the measurement schemes with kernel functions between $ T_2$ and the original theory in MRS, and then provide the forward and inversion formulations. In order to substantiate the effectiveness of this method, we conduct the synthetic experiments for Carr-Purcell-Meiboom-Gill sequence and explain the dataset with the mentioned strategies. As expected, the combined approach possesses a better performance in shallow layer with an error of 1.5% and 0.02 s for water content and $ T_2$ for the contaminated data, respectively. With these advantages, it is expected to realize the adoption of the SVD with SIRT in field applications and further investigate the aquifer characterizations in the future.
      通信作者: 林婷婷, ttlin@jlu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2019YFC0409105)、国家自然科学基金(批准号: 41874209)、吉林省重点科技攻关项目(批准号: 20180201017GX)、吉林省科技厅国际合作项目(批准号: 20200801007GH)和吉林大学杰青培育计划(批准号: 45120031D015)资助的课题
      Corresponding author: Lin Ting-Ting, ttlin@jlu.edu.cn
    • Funds: Project supported by the National Key Research and Development Project of China (Grant No. 2019YFC0409105), the National Natural Science Foundation of China (Grant No. 41874209), the Jilin Provincial Projects for Key Science and Technology, China (Grant No. 20180201017GX), the Jilin Provincial Projects for International Cooperation, China (Grant No. 20200801007GH), and the Cultivate Foundation for Outstanding Youth of Jilin University, China (Grant No. 45120031D015)
    [1]

    Di Q Y, Wang M Y 2010 Bull. Eng. Geol. Environ. 69 105Google Scholar

    [2]

    Ronezka M K, Hellman K, Günther T, Wisén R, Dahlin T 2017 Solid Earth 8 671Google Scholar

    [3]

    Xue G Q, Hou D Y, Qiu W Z 2018 J. Environ. Eng. Geoph. 23 297Google Scholar

    [4]

    Chen K, Xue G Q, Chen W Y, Zhou N N, Li H 2019 Mine Water Environ. 38 49Google Scholar

    [5]

    林君, 段清明, 王应吉 2010 核磁共振找水仪原理与应用 (北京: 科学出版社) 第7—13页

    Lin J, Duan Q M, Wang Y J 2010 Theory and Design of Magnetic Resonance Sounding Instrument for Groundwater Detection and its Applications (Beijing: Science Press) pp7−13 (in Chinese)

    [6]

    Weichman P B, Lavely E M, Ritzwoller M H 2000 Phys. Rev. E 62 1290Google Scholar

    [7]

    Legchenko A, Baltassat J M, Bobachev A, Martin C, Robain H, Vouillamoz J M 2004 Groundwater 42 363Google Scholar

    [8]

    Mohnke O, Yaramance U 2005 Near Surf. Geophys 3 165Google Scholar

    [9]

    Hertrich M 2008 Prog. Nucl. Mang. Reson. Spectrosc. 53 227Google Scholar

    [10]

    Dlugoschet R, Günther T, Müller-Petke M, Yaramanci U 2014 Near Surf. Geophys. 12 231Google Scholar

    [11]

    Legchenko A, Descloitres M, Vincent C, Guyard H, Garambois S, Chalikakis K, Ezersky M 2011 New J. Phys. 13 025022Google Scholar

    [12]

    Grombacher D, Liu L, Kass M A, Osterman G, Fiandaca G, Auken E, Larsen J J 2020 J. Appl. Geophys. 172 103869Google Scholar

    [13]

    Fallahsafari M, Ghanati R, Hafizi M K, Müller-Petke M 2020 J. Appl. Geophys. 175 103985Google Scholar

    [14]

    Chen Q, Marble A E, Colpitts B G, Balcom B J 2005 J. Magn. Reson. 175 300Google Scholar

    [15]

    Grunewald E, Knight R 2011 Near Surf. Geophys. 9 169Google Scholar

    [16]

    Grombacher D, Behroozmand A A, Auken E 2017 Geophysics 82 JM23Google Scholar

    [17]

    Legchenko A, Voullamoz J M, Roy J 2010 Geophysics 75 L91Google Scholar

    [18]

    Grunewald E, Walsh D 2013 Geophys. Res. Lett. 40 6346Google Scholar

    [19]

    Grunewald E, Knight R, Walsh D 2014 Geophysics 79 EN15Google Scholar

    [20]

    Grombacher D, Fiandaca G, Auken E 2019 Geophys. J. Int. 218 1892Google Scholar

    [21]

    Dlubac K, Knight R, Song Y Q, Bachman N, Grau B, Cannia J, Williams J 2013 Water Resour. Res. 49 1871Google Scholar

    [22]

    Walsh D, Tumer P, Grunewald E, Zhang H, Butler J J, Reboulet E, Knobbe S, Christy T, Lane J W, Johnson C D, Munday T, Fitzpatrick A 2013 Ground Water 51 914Google Scholar

    [23]

    Hahn E L 1950 Phys. Rev. 80 580Google Scholar

    [24]

    Carr H Y, Purcell E M 1954 Phys. Rev. 94 630Google Scholar

    [25]

    刘骏妍 2017 硕士学位论文 (长春: 吉林大学)

    Liu J Y 2017 M. S. Thesis (Changchun: Jilin University) (in Chinese)

    [26]

    Walsh D O 2008 J. Appl. Geophys. 66 140Google Scholar

    [27]

    Weichman P B, Lun D R, Ritzwoller M H, Lavely E M 2002 J Appl. Geophys. 50 129Google Scholar

    [28]

    Hansen P C 1994 Numer. Algorithms 6 1Google Scholar

    [29]

    姚旭刚, 王忠东 2003 测井技术 27 373Google Scholar

    Yao X G, Wang Z D 2003 Well Logging Technology 27 373Google Scholar

    [30]

    Müller-Petke M, Yaramanci U 2010 Geophysics 75 WA199Google Scholar

    [31]

    Mohnke O, Yaramanci U 2008 J. Appl. Geophys. 66 73Google Scholar

    [32]

    Bloom A L 1955 Phys. Rev. 98 1105Google Scholar

    [33]

    Müller-Petke M, Yaramanci U 2008 J. Appl. Geophys. 66 165Google Scholar

    [34]

    Dines K A, Lyttle R J 1979 Proc. IEEE 67 1065Google Scholar

  • 图 1  地面磁共振CPMG序列激发示意图(为获取包含T2衰减信息的完整SE信号, 发射激发脉冲q, 并间隔时间τ重复发射多个重聚脉冲2q, 重聚脉冲间的间隔为2τ)

    Fig. 1.  Typical time diagram of CPMG apply in surface MRS. Measurement for excitation pulse moment q requires a set of refocusing pulse 2q repeating for a defined 2τ delay after the first τ delay and obtains a complete SE response to determine the T2 decay curve.

    图 2  2 A·s激发脉冲下的地面磁共振(a) FID与(b) SE激发横向磁化强度分布剖面(实验配置为100 m方形发射/接收线圈, 单匝; 填充颜色表示激发横向磁化强度相对于总磁化强度比例)

    Fig. 2.  Excitation profile (2 A·s) for (a) FID and (b) SE responses in a surface MRS case with 100 m square transmitting/receiving loop, 1-turn configuration. Color indicates the amplitude ratio of the excited transverse magnetization to the total magnetization.

    图 3  单匝100 m方形发射/接收线圈探测配置下的地面磁共振(a) FID与(b) SE一维灵敏度核函数(填充颜色反映在对应于激发脉冲矩, 某一固定深度下存在地下水能够诱发得到的磁共振信号幅度)

    Fig. 3.  Comparison of kernel function with 100 m transmitting/receiving square loop, 1-turn configuration for (a) FID and (b) SE excitation. Color reflects the signal amplitude induced by underground water at a given depth layer corresponding to each pulse moment.

    图 4  单匝100 m方形发射/接收线圈探测配置下, 同一含水情况下的地面磁共振响应(a) FID与(b) SE信号(填充颜色反映对应激发脉冲矩, 其FID或SE信号随时间衰减的磁共振信号幅度)

    Fig. 4.  Comparison of forward responses for the same aquifer distribution, with 100 m transmitting/receiving square loop, 1-turn configuration for (a) FID and (b) SE excitation. Color reflects the signal amplitude induced by underground water decays with receiving time corresponding to each pulse moment.

    图 5  (a)模型与其在(b)无噪声, (c) 3 nV及(d) 6 nV高斯白噪声情况下的SVD线性空间反演结果

    Fig. 5.  (a) Simulated modeling and its linear spatial inversion results employing SVD with (b) no noise, (c) 3 nV and (d) 6 nV Gaussian noise.

    图 6  (a)模型与其在(b) 3 nV和(c) 6 nV高斯白噪声情况下的SVD与SIRT联合线性空间反演结果

    Fig. 6.  (a) Simulated modeling and its linear spatial inversion results employing SVD and SIRT with (b) 3 nV and (c) 6 nV Gaussian noise.

    图 7  不同噪声情况下, SIRT线性空间反演迭代次数与拟合误差间的关系

    Fig. 7.  Relationship between iteration and fitting errors for SIRT linear spatial inversion with different noise cases.

    图 8  地面磁共振SE信号线性空间反演及含水量-横向弛豫时间分布拟合示意图

    Fig. 8.  Schematic diagram of linear spatial inversion and non-linear fitting of water content and transverse relaxation time for surface MRS spin-echo responses.

    图 9  (a)地面磁共振CPMG探测实验模型与(b)正演数据(加入3 nV高斯白噪声), 假设地下存在两个含水层, 分别分布在–5 m至–15 m及–30 m至–50 m.

    Fig. 9.  (a) Simulated modeling and (b) dataset (adding 3 nV Gaussian noise) for CPMG sequence assuming a surface MRS experiment with two aquifers, which distributed from –5 m to –15 m and –30 m to –50 m, respectively.

    图 10  加入3 nV高斯白噪声的地面磁共振仿真数据SVD线性空间反演结果 (a) 地下水SE响应随深度及接收时间的变化; (b)与(c)分别为应用15 ms时间窗(单指数)拟合得到的wT2分布结果

    Fig. 10.  Linear spatial inversion results of SVD method for synthetic surface MRS experiment data with 3 nV Gaussian noise polluted: (a) SE responses of underground water separated as a function of depth z and decayed over time, while the amplitude scale to water content; (b) and (c) are the subsurface w and T2 distribution fitted (mono-exponential) from (a) with a time window of 15 ms.

    图 11  加入3 nV高斯白噪声的地面磁共振仿真数据SVD与SIRT线性空间反演结果 (a) 地下水SE响应随深度及接收时间的变化; (b)与(c)分别为应用15 ms时间窗(单指数)拟合得到的wT2分布结果

    Fig. 11.  Linear spatial inversion results of SVD and SIRT method for synthetic surface MRS experiment data with 3 nV Gaussian noise polluted: (a) SE responses of underground water separated as a function of depth z and decayed over time, while the amplitude scale to water content; (b) and (c) are the subsurface w and T2 distribution fitted (mono-exponential) from (a) with a time window of 15 ms.

  • [1]

    Di Q Y, Wang M Y 2010 Bull. Eng. Geol. Environ. 69 105Google Scholar

    [2]

    Ronezka M K, Hellman K, Günther T, Wisén R, Dahlin T 2017 Solid Earth 8 671Google Scholar

    [3]

    Xue G Q, Hou D Y, Qiu W Z 2018 J. Environ. Eng. Geoph. 23 297Google Scholar

    [4]

    Chen K, Xue G Q, Chen W Y, Zhou N N, Li H 2019 Mine Water Environ. 38 49Google Scholar

    [5]

    林君, 段清明, 王应吉 2010 核磁共振找水仪原理与应用 (北京: 科学出版社) 第7—13页

    Lin J, Duan Q M, Wang Y J 2010 Theory and Design of Magnetic Resonance Sounding Instrument for Groundwater Detection and its Applications (Beijing: Science Press) pp7−13 (in Chinese)

    [6]

    Weichman P B, Lavely E M, Ritzwoller M H 2000 Phys. Rev. E 62 1290Google Scholar

    [7]

    Legchenko A, Baltassat J M, Bobachev A, Martin C, Robain H, Vouillamoz J M 2004 Groundwater 42 363Google Scholar

    [8]

    Mohnke O, Yaramance U 2005 Near Surf. Geophys 3 165Google Scholar

    [9]

    Hertrich M 2008 Prog. Nucl. Mang. Reson. Spectrosc. 53 227Google Scholar

    [10]

    Dlugoschet R, Günther T, Müller-Petke M, Yaramanci U 2014 Near Surf. Geophys. 12 231Google Scholar

    [11]

    Legchenko A, Descloitres M, Vincent C, Guyard H, Garambois S, Chalikakis K, Ezersky M 2011 New J. Phys. 13 025022Google Scholar

    [12]

    Grombacher D, Liu L, Kass M A, Osterman G, Fiandaca G, Auken E, Larsen J J 2020 J. Appl. Geophys. 172 103869Google Scholar

    [13]

    Fallahsafari M, Ghanati R, Hafizi M K, Müller-Petke M 2020 J. Appl. Geophys. 175 103985Google Scholar

    [14]

    Chen Q, Marble A E, Colpitts B G, Balcom B J 2005 J. Magn. Reson. 175 300Google Scholar

    [15]

    Grunewald E, Knight R 2011 Near Surf. Geophys. 9 169Google Scholar

    [16]

    Grombacher D, Behroozmand A A, Auken E 2017 Geophysics 82 JM23Google Scholar

    [17]

    Legchenko A, Voullamoz J M, Roy J 2010 Geophysics 75 L91Google Scholar

    [18]

    Grunewald E, Walsh D 2013 Geophys. Res. Lett. 40 6346Google Scholar

    [19]

    Grunewald E, Knight R, Walsh D 2014 Geophysics 79 EN15Google Scholar

    [20]

    Grombacher D, Fiandaca G, Auken E 2019 Geophys. J. Int. 218 1892Google Scholar

    [21]

    Dlubac K, Knight R, Song Y Q, Bachman N, Grau B, Cannia J, Williams J 2013 Water Resour. Res. 49 1871Google Scholar

    [22]

    Walsh D, Tumer P, Grunewald E, Zhang H, Butler J J, Reboulet E, Knobbe S, Christy T, Lane J W, Johnson C D, Munday T, Fitzpatrick A 2013 Ground Water 51 914Google Scholar

    [23]

    Hahn E L 1950 Phys. Rev. 80 580Google Scholar

    [24]

    Carr H Y, Purcell E M 1954 Phys. Rev. 94 630Google Scholar

    [25]

    刘骏妍 2017 硕士学位论文 (长春: 吉林大学)

    Liu J Y 2017 M. S. Thesis (Changchun: Jilin University) (in Chinese)

    [26]

    Walsh D O 2008 J. Appl. Geophys. 66 140Google Scholar

    [27]

    Weichman P B, Lun D R, Ritzwoller M H, Lavely E M 2002 J Appl. Geophys. 50 129Google Scholar

    [28]

    Hansen P C 1994 Numer. Algorithms 6 1Google Scholar

    [29]

    姚旭刚, 王忠东 2003 测井技术 27 373Google Scholar

    Yao X G, Wang Z D 2003 Well Logging Technology 27 373Google Scholar

    [30]

    Müller-Petke M, Yaramanci U 2010 Geophysics 75 WA199Google Scholar

    [31]

    Mohnke O, Yaramanci U 2008 J. Appl. Geophys. 66 73Google Scholar

    [32]

    Bloom A L 1955 Phys. Rev. 98 1105Google Scholar

    [33]

    Müller-Petke M, Yaramanci U 2008 J. Appl. Geophys. 66 165Google Scholar

    [34]

    Dines K A, Lyttle R J 1979 Proc. IEEE 67 1065Google Scholar

  • [1] 蒋川东, 王琦, 杜官峰, 易晓峰, 田宝凤. 地面核磁偏共振响应特征与复包络反演方法. 物理学报, 2018, 67(1): 013302. doi: 10.7498/aps.67.20171464
    [2] 蒋川东, 常星, 孙佳, 李天威, 田宝凤. 基于L1范数的低场核磁共振T2谱稀疏反演方法. 物理学报, 2017, 66(4): 047601. doi: 10.7498/aps.66.047601
    [3] 吴量, 陈方, 黄重阳, 丁国辉, 丁义明. 基于改进非线性拟合的核磁共振T2谱多指数反演. 物理学报, 2016, 65(10): 107601. doi: 10.7498/aps.65.107601
    [4] 范宜仁, 吴飞, 李虎, 霍宁宁, 王要森, 邓少贵, 杨培强. D-T2二维核磁共振脉冲序列及反演方法改进设计. 物理学报, 2015, 64(9): 099301. doi: 10.7498/aps.64.099301
    [5] 曹超, 王胜, 唐科, 尹伟, 吴洋. 极化中子照相磁场量化技术方案比较与分析. 物理学报, 2014, 63(18): 182801. doi: 10.7498/aps.63.182801
    [6] 赵虎, 李铁夫, 刘其春, 张颖珊, 刘建设, 陈炜. 三维传输子量子比特的退相干参数表征. 物理学报, 2014, 63(22): 220305. doi: 10.7498/aps.63.220305
    [7] 盛峥, 黄思训. 变分伴随正则化方法从雷达回波反演海洋波导(Ⅰ):理论推导部分. 物理学报, 2010, 59(3): 1734-1739. doi: 10.7498/aps.59.1734
    [8] 姚淅伟, 曾碧榕, 刘钦, 牟晓阳, 林星程, 杨春, 潘健, 陈忠. 基于核磁共振的子空间量子过程重构. 物理学报, 2010, 59(10): 6837-6841. doi: 10.7498/aps.59.6837
    [9] 盛峥, 黄思训. 变分伴随正则化方法从雷达回波反演海洋波导(Ⅱ):实际反演试验. 物理学报, 2010, 59(6): 3912-3916. doi: 10.7498/aps.59.3912
    [10] 盛峥, 黄思训, 赵小峰. 雷达回波资料反演海洋波导中观测值权重的确定. 物理学报, 2009, 58(9): 6627-6632. doi: 10.7498/aps.58.6627
    [11] 盛峥, 黄思训. 雷达回波资料反演海洋波导的算法和抗噪能力研究. 物理学报, 2009, 58(6): 4328-4334. doi: 10.7498/aps.58.4328
    [12] 盛峥, 黄思训, 曾国栋. 利用Bayesian-MCMC方法从雷达回波反演海洋波导. 物理学报, 2009, 58(6): 4335-4341. doi: 10.7498/aps.58.4335
    [13] 潘克家, 陈 华, 谭永基. 基于差分进化算法的核磁共振T2谱多指数反演. 物理学报, 2008, 57(9): 5956-5961. doi: 10.7498/aps.57.5956
    [14] 王 鹤, 李鲠颖. 反演与拟合相结合处理核磁共振弛豫数据的方法. 物理学报, 2005, 54(3): 1431-1436. doi: 10.7498/aps.54.1431
    [15] 缪希茄, 卢广, 叶朝辉. 应用积算符理论研究弱耦合双自旋体系的Raman磁共振谱. 物理学报, 1997, 46(4): 802-812. doi: 10.7498/aps.46.802
    [16] 李鲠颖, 徐学诚. 固体核磁共振中旋转回波激发的研究. 物理学报, 1995, 44(11): 1847-1852. doi: 10.7498/aps.44.1847
    [17] 周文生, 许东. 重入自旋玻璃尖晶石系统CoxZn1-x(FeyCr1-y)2O4中的微波磁共振. 物理学报, 1992, 41(12): 2043-2048. doi: 10.7498/aps.41.2043
    [18] 李鲠颖, 邬学文. 三能级体系的Z回波核磁共振粉末谱. 物理学报, 1991, 40(10): 1717-1722. doi: 10.7498/aps.40.1717
    [19] 李鲠颖, 邬学文. 粉末样品自旋3/2四极核中心跃迁的高分辨核磁共振谱. 物理学报, 1990, 39(11): 1848-1853. doi: 10.7498/aps.39.1848
    [20] 蒲富恪, 郑庆祺. 自旋波之间的散射对铁磁共振曲线的影响. 物理学报, 1962, 18(2): 81-90. doi: 10.7498/aps.18.81
计量
  • 文章访问数:  5398
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-28
  • 修回日期:  2020-11-20
  • 上网日期:  2021-03-02
  • 刊出日期:  2021-03-20

/

返回文章
返回