搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进非线性拟合的核磁共振T2谱多指数反演

吴量 陈方 黄重阳 丁国辉 丁义明

引用本文:
Citation:

基于改进非线性拟合的核磁共振T2谱多指数反演

吴量, 陈方, 黄重阳, 丁国辉, 丁义明

Multi-exponential inversion of T2 spectrum in NMR based on improved nonlinear fitting

Wu Liang, Chen Fang, Huang Chong-Yang, Ding Guo-Hui, Ding Yi-Ming
PDF
导出引用
  • 核磁共振T2谱多指数反演算法是开展复杂体系样品核磁共振(NMR)弛豫研究最重要的数学工具. 常用的T2谱多指数反演算法一般都是事先给出弛豫时间T2分布的布点, 然后转化为线性拟合问题进行求解. 在求解的T2谱较为分散的时候, 反演得到的T2谱精确度不高, 分辨率较低. 非线性拟合是解决这个问题的有效办法. 本文针对分散T2谱反演利用非线性拟合时遇到的初值依赖及运算复杂问题, 利用线性回归最小二乘方法, 改进了其中的带非负约束非线性优化模型, 将搜索的反演参数从T2, f 减少为T2, 加快了收敛速度, 减少了对初值的依赖, 提高了反演精度, 使算法更加稳健. 通过用改进的Levenberg-Marquardt算法和差分进化算法进行计算机模拟反演及实验数据反演, 验证了改进方法在核磁共振T2 谱反演中的有效性.
    Multi-exponential inversion algorithm of nuclear magnetic resonance (NMR) T2 spectrum is an important mathematical tool for the NMR relaxation study of complicated samples. The popular algorithm usually obtains the T2 spectrum by linear fitting under the prescribed distribution of T2. When the T2 spectrum is dispersed, such a procedure is inaccurate because of the lack of adaptive prescription and the limit of linear method. Nonlinear fitting method does not fix the T2 distribution, and it provides the positions and the weights of T2 simultaneously via the nonlinear fitting of multi-exponential function. In this case, the problem of multi-exponential inversion is transformed into a nonlinear optimization problem with non-negative constraints. The optimization objective function is the residual sum of squares (or residual sum of squares with regularization). The nonlinear optimization problem can usually be solved by Levenberg-Marquardt algorithm and evolutionary algorithm. But the results of Levenberg-Marquardt algorithm are dependent on initial values, and the calculation of evolutionary algorithm is complicated. We provide an optimal model for the nonlinear fitting in the inversion of dispersed T2 spectrum based on the linear regression and least-squares. The key idea is that the optimal weights of T2 can be calculated by least square when the positions of T2 are fixed, although the positions of T2 are adjusted adaptively. So we can relate the positions to weights appropriately to improve the popular nonlinear fitting algorithms. Such an improvement can reduce the searching inversion parameters, speed up its convergence and reduce the dependence on initial value. Incorporating it into the Levenberg-Marquardt algorithm or evolutionary algorithm can improve the inversion accuracy and make the algorithm more robust. The validity of our improvement is demonstrated by the inversions of simulation data and practical NMR data by combining Levenberg- Marquardt algorithm and differential evolution algorithm with our improvement. The inversion results of simulation data show that for dispersed T2 spectrum, the algorithm using this improvement can obtain more accurate T2 spectrum than previous ones, especially in the case of low signal-to-noise ratio (SNR) cases. The inversion results also indicate that the improvement can reduce the dependence on initial value of Levenberg-Marquardt algorithm, and can accelerate the convergence of differential evolution algorithm. The inversion results of practical NMR data show that the algorithm using the improvement can obtain more accurate T2 spectrum than the widely used CONTIN program in the case of low signal-to-noise ratio (SNR). The inversion results of oil-water mixture sample NMR data also demonstrate that the relaxation time T2 is independent of dispersion degree of immiscible system components.
      通信作者: 陈方, chenfang@wipm.ac.cn;ding@wipm.ac.cn ; 丁义明, chenfang@wipm.ac.cn;ding@wipm.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2013CB910200)和国家自然科学基金(批准号:11405264)资助的课题.
      Corresponding author: Chen Fang, chenfang@wipm.ac.cn;ding@wipm.ac.cn ; Ding Yi-Ming, chenfang@wipm.ac.cn;ding@wipm.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB910200) and the National Natural Science Foundation of China (Grant No. 11405264).
    [1]

    Wang W M, Li P, Ye C H 2001 Sci. China A 31 730 (in Chinese) [王为民, 李培, 叶朝辉 2001 中国科学A 31 730]

    [2]

    Xu F, Huang Y R 2002 Acta Phys. Sin. 51 415 (in Chinese) [许峰, 黄永仁 2002 物理学报 51 415]

    [3]

    Zheng S K, Chen Z, Chen Z W, Zhong J H 2001 Chin. Phys. 10 558

    [4]

    Borgia G C, Brown R J S, Fantazzini P 1998 J. Magn. Res. 132 65

    [5]

    Borgia G C, Brown R J S, Fantazzini P 2000 J. Magn. Res. 147 273

    [6]

    Butler J P, Reeds J A, Dawson S V 1981 SIAM J. Numer. Anal. 18 381

    [7]

    Dunn K J, LaTorraca G A, Warner J L, Bergman D J 1994 SPE 69th Annual Techoical Conference and Exhibition New Orleans, Louisiana September25-28, 1994 SPE28367 45

    [8]

    Wang Z D, Xiao L Z, Liu T Y 2003 Sci. China G 33 323 (in Chinese) [王忠东, 肖立志, 刘堂宴 2003 中国科学G 33 323]

    [9]

    Lawson C L, Hanson R J 1974 Solving Least Square Problems (Englewood Cliffs, New Jersey: Prentice-Hall) p158

    [10]

    Bro R, De Jong S 1997 J. Chemom. 11 393

    [11]

    Liao G Z, Xiao L Z, Xie R H, Fu J J 2007 Chinese J. Geophys. 50 932 (in Chinese) [廖广志, 肖立志, 谢然红, 付娟娟 2007 地球物理学报 50 932]

    [12]

    Berman P, Levi O, Parmet Y, Saunders M, Wiesman Z 2013 Concepts in Magnetic Resonance Part A 42 72

    [13]

    Tikhonov A N 1963 Soviet Mathematics 4 1035

    [14]

    Provencher S W 1982 Comput. Phys. Commun. 27 229

    [15]

    Moody J B, Xia Y 2004 J. Magn. Res. 167 36

    [16]

    Prange M, Song Y Q 2009 J. Magn. Res. 196 54

    [17]

    Prange M, Song Y Q 2010 J. Magn. Res. 204 118

    [18]

    Lin F, Wang Z W, Li J Y, Zhang X A, Jiang Y L 2011 Appl. Geophys. 8 233

    [19]

    Wang H, Li G Y 2005 Acta Phys. Sin. 54 1431 (in Chinese) [王鹤, 李鲠颖 2005 物理学报 54 1431]

    [20]

    Pan K J, Chen H, Tan Y J 2008 Acta Phys. Sin. 57 5956 (in Chinese) [潘克家, 陈华, 谭永基 2008 物理学报 57 5956]

    [21]

    Chen H, Pan K J, Tan Y J 2009 Well Logging Technol. 33 37 (in Chinese) [陈华, 潘克家, 谭永基 2009 测井技术 33 37]

    [22]

    Tan M J, Shi Y L, Xie G B 2007 Well Logging Technol. 31 413 (in Chinese) [谭茂金, 石耀霖, 谢关宝 2007 测井技术 31 413]

    [23]

    Hastie T, Tibshirani R, Friedman J 2001 The Elements of Statistical Learning: Data Mining, Inference, and Prediction (New York: Springer) p11

  • [1]

    Wang W M, Li P, Ye C H 2001 Sci. China A 31 730 (in Chinese) [王为民, 李培, 叶朝辉 2001 中国科学A 31 730]

    [2]

    Xu F, Huang Y R 2002 Acta Phys. Sin. 51 415 (in Chinese) [许峰, 黄永仁 2002 物理学报 51 415]

    [3]

    Zheng S K, Chen Z, Chen Z W, Zhong J H 2001 Chin. Phys. 10 558

    [4]

    Borgia G C, Brown R J S, Fantazzini P 1998 J. Magn. Res. 132 65

    [5]

    Borgia G C, Brown R J S, Fantazzini P 2000 J. Magn. Res. 147 273

    [6]

    Butler J P, Reeds J A, Dawson S V 1981 SIAM J. Numer. Anal. 18 381

    [7]

    Dunn K J, LaTorraca G A, Warner J L, Bergman D J 1994 SPE 69th Annual Techoical Conference and Exhibition New Orleans, Louisiana September25-28, 1994 SPE28367 45

    [8]

    Wang Z D, Xiao L Z, Liu T Y 2003 Sci. China G 33 323 (in Chinese) [王忠东, 肖立志, 刘堂宴 2003 中国科学G 33 323]

    [9]

    Lawson C L, Hanson R J 1974 Solving Least Square Problems (Englewood Cliffs, New Jersey: Prentice-Hall) p158

    [10]

    Bro R, De Jong S 1997 J. Chemom. 11 393

    [11]

    Liao G Z, Xiao L Z, Xie R H, Fu J J 2007 Chinese J. Geophys. 50 932 (in Chinese) [廖广志, 肖立志, 谢然红, 付娟娟 2007 地球物理学报 50 932]

    [12]

    Berman P, Levi O, Parmet Y, Saunders M, Wiesman Z 2013 Concepts in Magnetic Resonance Part A 42 72

    [13]

    Tikhonov A N 1963 Soviet Mathematics 4 1035

    [14]

    Provencher S W 1982 Comput. Phys. Commun. 27 229

    [15]

    Moody J B, Xia Y 2004 J. Magn. Res. 167 36

    [16]

    Prange M, Song Y Q 2009 J. Magn. Res. 196 54

    [17]

    Prange M, Song Y Q 2010 J. Magn. Res. 204 118

    [18]

    Lin F, Wang Z W, Li J Y, Zhang X A, Jiang Y L 2011 Appl. Geophys. 8 233

    [19]

    Wang H, Li G Y 2005 Acta Phys. Sin. 54 1431 (in Chinese) [王鹤, 李鲠颖 2005 物理学报 54 1431]

    [20]

    Pan K J, Chen H, Tan Y J 2008 Acta Phys. Sin. 57 5956 (in Chinese) [潘克家, 陈华, 谭永基 2008 物理学报 57 5956]

    [21]

    Chen H, Pan K J, Tan Y J 2009 Well Logging Technol. 33 37 (in Chinese) [陈华, 潘克家, 谭永基 2009 测井技术 33 37]

    [22]

    Tan M J, Shi Y L, Xie G B 2007 Well Logging Technol. 31 413 (in Chinese) [谭茂金, 石耀霖, 谢关宝 2007 测井技术 31 413]

    [23]

    Hastie T, Tibshirani R, Friedman J 2001 The Elements of Statistical Learning: Data Mining, Inference, and Prediction (New York: Springer) p11

  • [1] 孔祥宇, 朱垣晔, 闻经纬, 辛涛, 李可仁, 龙桂鲁. 核磁共振量子信息处理研究的新进展. 物理学报, 2018, 67(22): 220301. doi: 10.7498/aps.67.20180754
    [2] 蒋川东, 王琦, 杜官峰, 易晓峰, 田宝凤. 地面核磁偏共振响应特征与复包络反演方法. 物理学报, 2018, 67(1): 013302. doi: 10.7498/aps.67.20171464
    [3] 潘健, 余琦, 彭新华. 多量子比特核磁共振体系的实验操控技术. 物理学报, 2017, 66(15): 150302. doi: 10.7498/aps.66.150302
    [4] 李晓丽, Sun Jian-Gang, 陶宁, 曾智, 赵跃进, 沈京玲, 张存林. 非线性拟合方法用于透射式脉冲红外技术测试碳/碳复合材料的热扩散系数. 物理学报, 2017, 66(18): 188702. doi: 10.7498/aps.66.188702
    [5] 李政, 周睿, 郑国庆. 铁基超导体的量子临界行为. 物理学报, 2015, 64(21): 217404. doi: 10.7498/aps.64.217404
    [6] 徐新河, 刘鹰, 甘月红, 刘文苗. 磁电耦合超材料本构矩阵获取方法的研究. 物理学报, 2015, 64(4): 044101. doi: 10.7498/aps.64.044101
    [7] 田宝凤, 周媛媛, 王悦, 李振宇, 易晓峰. 基于独立成分分析的全波核磁共振信号噪声滤除方法研究. 物理学报, 2015, 64(22): 229301. doi: 10.7498/aps.64.229301
    [8] 李俊, 崔江煜, 杨晓东, 罗智煌, 潘健, 余琦, 李兆凯, 彭新华, 杜江峰. 核磁共振中的量子控制. 物理学报, 2015, 64(16): 167601. doi: 10.7498/aps.64.167601
    [9] 谢宇, 赵春霞, 张浩峰, 颜雪军, 陈得宝. 基于混合交叉差分进化的相机空间操控系统参数优化. 物理学报, 2015, 64(2): 020701. doi: 10.7498/aps.64.020701
    [10] 王燕, 邹男, 付进, 梁国龙. 基于倒谱分析的单水听器目标运动参数估计. 物理学报, 2014, 63(3): 034302. doi: 10.7498/aps.63.034302
    [11] 李新, 肖立志, 刘化冰, 张宗富, 郭葆鑫, 于慧俊, 宗芳荣. 优化重聚脉冲提高梯度场核磁共振信号强度. 物理学报, 2013, 62(14): 147602. doi: 10.7498/aps.62.147602
    [12] 姚淅伟, 曾碧榕, 刘钦, 牟晓阳, 林星程, 杨春, 潘健, 陈忠. 基于核磁共振的子空间量子过程重构. 物理学报, 2010, 59(10): 6837-6841. doi: 10.7498/aps.59.6837
    [13] 李绍, 任育峰, 王宁, 田野, 储海峰, 黎松林, 陈莺飞, 李洁, 陈赓华, 郑东宁. 利用高温超导直流量子干涉器件进行10-6 T量级磁场下核磁共振的研究. 物理学报, 2009, 58(8): 5744-5749. doi: 10.7498/aps.58.5744
    [14] 许 峰, 刘堂晏, 黄永仁. 油水饱和球管孔隙模型弛豫的理论计算与计算机模拟. 物理学报, 2008, 57(1): 550-555. doi: 10.7498/aps.57.550
    [15] 潘克家, 陈 华, 谭永基. 基于差分进化算法的核磁共振T2谱多指数反演. 物理学报, 2008, 57(9): 5956-5961. doi: 10.7498/aps.57.5956
    [16] 许 峰, 刘堂晏, 黄永仁. 射频场照射下多自旋体系弛豫的理论计算. 物理学报, 2006, 55(6): 3054-3059. doi: 10.7498/aps.55.3054
    [17] 王 鹤, 李鲠颖. 反演与拟合相结合处理核磁共振弛豫数据的方法. 物理学报, 2005, 54(3): 1431-1436. doi: 10.7498/aps.54.1431
    [18] 许峰, 黄永仁. 射频场照射下扩展的Solomon方程及射频场的照射对异核体系弛豫速率与NOE的影响. 物理学报, 2002, 51(6): 1371-1376. doi: 10.7498/aps.51.1371
    [19] 许峰, 黄永仁. 射频场照射下同核体系的弛豫. 物理学报, 2002, 51(2): 415-419. doi: 10.7498/aps.51.415
    [20] 许峰, 黄永仁. 特形脉冲的设计与计算机模拟. 物理学报, 2002, 51(11): 2617-2622. doi: 10.7498/aps.51.2617
计量
  • 文章访问数:  6470
  • PDF下载量:  250
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-24
  • 修回日期:  2016-03-08
  • 刊出日期:  2016-05-05

/

返回文章
返回