搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压缩应变载荷下氮化镓隧道结微观压电特性及其巨压电电阻效应

张耿鸿 朱佳 姜格蕾 王彪 郑跃

引用本文:
Citation:

压缩应变载荷下氮化镓隧道结微观压电特性及其巨压电电阻效应

张耿鸿, 朱佳, 姜格蕾, 王彪, 郑跃

Atomic scale piezoelectricity and giant piezoelectric resistance effect in gallium nitride tunnel junctions under compressive strain

Zhang Geng-Hong, Zhu Jia, Jiang Ge-Lei, Wang Biao, Zheng Yue
PDF
导出引用
  • 电子器件可控性研究在日益追求器件智能化和可控化的当今社会至关重要. 基于第一性原理和量子输运计算, 本文研究了压缩应变载荷对氮化镓(GaN)隧道结基态电学性质和电流输运的影响, 在原子尺度上窥视了氮化镓隧道结的微观压电性, 验证了其内在的巨压电电阻(GPR)效应. 计算结果表明, 压缩应变载荷可以调节隧道结内氮化镓势垒层的电势能降、内建电场、电荷密度和极化强度, 进而实现对隧道结电流输运和隧穿电阻的调控. 在-1.0 V的偏置电压下, -5%的压缩应变载荷将使氮化镓隧道结的隧穿电阻增至4倍. 本研究展现了氮化镓隧道结在可控电子器件中的应用潜力, 也展现了应变工程在调控电子器件性能方面的光明前景.
    It is an urgent and significant issue to investigate the influence factors of functional devices and then improve, modify or control their performances, which has important significance for the practical application and electronic industry. Based on first principle and quantum transport calculations, the effects of compressive strain on the current transport and relative electrical properties (such as the electrostatic potential energy, built-in electric field, charge density and polarization, etc.) in gallium nitride (GaN) tunnel junctions are investigated. It is found that there are potential energy drop, built-in electric field and spontaneous polarization in the GaN barrier of the tunnel junction due to the non-centrosymmetric structure of GaN. Furthermore, results also show that all these electrical properties can be adjusted by compressive strain. With the increase of the applied in-plane compressive strain, the piezocharge density in the GaN barrier of the tunnel junction gradually increases. Accordingly, the potential energy drop throughout the GaN barrier gradually flattens and the built-in electric field decreases. Meanwhile, the average polarization of the barrier is weakened and even reversed. These strain-dependent evolutions of the electric properties also provide an atomic level insight into the microscopic piezoelectricity of the GaN tunnel junction. In addition, it is inspiring to see that the current transport as well as the tunneling resistance of the GaN tunnel junction can be well tuned by the compressive strain. When the applied compressive strain decreases, the tunneling current of the junction increases and the tunneling resistance decreases. This strain control ability on the tunnel junctions current and resistance becomes more powerful at large bias voltages. At a bias voltage of -1.0 V, the tunneling resistance can increase up to 4 times by a -5% compressive strain, which also reveals the intrinsic giant piezoelectric resistance effect in the GaN tunnel junction. This study exhibits the potential applications of GaN tunnel junctions in tunable electronic devices and also implies the promising prospect of strain engineering in the field of exploiting tunable devices.
      通信作者: 王彪, wangbiao@mail.sysu.edu.cn;zhengy35@mail.sysu.edu.cn
    • 基金项目: 中国博士后科学基金(批准号:2014M552267)和高等学校博士学科点专项科研基金(批准号:20110171110022)资助的课题.
      Corresponding author: Wang Biao, wangbiao@mail.sysu.edu.cn;zhengy35@mail.sysu.edu.cn
    • Funds: Project supported by the China Postdoctoral Science Foundation (Grant No. 2014M552267) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110171110022).
    [1]

    Strite S, Morko H 1992 J. Vac. Sci. Technol. B 10 1237

    [2]

    Ambacher O 1998 J. Phys. D: Appl. Phys. 31 2653

    [3]

    Liou J K, Chen C C, Chou P C, Tsai Z J, Chang Y C, Liu W C 2014 IEEE J. Quantum Elect. 50 973

    [4]

    Zhao L X, Yu Z G, Sun B, Zhu S C, An P B, Yang C, Liu L, Wang J X, Li J M 2015 Chin. Phys. B 24 068506

    [5]

    Wu Y F, Saxler A, Moore M, Smith R P, Sheppard S, Chavarkar P M, Wisleder T, Mishra U K, Parikh P 2004 IEEE Elect. Device Lett. 25 117

    [6]

    Higashiwaki M, Mimura T, Matsui T 2008 Appl. Phys. Express 1 021103

    [7]

    Zheng Y, Woo C H 2009 Nanotechnology 20 075401

    [8]

    Luo X, Wang B, Zheng Y 2011 ACS Nano 5 1649

    [9]

    Zhang G H, Luo X, Zheng Y, Wang B 2012 Phys. Chem. Chem. Phys. 14 7051

    [10]

    Yang Y, Qi J J, Gu Y S, Wang X Q, Zhang Y 2009 Phys. Status Solidi RRL 3 269

    [11]

    Wang Z L 2007 Adv. Mater. 19 889

    [12]

    Zhou J, Fei P, Gu Y D, Mai W J, Gao Y F, Yang R S, Bao G, Wang Z L 2008 Nano Lett. 8 3973

    [13]

    Zhang Y, Liu Y, Wang Z L 2011 Adv. Mater. 23 3004

    [14]

    Feng X L, Zhang Y, Wang Z L 2013 Sci. China Tech. Sci. 56 2615

    [15]

    Liu Y, Zhang Y, Yang Q, Niu S M, Wang Z L 2015 Nano Energy 14 257

    [16]

    Jiao Z Y, Yang J F, Zhang X Z, Ma S H, Guo Y L 2011 Acta Phys. Sin. 60 117103 (in Chinese) [焦照勇, 杨继飞, 张现周, 马淑红, 郭永亮 2011 物理学报 60 117103]

    [17]

    Yang Z Q, Xu Z Z 1997 Acta Phys. Sin. (Overseas Edition) 6 606

    [18]

    Hao G D, Chen Y H, Fan Y M, Huang X H, Wang H B 2010 Chin. Phys. B 19 117104

    [19]

    Agrawal R, Espinosa H D 2011 Nano Lett. 11 786

    [20]

    Zhang J, Wang C Y, Chowdhury R, Adhikari S 2013 Scripta Mater. 68 627

    [21]

    Yu R M, Dong L, Pan C F, Niu S M, Liu H F, Liu W, Chua S, Chi D Z, Wang Z L 2012 Adv. Mater. 24 3532

    [22]

    Yu R M, Wu W Z, Ding Y, Wang Z L 2013 ACS Nano 7 6403

    [23]

    Yu R M, Wang X F, Peng W B, Wu W Z, Ding Y, Li S T, Wang Z L 2015 ACS Nano 9 9822

    [24]

    Zhao Z F, Pu X, Han C B, Du C H, Li L X, Jiang C Y, Hu W G, Wang Z L 2015 ACS Nano 9 8578

    [25]

    Wang C H, Liao W S, Ku N J, Li Y C, Chen Y C, Tu L W, Liu C P 2014 Small 10 4718

    [26]

    Jiao Q Q, Chen Z Z, Ma J, Wang S Y, Li Y, Jiang S, Feng Y L, Li J Z, Chen Y F, Yu T J, Wang S F, Zhang G Y, Tian P F, Xie E Y, Gong Z, Gu E D, Dawson M D 2015 Opt. Express 23 237856

    [27]

    Hertog M D, Songmuang R, Gonzalez-Posada F, Monroy E 2013 Jpn. J. Appl. Phys. 52 11NG01

    [28]

    Kamiya T, Tajima K, Nomura K, Yanagi H, Hosono H 2008 Phys. Status Solidi A 205 1929

    [29]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [30]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [31]

    Blchl P E 1994 Phys. Rev. B 50 17953

    [32]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [33]

    Brandbyge M, Mozos J L, Ordejn P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [34]

    Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045

    [35]

    Soler J M, Artacho E, Gale J D, Garca A, Junquera J, Ordejn P, Snchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745

    [36]

    Junquera J, Cohen M H, Rabe K M 2007 J. Phys.: Condens. Matter 19 213203

    [37]

    Zhang G H, Zheng Y, Wang B 2013 J. Appl. Lett. 114 044111

    [38]

    Liu W, Zhang A H, Zhang Y, Wang Z L 2015 Nano Energy 14 355

    [39]

    Gonze X, Lee C 1997 Phys. Rev. B 55 10355

    [40]

    Datta S 1997 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press) pp102-112

  • [1]

    Strite S, Morko H 1992 J. Vac. Sci. Technol. B 10 1237

    [2]

    Ambacher O 1998 J. Phys. D: Appl. Phys. 31 2653

    [3]

    Liou J K, Chen C C, Chou P C, Tsai Z J, Chang Y C, Liu W C 2014 IEEE J. Quantum Elect. 50 973

    [4]

    Zhao L X, Yu Z G, Sun B, Zhu S C, An P B, Yang C, Liu L, Wang J X, Li J M 2015 Chin. Phys. B 24 068506

    [5]

    Wu Y F, Saxler A, Moore M, Smith R P, Sheppard S, Chavarkar P M, Wisleder T, Mishra U K, Parikh P 2004 IEEE Elect. Device Lett. 25 117

    [6]

    Higashiwaki M, Mimura T, Matsui T 2008 Appl. Phys. Express 1 021103

    [7]

    Zheng Y, Woo C H 2009 Nanotechnology 20 075401

    [8]

    Luo X, Wang B, Zheng Y 2011 ACS Nano 5 1649

    [9]

    Zhang G H, Luo X, Zheng Y, Wang B 2012 Phys. Chem. Chem. Phys. 14 7051

    [10]

    Yang Y, Qi J J, Gu Y S, Wang X Q, Zhang Y 2009 Phys. Status Solidi RRL 3 269

    [11]

    Wang Z L 2007 Adv. Mater. 19 889

    [12]

    Zhou J, Fei P, Gu Y D, Mai W J, Gao Y F, Yang R S, Bao G, Wang Z L 2008 Nano Lett. 8 3973

    [13]

    Zhang Y, Liu Y, Wang Z L 2011 Adv. Mater. 23 3004

    [14]

    Feng X L, Zhang Y, Wang Z L 2013 Sci. China Tech. Sci. 56 2615

    [15]

    Liu Y, Zhang Y, Yang Q, Niu S M, Wang Z L 2015 Nano Energy 14 257

    [16]

    Jiao Z Y, Yang J F, Zhang X Z, Ma S H, Guo Y L 2011 Acta Phys. Sin. 60 117103 (in Chinese) [焦照勇, 杨继飞, 张现周, 马淑红, 郭永亮 2011 物理学报 60 117103]

    [17]

    Yang Z Q, Xu Z Z 1997 Acta Phys. Sin. (Overseas Edition) 6 606

    [18]

    Hao G D, Chen Y H, Fan Y M, Huang X H, Wang H B 2010 Chin. Phys. B 19 117104

    [19]

    Agrawal R, Espinosa H D 2011 Nano Lett. 11 786

    [20]

    Zhang J, Wang C Y, Chowdhury R, Adhikari S 2013 Scripta Mater. 68 627

    [21]

    Yu R M, Dong L, Pan C F, Niu S M, Liu H F, Liu W, Chua S, Chi D Z, Wang Z L 2012 Adv. Mater. 24 3532

    [22]

    Yu R M, Wu W Z, Ding Y, Wang Z L 2013 ACS Nano 7 6403

    [23]

    Yu R M, Wang X F, Peng W B, Wu W Z, Ding Y, Li S T, Wang Z L 2015 ACS Nano 9 9822

    [24]

    Zhao Z F, Pu X, Han C B, Du C H, Li L X, Jiang C Y, Hu W G, Wang Z L 2015 ACS Nano 9 8578

    [25]

    Wang C H, Liao W S, Ku N J, Li Y C, Chen Y C, Tu L W, Liu C P 2014 Small 10 4718

    [26]

    Jiao Q Q, Chen Z Z, Ma J, Wang S Y, Li Y, Jiang S, Feng Y L, Li J Z, Chen Y F, Yu T J, Wang S F, Zhang G Y, Tian P F, Xie E Y, Gong Z, Gu E D, Dawson M D 2015 Opt. Express 23 237856

    [27]

    Hertog M D, Songmuang R, Gonzalez-Posada F, Monroy E 2013 Jpn. J. Appl. Phys. 52 11NG01

    [28]

    Kamiya T, Tajima K, Nomura K, Yanagi H, Hosono H 2008 Phys. Status Solidi A 205 1929

    [29]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [30]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [31]

    Blchl P E 1994 Phys. Rev. B 50 17953

    [32]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [33]

    Brandbyge M, Mozos J L, Ordejn P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [34]

    Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045

    [35]

    Soler J M, Artacho E, Gale J D, Garca A, Junquera J, Ordejn P, Snchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745

    [36]

    Junquera J, Cohen M H, Rabe K M 2007 J. Phys.: Condens. Matter 19 213203

    [37]

    Zhang G H, Zheng Y, Wang B 2013 J. Appl. Lett. 114 044111

    [38]

    Liu W, Zhang A H, Zhang Y, Wang Z L 2015 Nano Energy 14 355

    [39]

    Gonze X, Lee C 1997 Phys. Rev. B 55 10355

    [40]

    Datta S 1997 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press) pp102-112

  • [1] 王娜, 许会芳, 杨秋云, 章毛连, 林子敬. 单层CrI3电荷输运性质和光学性质应变调控的第一性原理研究. 物理学报, 2022, 71(20): 207102. doi: 10.7498/aps.71.20221019
    [2] 王娅巽, 郭迪, 李建高, 张东波. 低维材料物性的非均匀应变调控. 物理学报, 2022, 71(12): 127307. doi: 10.7498/aps.71.20220085
    [3] 徐永虎, 邓小清, 孙琳, 范志强, 张振华. 边修饰Net-Y纳米带的电子结构及机械开关特性的应变调控效应. 物理学报, 2022, 71(4): 046102. doi: 10.7498/aps.71.20211748
    [4] 徐永虎, 邓小清, 孙琳, 范志强, 张振华. 边修饰Net-Y纳米带的电子结构及机械开关特性的应变调控效应. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211748
    [5] 刘迪, 王静, 王俊升, 黄厚兵. 相场模拟应变调控PbZr(1–x)TixO3薄膜微观畴结构和宏观铁电性能. 物理学报, 2020, 69(12): 127801. doi: 10.7498/aps.69.20200310
    [6] 侯璐, 童鑫, 欧阳钢. 一维carbyne链原子键性质应变调控的第一性原理研究. 物理学报, 2020, 69(24): 246802. doi: 10.7498/aps.69.20201231
    [7] 轩胜杰, 柳艳. 周期性应变调控斯格明子在纳米条带中的运动. 物理学报, 2018, 67(13): 137503. doi: 10.7498/aps.67.20180031
    [8] 王晓媛, 赵丰鹏, 王杰, 闫亚宾. 金属有机框架材料力学、电学及其应变调控特性的第一原理研究. 物理学报, 2016, 65(17): 178105. doi: 10.7498/aps.65.178105
    [9] 文娟辉, 杨琼, 曹觉先, 周益春. 铁电薄膜漏电流的应变调控. 物理学报, 2013, 62(6): 067701. doi: 10.7498/aps.62.067701
    [10] 刘源, 姚洁, 陈驰, 缪灵, 江建军. 氢修饰石墨烯纳米带压电性质的第一性原理研究. 物理学报, 2013, 62(6): 063601. doi: 10.7498/aps.62.063601
    [11] 孙转兰, 张晓青, 曹功勋, 王学文, 夏钟福. 有序结构氟聚合物压电驻极体的制备和压电性研究. 物理学报, 2010, 59(7): 5061-5066. doi: 10.7498/aps.59.5061
    [12] 张晓青, 黄金峰, 王学文, 夏钟福. 聚四氟乙烯和氟化乙丙烯共聚物复合膜的压电性. 物理学报, 2009, 58(5): 3525-3531. doi: 10.7498/aps.58.3525
    [13] 张晓青, 黄金峰, 王飞鹏, 夏钟福. 氟聚合物压电驻极体的压电性及其电荷的动态行为. 物理学报, 2008, 57(3): 1902-1907. doi: 10.7498/aps.57.1902
    [14] 张鹏锋, 夏钟福, 邱勋林, 王飞鹏, 吴贤勇. 充电参数对聚丙烯蜂窝膜驻极体压电性的影响. 物理学报, 2006, 55(2): 904-909. doi: 10.7498/aps.55.904
    [15] 邱勋林, 夏钟福, 安振连, 吴贤勇. 热膨胀处理的聚丙烯蜂窝膜驻极体的压电性. 物理学报, 2005, 54(1): 402-406. doi: 10.7498/aps.54.402
    [16] 张鹏锋, 夏钟福, 邱勋林, 吴贤勇. 聚丙烯蜂窝膜驻极体压电系数的测量及压电性的改善. 物理学报, 2005, 54(1): 397-401. doi: 10.7498/aps.54.397
    [17] 王飞鹏, 夏钟福, 吴越华, 邱勋林. P (VDF-TFE-HFP)/PTFE双层驻极体膜的压电性. 物理学报, 2004, 53(5): 1534-1539. doi: 10.7498/aps.53.1534
    [18] 朱 涛, 王荫君. Fe-Al2O3颗粒膜的隧道巨磁电阻效应. 物理学报, 1999, 48(4): 763-768. doi: 10.7498/aps.48.763
    [19] 尹鑫, 吕孟凯, 李福奇. NH4IO3晶体的压电性能. 物理学报, 1989, 38(1): 124-127. doi: 10.7498/aps.38.124
    [20] 黄肇明, 庄培其, 姜祖涛, 于桂芳. ADP晶体压电性能的动态测量. 物理学报, 1966, 22(8): 911-918. doi: 10.7498/aps.22.911
计量
  • 文章访问数:  3582
  • PDF下载量:  221
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-03
  • 修回日期:  2016-02-18
  • 刊出日期:  2016-05-05

压缩应变载荷下氮化镓隧道结微观压电特性及其巨压电电阻效应

  • 1. 中山大学物理科学与工程技术学院, 微纳物理力学实验室, 广州 510275;
  • 2. 中山大学光电材料与技术国家重点实验室, 广州 510275;
  • 3. 中山大学中法核工程与技术学院, 珠海 519082
  • 通信作者: 王彪, wangbiao@mail.sysu.edu.cn;zhengy35@mail.sysu.edu.cn
    基金项目: 中国博士后科学基金(批准号:2014M552267)和高等学校博士学科点专项科研基金(批准号:20110171110022)资助的课题.

摘要: 电子器件可控性研究在日益追求器件智能化和可控化的当今社会至关重要. 基于第一性原理和量子输运计算, 本文研究了压缩应变载荷对氮化镓(GaN)隧道结基态电学性质和电流输运的影响, 在原子尺度上窥视了氮化镓隧道结的微观压电性, 验证了其内在的巨压电电阻(GPR)效应. 计算结果表明, 压缩应变载荷可以调节隧道结内氮化镓势垒层的电势能降、内建电场、电荷密度和极化强度, 进而实现对隧道结电流输运和隧穿电阻的调控. 在-1.0 V的偏置电压下, -5%的压缩应变载荷将使氮化镓隧道结的隧穿电阻增至4倍. 本研究展现了氮化镓隧道结在可控电子器件中的应用潜力, 也展现了应变工程在调控电子器件性能方面的光明前景.

English Abstract

参考文献 (40)

目录

    /

    返回文章
    返回