搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相变调控、磁热效应和反常热膨胀

林源 胡凤霞 沈保根

引用本文:
Citation:

相变调控、磁热效应和反常热膨胀

林源, 胡凤霞, 沈保根

Phase transition regulation, magnetocaloric effect, and abnormal thermal expansion

Lin Yuan, Hu Feng-Xia, Shen Bao-Gen
PDF
HTML
导出引用
  • 相变作为广泛存在于自然界中的一种现象很早就受到了广泛的关注, 并且已经被应用于相变制冷、相变存储、相变储能和负热膨胀等领域中. 基于磁热、电热和机械热效应不断发展起来的固态制冷技术具有环保、高效、低噪声和易小型化等优点, 被视为替代汽压缩制冷的新型制冷技术. 其中, 磁热效应是研究历史最悠久的一种. 然而, 单磁场驱动磁热效应的诸多不足限制了其固态制冷应用, 如热效应幅度不够高、滞后损耗大、制冷温跨窄等, 因此多场调控和多卡效应应运而生. 本文主要介绍笔者团队近期开展的多场调控磁热效应、以及磁热材料的反常热膨胀行为的研究.
    As a common phenomenon in nature, phase transition has received much attention for a long time. It has been applied to various fields, such as refrigeration, information and energy storage, and negative thermal expansion. Solid refrigeration technology based on magnetocaloric effect, electrocaloric effect, and mechanocaloric effect has the advantages of environmental protection, high efficiency, no noise, and easy miniaturization, and is expected to replace vapor compression technology. Among them, the magnetocaloric effect has the longest research history. However, the shortcomings of magnetocaloric effect driven by a single magnetic field limit its solid-state refrigeration application, such as insufficient amplitude of caloric effect, large hysteresis loss, and narrow refrigeration temperature span. To solve these problems, multifield tuning and multicaloric effect have come into people's sight. This paper introduces our recent research on improving the caloric effect by applying multifield, such as increasing entropy change, expanding transition temperature range, adjusting transition temperature, and reducing e hysteresis losses. The thermodynamics of multifield and coupled-caloric effect are presented in the meantime. On the other hand, materials with abnormal thermal expansion (zero thermal expansion, negative thermal expansion) have important applications in precision manufacturing. The phase transition and lattice effect dominated by magnetic atoms in the giant magnetocaloric materials with strong magnetic-crystal coupling provide an ideal platform for exploring abnormal thermal expansion. This paper also introduces our recent research on abnormal thermal expansion in magnetocaloric materials, and looks forward to future relevant research .
  • 图 1  LaFe11.6Si1.3化合物通过(a)核共振非弹X射线散射和(b)密度泛函理论计算得到的晶格熵随温度的变化曲线, 以及由此得到的(c)德拜温度ΘD随温度的变化曲线[71]; (d) 利用德拜近似得到的La(Fe0.92Co0.08)11.9Si1.1化合物的德拜温度ΘD随温度的变化曲线[31]

    Fig. 1.  Temperature dependence of the experimental (a) and DFT-computed (b) vibrational entropy Slatt (T) of the Fe sublattice for LaFe11.6Si1.4 compound; (c) temperature dependence of the Debye temperature ΘD of the LaFe11.6Si1.4 compound[71]; (d) temperature dependence of ΘD for La(Fe0.92Co0.08)11.9Si1.1 calculated using the Debye approximation[31].

    图 2  La(Fe0.92Co0.08)11.9Si1.1化合物在不同压力下(a)磁热熵变 (磁场0—2 T, 0—5 T)和(b)压热熵变随温度的变化; (c)物理压力和H原子引入的化学压力对原子局域环境影响的对比示意图[31]

    Fig. 2.  For the La(Fe0.92Co0.08)11.9Si1.1 compound, (a) entropy change for the magnetic field changes of 0–2 T and 0–5 T under different pressures, and (b) entropy change for different pressure changes as a function of temperature; (c) schematic diagram indicating the variations of atomic local environments caused by physical pressure and chemical pressure[31].

    图 4  (a) 不同物理压力下La(Fe0.92Co0.08)11.9Si1.1化合物晶胞体积随温度的变化曲线, 插图给出了相变过程中相对体积变化ΔV/V随压力的变化曲线; (b) 不同压力下中子衍射(531)±特征峰的峰强计数随温度的变化曲线[31]

    Fig. 4.  (a) The lattice volume as a function of temperature for La(Fe0.92Co0.08)11.9Si1.1 compound under different pressures. Inset shows the relative volume change ΔV/V as a function of pressure; (b) neutron intensity (with error bars) of the (531) ± reflection as a function of temperature under different pressures[31].

    图 3  0 kbar和9 kbar物理压力下La(Fe0.92Co0.08)11.9Si1.1化合物的顺磁态电子态密度在费米能级处的分布情况; 插图给出了0 kbar和9 kbar压力下的顺磁态总电子态密度曲线[31]

    Fig. 3.  The details of total density of states near the Fermi level EF of La(Fe0.92Co0.08)11.9Si1.1 compound in the nonmagnetic state under pressures 0 and 9 kbar. The inset shows the total DOS in the nonmagnetic state, the Fermi energy is shifted to zero[31].

    图 7  HoCuSi化合物不同物理压力下相变温度附近的等温磁化曲线 (a) 0 kbar, (b) 6.6 kbar, (c) 9.0 kbar; HoCuSi化合物在不同磁场变化、不同压力下的磁热熵变随温度的变化曲线 (d) 0—1 T, (e) 0—2 T, (f) 0—5 T[32]

    Fig. 7.  Magnetization isotherms of HoCuSi measured on increasing and decreasing fields under (a) 0 kbar, (b) 6.6 kbar, (c) 9.0 kbar, where the arrows indicate the ramping direction of magnetic field; entropy change under different pressures at (d) 0–1 T, (e) 0–2 T, and (f) 0–5 T magnetic field change[32].

    图 5  HoCuSi化合物正弦波调制的反铁磁基态

    Fig. 5.  The AFM ground state of HoCuSi compound with a sin wave modulation spin structure.

    图 6  (a)不同物理压力下HoCuSi化合物在0.01 T磁场时的升温(ZFC)和降温(FC)过程中的热磁曲线, 插图为不同物理压力下的磁化率倒数(1/χ)与温度的关系; (b) 基于(a)图中M-T曲线, 根据居里-外斯定律推导得到的有效磁矩Meff以及顺磁居里温度θP压力依赖关系[32]

    Fig. 6.  (a) Temperature dependences of the ZFC and FC magnetizations for HoCuSi in a magnetic field of 0.01 T under different pressures. The inset shows 1/χT curves under different pressures; (b) the pressure dependences of paramagnetic Curie temperature θP and effective magnetic moment Meff derived from the M-T curves in Fig.6(a)[32].

    图 8  PrGa化合物在环境压力下晶胞参数随温度的变化曲线, 其中箭头指向自旋重取向温度TSR和居里温度Tc (a) 晶胞参数a; (b) 晶胞参数b; (c) 晶胞参数c; (d) Pr3+的磁矩沿c轴(Mc)的投影[82]

    Fig. 8.  Temperature dependence of the lattice parameter (a) a, (b) b, (c) c, where the arrows indicate the positions of TSR and Tc; (d) the projection of the magnetic moment along the c axis (Mc) [82].

    图 9  (a) 不同物理压力下PrGa化合物在0.05 T磁场时的升温(ZFC)和降温(FC)过程中的热磁曲线, 其中插图显示了TSRTc与压力的关系; (b) PrGa化合物在5 T磁场下的磁化强度随温度的变化曲线, 插图给出了不同压力下的dM/dT曲线[82]

    Fig. 9.  (a) Temperature dependence of the ZFC and the FC magnetization for PrGa under a field 0.5 T, where the inset shows the dependence of TSR and Tc on the application of pressure; (b) temperature dependence magnetization for PrGa under a field 5 T, where the inset shows the corresponding dM/dT curves under different pressures[82].

    图 10  不同物理压力下PrGa化合物在磁场变化为0—1 T和0—5 T时的等温磁热熵变随温度的变化曲线[82]

    Fig. 10.  Temperature dependences of magnetic entropy change under 0 kbar, 3.5 kbar, 11.4 kbar for the field changes of 0–1 T and 0–5 T, respectively[82].

    图 11  FeRh/PMN-PT异质结XRD图谱、球差电镜结果及PMN-PT多畴结构示意图 (a)FeRh(011)/(001)PMN-PT与(b) FeRh(001)/(011)PMN-PT异质结室温下的XRD图谱; (c) (001)PMN-PT单晶多畴结构示意图以及(d)不同铁电畴和FeRh畴在(001)面内晶胞参数示意图; (e)(011)PMN-PT单晶多畴结构示意; (f) FeRh(001)/(011)PMN-PT异质结横截面的球差电镜HAADF图像, 标尺是2 nm, 右侧展示了相应的α-FeRh、缓冲层和PMN-PT原子排列示意图; 界面附近(g) Fe(绿色)和(h)Pb(蓝色)的EDX元素分布图; (l)界面尖晶石结构缓冲层形成示意图, ABO3钙钛矿结构的PMN-PT中Pb(红色原子)挥发, 产生空位, 与其相邻的原子偏移, 薄膜生长过程中界面处Fe原子渗入基片表面的空位中, 形成尖晶石结构的缓冲层[33]

    Fig. 11.  The XRD patterns of (a) FeRh(011)/(001)PMN-PT and (b) FeRh(001)/(011)PMN-PT heterostructure at room temperature; (c) configuration of spontaneous polarization vectors along body diagonals shown by arrows for (001)-oriented PMN-PT single crystal and (d) the projections of ferroelectric domains r1/r3 and r2/r4 in the (001)-plane and the corresponding FeRh domains in (011)-plane; (e) configuration of spontaneous polarization vectors along body diagonals shown by arrows for (011)-oriented PMN-PT single crystal; (f) cross-sectional STEM HAADF image of FeRh(001)/(011)PMN-PT heterostructure and the corresponding atomic arrangement of α-FeRh, buffer layer and PMN-PT; EDX mapping of (g) Fe (green) and (h) Pb (blue) element distribution at the interface, where the scale bar is 2 nm in length; (l) schematic diagram of spinel buffer layer formation. Pb atoms (red) in the ABO3 perovskite PMN-PT volatilize at high temperature, and Pb vacancies appear, which give rise to the skewing of adjacent atoms. During film growth, Fe atoms at the interface permeate into Pb vacancies, facilitating the formation of a buffer layer with spinel structure[33].

    图 12  (a) (011)FeRh/(001)PMN-PT异质结中在电场调控下FeRh薄膜0—5 T磁场的磁热熵变随温度的变化; (b) (001)FeRh/(011)PMN-PT异质结中在电场调控下FeRh薄膜0—5 T磁场的磁热熵变随温度的变化[33]

    Fig. 12.  The comparison of ΔS curves at 0—5 T under 0 kV/cm, -8 kV/cm and +8 kV/cm, where the corresponding refrigeration temperature spans are marked for (a) (011)FeRh/(001)PMN-PT and (b) (001)FeRh/(011)PMN-PT[33].

    图 13  AMR 循环设计示意图 (a)磁场电场双场激励的AMR 循环示意图; (b)通过PMN-PT基片的铁电畴翻转/相变调控FeRh 薄膜的ΔS-T 曲线[33]

    Fig. 13.  Schematic diagram of AMR cycle: (a) Schematic diagram of dual field stimulated AMR cycle; (b) The ΔS-T curves of FeRh layer tuning by FE domains of PMN-PT substrates[33].

    图 14  引入应变记忆效应的实验测量 (a) FeRh(001)/ PMN-PT(011)异质结测量模型示意图, 其中HE分别表示施加的磁场和电场; (b) 在5 T和310 K下FeRh薄膜磁化强度随电场的变化曲线, A—B, 施加–6 kV/cm电场由基片引入的压应变使部分FM相转化为AFM相, 磁化强度下降, B—C, 移去–6 kV/cm电场, 应变记忆效应使磁化强度近似保持不变, C—D, 施加+6 kV/cm电场释放应变使部分AFM相回到FM相, 磁化强度上升, D—A, 移去+6 kV/cm电场, 应变记忆效应使磁化强度近似保持不变; (c) 零电场下前两圈磁场循环FeRh薄膜磁化强度随磁场的变化曲线; (d) 在5 T和0 T恒定磁场下施加脉冲电场FeRh薄膜磁化强度随磁场的变化曲线. 假设脉冲电场产生的应变更大, 路径6将沿路径6’或路径6”. 可以看出, 由路径5—6, 5—6', 5—6''围成的面积远小于图(c)中3—4围成的面积甚至变成负的(路径5, 6, 6', 6''仅有磁场没有电场), 表示应变记忆效应导致的滞后损耗的非易失性大幅下降, 其来源于应变产生的机械功的补偿作用, 下部分的图对应于上述过程中磁场和电场随时间的变化曲线[34]

    Fig. 14.  Regulation of hysteresis loss by non-volatile strain: (a) Sketch of the FeRh/PMN-PT heterostructure; (b) the loop-like ME curve measured at 5 T and 310 K; (c) MH curves in the absence of electric field; (d) MH curves with a pulse electric field 0 → – 6 → 0 kV/cm applied at 5 T. Supposing the produced strain could be larger, path 6 would be along path 6' or path 6'' instead, and then the enveloped area by path 5–6' or 5–6'' would approach zero or turn out to be inverse. Lower panel, an exploded diagram corresponds to the above processes[34].

    图 15  FeRh层向Cu层和PMN-PT层热传导示意图 (a)以Cu为传热介质时, 有限元模拟得到的Cu层, FeRh层和PMN-PT层的温度随时间的变化结果; (b)热量从FeRh层传导到传热介质(Cu层)和PMN-PT基片层的示意图[34]

    Fig. 15.  Schematic diagram of heat flow from FeRh to Cu and PMN-PT: (a) Taking Cu as the heat medium, temperature evolution with time indicated by colors for the 3 layers of Cu, FeRh, and PMT-PT based on finite element simulation; (b) schematic diagram of heat flow from FeRh film to the heat transfer medium (Cu) and the PMN-PT substrates[34].

    图 16  (a) 373 K, FeRh合金的温度和交变磁场的强度随时间的变化; (b) 373 K, FeRh合金在1.8 T磁场820次循环下绝热温变随时间的变化曲线; (c) α-FeRh相边界TEM图像, 右上角为选定区域的电子散射图谱; (d), (e)是与(c)相同区域的暗场TEM图谱, 其中(d), (e)分别允许FeRh$[0\overline{11}] $和γ-FeRh $[2\overline{41}] $ 散射点通过物镜孔径; (f) 不同频率下FeRh合金的功率密度SCP随温度的变化曲线, 插图为SCP峰值随频率的依赖曲线[35]

    Fig. 16.  (a) Temperature of FeRh alloys and the alternative magnetic field as a function of time at T = 373 K; (b) time dependence of adiabatic temperature change ΔT for FeRh alloys at 373 K under 820 cycles of 1.8 T magnetic field; (c) TEM image at the position of phase boundaries for α-FeRh, the inset shows the corresponding selected area electron diffraction (SAED) pattern; (d), (e) dark-field TEM images recorded from the same region as (c), where the diffraction spots of (d) α-FeRh $[0\overline{11}] $ and (e) γ-FeRh $[2\overline{41}] $ are allowed to pass through the hollow objective apertures; (f) temperature dependent SCP curves under different frequency, the inset shows the peak value of SCP as a function of frequency[35].

    图 17  Ni50Mn35In15合金的 (a)耦合热熵变; (b)通过在不同压力下麦克斯韦关系计算得到的多卡熵变(黑色)和通过常压下磁热熵变与耦合热熵变的加和得到的多卡熵变(红色)[36]

    Fig. 17.  For Ni50Mn35In15 alloy: (a) Two-dimensional plots of the coupled caloric effect ΔScp=$ \displaystyle\int _{0}^{{H}_{0}}\int _{0}^{{P}_{0}}\frac{\partial {\chi }_{12}}{\partial T}{\mathrm{d}}P{\mathrm{d}}H $ as a function of pressure and temperature under a magnetic field change of 5–0 T; (b) comparison of the entropy change at ambient pressure adjusted by the coupled effect [S0 GPa(T, 5 T–0) + Scp(T, P, 5 T–0), black curves] and magnetocaloric results at a specific pressure [S(T, P, 5 T–0), red curves] calculated using Maxwell's relation[36].

    图 18  环氧树脂粘结(a)前和(b)后各粉末样品的MT曲线; 环氧树脂粘结压片的(c) Mn0.97In0.03CoGe, MnCo0.98Cr0.02Ge, (d) MnCoGe0.99和MnCoGe0.99In0.01粉末样品的线性热膨胀系数[52]

    Fig. 18.  Temperature dependence of magnetization under a magnetic field of 0.3 T for (a) as-prepared and (b) bonded samples; temperature dependence of linear thermal expansions ΔL/L for bonded samples with compositions (c) Mn0.97In0.03CoGe, MnCo0.98Cr0.02Ge, and (d) MnCoGe0.99, MnCoGe0.99In0.01[52].

    图 19  MnCoGe0.99In0.01合金 (a) P5样品的扫描电子显微镜、高分辨透射电子显微镜和通过傅里叶变换得到的电子散射图像; (b)粘结的粉末样品和块材的线性热膨胀率, 颗粒尺寸: P1(10—20 μm), P4(2—5 μm), P3(1—2 μm)和P5(0.3—1.0 μm)[53]

    Fig. 19.  For MnCoGe0.99In0.01 alloy: (a) SEM image, high-resolution TEM image, and electron diffraction pattern from Fourier transform, P5 (0.3–1.0 μm), circled regions by the white line indicate the nanocrystallites; (b) linear thermal expansion $ {{\Delta }} $L/L for the bonded particles compared with the bulk (the reference temperature is 390 K). Particle size: P1 (10–20 μm), P3 (2–5 μm), P4 (1–2 μm), and P5 (0.3–1 μm). The inset shows the morphology of the bonded particles.

    图 20  Mn0.87Fe0.13NiGe合金的磁相图[54]

    Fig. 20.  Magnetic phase diagram of Mn0.87Fe0.13NiGe[54].

    图 21  Mn0.87Fe0.13NiGe合金的(a)磁结构、晶体结构以及(b)负热膨胀行为; MnCoGe0.99In0.01合金的(c)磁结构、晶体结构以及(d)负热膨胀行为[55]

    Fig. 21.  The comparison between the magnetic structure, crystal structure, measured $ {{\Delta }} $L/L, and the calculated ($ {{\Delta }} $L/L)0 = ($ {{\Delta }}V/V $)/3 for bonded (a), (b) Mn0.87Fe0.13NiGe and (c), (d) MnCoGe0.99In0.01[55].

    图 22  Gdx(Ho0.5Dy0.5)1–xCo2合金体系的不同组分(x = 0, 0.1, 0.3, 0.5)在(a) 0—2 T和(b) 0—5 T磁场下的磁熵变随温度的变化[99]

    Fig. 22.  For Gdx(Ho0.5Dy0.5)1–xCo2 compounds, entropy change ΔS under (a) 0–2 T and (b) 0–5 T magnetic field change for the samples with various Gd contents, x = 0, 0.1, 0.3, 0.5[99].

    图 23  Gdx(Dy0.5Ho0.5)1–xCo2合金体系(a)菱方亚铁磁结构和(b)立方顺磁结构的示意图, 其中箭头方向表示磁矩的方向; 该体系(c)x = 0和(d)x = 0.5的组分的变温XRD图谱, 该体系x = 0, 0.3, 0.5的组分的晶格体积(e)和晶格参数(f)随温度的变化, 其中线性热系数αl和相应的操作间隔ΔT已标记[99]

    Fig. 23.  The sketches of (a) rhombohedral FIM and (b) cubic PM structure of Gdx(Dy0.5Ho0.5)1–xCo2 compounds. Arrows indicate the directions of magnetic moments. The variable temperature XRD patterns around the cubic (311) and (222) peaks of Gdx(Ho0.5Dy0.5)1–xCo2 for (c) x = 0 and (d) x = 0.5, where the blue balls marked on the peaks’ top and the lines guide eyes. Temperature dependence of (e) the lattice volume and (f) the lattice parameters for x = 0, 0.3, 0.5, where the linear thermal coefficients αl and the corresponding operation intervals ΔT are marked[99].

  • [1]

    Gschneidner K A, Pecharsky V K, Tsokol A O 2005 Rep. Prog. Phys. 68 1479Google Scholar

    [2]

    Shen B G, Sun J R, Hu F X, Zhang H W, Cheng Z H 2009 Adv. Mater. 21 4545Google Scholar

    [3]

    Zheng X Q, Shen B G 2017 Chin. Phys. B 26 027501Google Scholar

    [4]

    Zhang H, Shen B G 2015 Chin. Phys. B 24 127504Google Scholar

    [5]

    Neese B, Chu B, Lu S G, Wang Y, Furman E, Zhang Q M 2008 Science 321 821Google Scholar

    [6]

    Qian X, Han D, Zheng L, Chen J, Tyagi M, Li Q, Du F, Zheng S, Huang X, Zhang S, Shi J, Huang H, Shi X, Chen J, Qin H, Bernholc J, Chen X, Chen L Q, Hong L, Zhang Q M 2021 Nature 600 664Google Scholar

    [7]

    Mischenko A S, Zhang Q, Scott J F, Whatmore R W, Mathur N D 2006 Science 311 1270Google Scholar

    [8]

    Mischenko A S, Zhang Q, Whatmore R W, Scott J F, Mathur N D 2006 Appl. Phys. Lett. 89 242912Google Scholar

    [9]

    Moya X, Mathur N D 2020 Science 370 797Google Scholar

    [10]

    Li B, Kawakita Y, Ohira-Kawamura S, Sugahara T, Wang H, Wang J, Chen Y, Kawaguchi S I, Kawaguchi S, Ohara K, Li K, Yu D, Mole R, Hattori T, Kikuchi T, Yano S I, Zhang Z, Zhang Z, Ren W, Lin S, Sakata O, Nakajima K, Zhang Z 2019 Nature 567 506Google Scholar

    [11]

    Wang R, Fang S L, Xiao Y C, Gao E L, Jiang N, Li Y W, Mou L L, Shen Y A, Zhao W B, Li S T, Fonseca A F, Galvao D S, Chen M M, He W Q, Yu K Q, Lu H B, Wang X M, Qian D, Aliev A E, Li N, Haines C S, Liu Z S, Mu J K, Wang Z, Yin S G, Lima M D, An B G, Zhou X, Liu Z F, Baughman R H 2019 Science 366 216Google Scholar

    [12]

    Nikitin S A, Myalikgulyev G, Tishin A M, Annaorazov M P, Asatryan K A, Tyurin A L 1990 Phys. Lett. A 148 363Google Scholar

    [13]

    Annaorazov M P, Nikitin S A, Tyurin A L, Asatryan K A, Dovletov A K 1996 J. Appl. Phys. 79 1689Google Scholar

    [14]

    Pecharsky V K, Gschneidner K A 1997 Phys. Rev. Lett. 78 4494Google Scholar

    [15]

    Pecharsky V K, Gschneidner K A 1997 J. Magn. Magn. Mater. 167 L179Google Scholar

    [16]

    Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H, Zhang X X 2001 Appl. Phys. Lett. 78 3675Google Scholar

    [17]

    Hou H, Simsek E, Ma T, Johnson N S, Qian S, Cisse C, Stasak D, Al Hasan N, Zhou L, Hwang Y, Radermacher R, Levitas V I, Kramer M J, Zaeem M A, Stebner A P, Ott R T, Cui J, Takeuchi I 2019 Science 366 1116Google Scholar

    [18]

    Chluba C, Ge W, de Miranda R L, Strobel J, Kienle L, Quandt E, Wuttig M 2015 Science 348 1004Google Scholar

    [19]

    Gao Y, Liu H, Hu F, Song H, Zhang H, Hao J, Liu X, Yu Z, Shen F, Wang Y, Zhou H, Wang B, Tian Z, Lin Y, Zhang C, Yin Z, Wang J, Chen Y, Li Y, Song Y, Shi Y, Zhao T, Sun J, Huang Q, Shen B 2022 Npg Asia Mater. 14 34Google Scholar

    [20]

    Yu Z, Zhou H, Hu F, Liu C, Yuan S, Wang D, Hao J, Gao Y, Wang Y, Wang B, Tian Z, Lin Y, Zhang C, Yin Z, Wang J, Chen Y, Li Y, Sun J, Zhao T, Shen B 2022 Npg Asia Mater. 14 96Google Scholar

    [21]

    Giauque W F 1927 J. Am. Chem. Soc. 49 1864Google Scholar

    [22]

    Giauque W F, MacDougall D P 1933 Phys. Rev. 43 0768

    [23]

    Kurti N, Robinson F N H, Simon F, Spohr D A 1956 Nature 178 450Google Scholar

    [24]

    Wada H, Tanabe Y, Shiga M, Sugawara H, Sato H 2001 J. Alloys Compd. 316 245Google Scholar

    [25]

    Nobrega E P, de Oliveira N A, von Ranke P J, Troper A 2006 J. Appl. Phys. 99 08q103Google Scholar

    [26]

    von Ranke P J, Grangeia D F, Caldas A, de Oliveira N A 2003 J. Appl. Phys. 93 4055Google Scholar

    [27]

    Zheng X Q, Chen J, Wang L C, Wu R R, Hu F X, Sun J R, Shen B G 2014 J. Appl. Phys. 115 17a905Google Scholar

    [28]

    Mo Z J, Gong J J, Xie H C, Zhang L, Fu Q, Gao X Q, Li Z X, Shen J 2023 Chin. Phys. B 32 027503Google Scholar

    [29]

    Hao J Z, Hu F X, Yu Z B, Shen F R, Zhou H B, Gao Y H, Qiao K M, Li J, Zhang C, Liang W H, Wang J, He J, Sun J R, Shen B G 2020 Chin. Phys. B 29 047504Google Scholar

    [30]

    Hao J Z, Hu F X, Yu Z B, Shen F R, Zhou H B, Gao Y H, Qiao K M, Liang W H, Li J, Zhang C, Wang J, He J, Sun J R, Shen B G 2020 J. Magn. Magn. Mater. 512 166983Google Scholar

    [31]

    Hao J Z, Hu F X, Wang J T, Shen F R, Yu Z B, Zhou H B, Wu H, Huang Q, Qiao K M, Wang J, He J, He L, Sun J R, Shen B G 2020 Chem. Mater. 32 1807Google Scholar

    [32]

    Hao J Z, Hu F X, Zhou H B, Liang W H, Yu Z B, Shen F R, Gao Y H, Qiao K M, Li J, Zhang C, Wang B J, Wang J, He J, Sun J R, Shen B G 2020 Scripta Mater. 186 84Google Scholar

    [33]

    Qiao K M, Wang J L, Hu F X, Li J, Zhang C, Liu Y, Yu Z B, Gao Y H, Su J, Shen F R, Zhou H B, Bai X D, Wang J, Franco V, Sun J R, Shen B G 2020 Acta Mater. 191 51Google Scholar

    [34]

    Qiao K M, Hu F X, Liu Y, Li J, Kuang H, Zhang H, Liang W H, Wang J, Sun J R, Shen B G 2019 Nano Energy 59 285Google Scholar

    [35]

    Qiao K M, Wang J L, Zuo S L, Zhou H B, Hao J Z, Liu Y, Hu F X, Zhang H, Gamzatov A G, Aliev A, Zhang C, Li J, Yu Z B, Gao Y H, Shen F R, Ye R C, Long Y, Bai X D, Wang J, Sun J R, Huang R J, Zhao T Y, Shen B G 2022 ACS Acs Appl. Mater. Inter. 14 18293Google Scholar

    [36]

    Liang F X, Hao J Z, Shen F R, Zhou H B, Wang J, Hu F X, He J, Sun J R, Shen B G 2019 APL Mater. 7 051102Google Scholar

    [37]

    Mary T A, Evans J S O, Vogt T, Sleight A W 1996 Science 272 90Google Scholar

    [38]

    Zheng X G, Kubozono H, Yamada H, Kato K, Ishiwata Y, Xu C N 2008 Nat. Nanotechnol. 3 724Google Scholar

    [39]

    Azuma M, Chen W T, Seki H, Czapski M, Olga S, Oka K, Mizumaki M, Watanuki T, Ishimatsu N, Kawamura N, Ishiwata S, Tucker M G, Shimakawa Y, Attfield J P 2011 Nat. Commun. 2 347Google Scholar

    [40]

    Chen J, Nittala K, Forrester J S, Jones J L, Deng J, Yu R, Xing X 2011 J. Am. Chem. Soc. 133 11114Google Scholar

    [41]

    Takenaka K, Takagi H 2005 Appl. Phys. Lett. 87 261902Google Scholar

    [42]

    Iikubo S, Kodama K, Takenaka K, Takagi H, Takigawa M, Shamoto S 2008 Phys. Rev. Lett. 101 205901Google Scholar

    [43]

    Sun Y, Wang C, Wen Y, Chu L, Nie M, Liu F 2010 J. Am. Ceram. Soc. 93 650Google Scholar

    [44]

    Song X Y, Sun Z H, Huang Q Z, Rettenmayr M, Liu X M, Seyring M, Li G N, Rao G H, Yin F X 2011 Adv. Mater. 23 4690Google Scholar

    [45]

    Wang C, Chu L H, Yao Q R, Sun Y, Wu M M, Ding L, Yan J, Na Y Y, Tang W H, Li G N, Huang Q Z, Lynn J W 2012 Phys. Rev. B 85 220103Google Scholar

    [46]

    Lin J C, Tong P, Tong W, Lin S, Wang B S, Song W H, Zou Y M, Sun Y P 2015 Appl. Phys. Lett. 106 082405Google Scholar

    [47]

    Huang R, Liu Y, Fan W, Tan J, Xiao F, Qian L, Li L 2013 J. Am. Chem. Soc. 135 11469Google Scholar

    [48]

    Takenaka K, Okamoto Y, Shinoda T, Katayama N, Sakai Y 2017 Nat. Commun. 8 14102Google Scholar

    [49]

    Gercsi Z, Sandeman K G 2010 Phys. Rev. B 81 224426Google Scholar

    [50]

    Gercsi Z, Hono K, Sandeman K G 2011 Phys. Rev. B 83 174403Google Scholar

    [51]

    Trung N T, Zhang L, Caron L, Buschow K H J, Bruck E 2010 Appl. Phys. Lett. 96 172504Google Scholar

    [52]

    Zhao Y Y, Hu F X, Bao L F, Wang J, Wu H, Huang Q Z, Wu R R, Liu Y, Shen F R, Kuang H, Zhang M, Zuo W L, Zheng X Q, Sun J R, Shen B G 2015 J. Am. Chem. Soc. 137 1746Google Scholar

    [53]

    Shen F-R, Kuang H, Hu F-X, Wu H, Huang Q-Z, Liang F-X, Qiao K-M, Li J, Wang J, Liu Y, Zhang L, He M, Zhang Y, Zuo W-L, Sun J-R, Shen B-G 2017 APL Mater. 5 106102Google Scholar

    [54]

    Shen F R, Zhou H B, Hu F X, Wang J T, Wu H, Huang Q Z, Hao J Z, Yu Z B, Gao Y H, Lin Y, Wang Y X, Zhang C, Yin Z, Wang J, Deng S H, Chen J, He L H, Liang T J, Sun J R, Zhao T Y, Shen B G 2021 J. Am. Chem. Soc. 143 6798Google Scholar

    [55]

    Shen F, Zhou H, Hu F, Wang J-T, Deng S, Wang B, Wu H, Huang Q, Wang J, Chen J, He L, Hao J, Yu Z, Liang F, Liang T, Sun J, Shen B 2020 Mater. Horiz. 7 804Google Scholar

    [56]

    Chen J, Hu L, Deng J, Xing X 2015 Chem. Soc. Rev. 44 3522Google Scholar

    [57]

    Hartmann P, Jedamzik R, Carre A, Krieg J, Westerhoff T 2021 J. Astron. Telesc. Inst. 7 020901

    [58]

    Marinkovic B A, Ponton P I, Romao C P, Moreira T, White M A 2021 Front. Mater. 8 741560Google Scholar

    [59]

    Pecharsky V K, Gschneidner. Jr K A 1997 Phys. Rev. Lett. 78 4

    [60]

    Pecharsky V K, Gschneidner K A 1997 J. Alloys Compd. 260 98Google Scholar

    [61]

    Fujita A, Fukamichi K, Wang J T, Kawazoe Y 2003 Phys. Rev. B 68 104431Google Scholar

    [62]

    Wada H, Tanabe Y 2001 Appl. Phys. Lett. 79 3302Google Scholar

    [63]

    Wada H, Matsuo S, Mitsuda A 2009 Phys. Rev. B 79 092407Google Scholar

    [64]

    Trung N T, Biharie V, Zhang L, Caron L, Buschow K H J, Brück E 2010 Appl. Phys. Lett. 96 162507Google Scholar

    [65]

    Liu E, Wang W, Feng L, Zhu W, Li G, Chen J, Zhang H, Wu G, Jiang C, Xu H, de Boer F 2012 Nat. Commun. 3 873Google Scholar

    [66]

    Hu F X, Gao J, Qian X L, Ilyn M, Tishin A M, Sun J R, Shen B G 2005 J. Appl. Phys. 97 10M303Google Scholar

    [67]

    Johnson V 1975 Inorg. Chem. 14 1117Google Scholar

    [68]

    Anzai S, Ozawa K 1978 Phys. Rev. B 18 2173

    [69]

    Łażewski J, Piekarz P, Toboła J, Wiendlocha B, Jochym P T, Sternik M, Parlinski K 2010 Phys. Rev. Lett. 104 147205Google Scholar

    [70]

    Gruner M E, Keune W, Roldan Cuenya B, Weis C, Landers J, Makarov S I, Klar D, Hu M Y, Alp E E, Zhao J, Krautz M, Gutfleisch O, Wende H 2015 Phys. Rev. Lett. 114 057202Google Scholar

    [71]

    Landers J, Salamon S, Keune W, Gruner M E, Krautz M, Zhao J, Hu M Y, Toellner T S, Alp E E, Gutfleisch O, Wende H 2018 Phys. Rev. B 98 024417Google Scholar

    [72]

    Jia L, Liu G J, Sun J R, Zhang H W, Hu F X, Dong C, Rao G H, Shen B G 2006 J. Appl. Phys. 100 123904Google Scholar

    [73]

    von Ranke P J, de Oliveira N A, Mello C, Carvalho A M G, Gama S 2005 Phys. Rev. B 71 054410Google Scholar

    [74]

    Jia L, Sun J R, Shen J, Gao B, Zhao T Y, Zhang H W, Hu F X, Shen B G 2011 J. Alloys Compd. 509 5804Google Scholar

    [75]

    Fujita A, Fukamichi K, Wang J T, Kawazoe Y 2003 Phys. Rev. B 68 104431Google Scholar

    [76]

    Moriya T 1986 J. Phys. Soc. Jpn. 55 357Google Scholar

    [77]

    Manosa L, Gonzalez-Alonso D, Planes A, Barrio M, Tamarit J-L, Titov I S, Acet M, Bhattacharyya A, Majumdar S 2011 Nat. Commun. 2 595Google Scholar

    [78]

    Wada H, Tomekawa S, Shiga M 1999 Cryogenics 39 915Google Scholar

    [79]

    Oles A, Duraj R, Kolenda M, Penc B, Szytula A 2004 J. Alloys Compd. 363 63Google Scholar

    [80]

    Strydom A M 2010 Eur. Phys. J. B 74 9Google Scholar

    [81]

    Zheng X Q, Wu H, Chen J, Zhang B, Li Y Q, Hu F X, Sun J R, Huang Q Z, Shen B G 2015 Sci. Rep. 5 14970Google Scholar

    [82]

    Hao J Z, Liang F X, Liu Y, Li J, Qiao K M, He J, Hu F X, Wang J, Sun J R, Shen B G 2018 J. Alloys Compd. 744 426Google Scholar

    [83]

    Delyagin N N, Krylov V I, Rozantsev I N 2007 J. Magn. Magn. Mater. 308 74Google Scholar

    [84]

    Noheda B, Cox D E, Shirane G, Gao J, Ye Z G 2002 Phys. Rev. B 66 054104Google Scholar

    [85]

    Ohtani Y, Hatakeyama I 1993 J. Appl. Phys. 74 3328Google Scholar

    [86]

    Russek S L, Zimm C B 2006 Int. J. Refrig. 29 1366Google Scholar

    [87]

    Liu Y, Phillips L C, Mattana R, Bibes M, Barthelemy A, Dkhil B 2016 Nat. Commun. 7 11614Google Scholar

    [88]

    Shanthi M, Lim L C 2009 J. Appl. Phys. 106 114116

    [89]

    Sun E, Cao W 2014 Prog. Mater. Sci. 65 124Google Scholar

    [90]

    Yu B F, Gao Q, Zhang B, Meng X Z, Chen Z 2003 Int. J. Refrig. 26 622Google Scholar

    [91]

    刘国强, 柯亚娇, 张孔斌, 何雄, 罗丰, 何斌, 孙志刚 2019 物理学报 68 217501Google Scholar

    Liu G Q, Ke Y J, Zhang K B, He X, Luo F, He B, Sun Z G 2019 Acta Phys. Sin 68 217501Google Scholar

    [92]

    Aliev A M, Batdalov A B, Khanov L N, Kamantsev A P, Koledov V V, Mashirov A V, Shavrov V G, Grechishkin R M, Kaul A R, Sampath V 2016 Appl. Phys. Lett. 109 202407Google Scholar

    [93]

    Aliev A M, Batdalov A B, Khanov L N, Koledov V V, Shavrov V G, Tereshina I S, Taskaev S V 2016 J. Alloys Compd. 676 601Google Scholar

    [94]

    Zhang H W, Wang F, Zhao T Y, Zhang S Y, Sun J R, Shen B G 2004 Phys. Rev. B 70 212402Google Scholar

    [95]

    Niziol S, Weselucha A, Bazela W, Szytula A 1981 Solid State Commun. 39 1081Google Scholar

    [96]

    Caron L, Trung N T, Bruck E 2011 Phys. Rev. B 84 020414Google Scholar

    [97]

    Bazela W, Szytula A, Todorovic J, Tomkowicz Z, Zieba A 1976 Phys. Status Solidi A 38 721Google Scholar

    [98]

    Liu E K, Zhang H G, Xu G Z, Zhang X M, Ma R S, Wang W H, Chen J L, Zhang H W, Wu G H, Feng L, Zhang X X 2013 Appl. Phys. Lett. 102 122405Google Scholar

    [99]

    Hao J Z, Shen F R, Hu F X, Zhou H B, Yu Z B, Gao Y H, Liang W H, Qiao K M, Wang B J, Li J, Zhang C, Wang J, He L H, Liang T J, He J, Sun J R, Shen B G 2020 Scripta Mater. 185 181Google Scholar

    [100]

    Wu R R, Bao L F, Hu F X, Wu H, Huang Q Z, Wang J, Dong X L, Li G N, Sun J R, Shen F R, Zhao T Y, Zheng X Q, Wang L C, Liu Y, Zuo W L, Zhao Y Y, Zhang M, Wang X C, Jin C Q, Rao G H, Han X F, Shen B G 2015 Sci. Rep. 5 18027Google Scholar

    [101]

    Siemens B, Domke C, Ebert P, Urban K 1999 Phys. Rev. B 59 3000Google Scholar

    [102]

    de Oliveira N A, von Ranke P J, Tovar Costa M V, Troper A 2002 Phys. Rev. B 66 094402Google Scholar

    [103]

    Singh N K, Suresh K G, Nigam A K, Malik S K, Coelho A A, Gama S 2007 J. Magn. Magn. Mater. 317 68Google Scholar

    [104]

    Driver S L, Herrero-Albillos J, Bonilla C M, Bartolome F, Garcia L M, Howard C J, Carpenter M A 2014 J. Phys-condens. Mat. 26 056001Google Scholar

    [105]

    Zhuravleva I P, Grechnev G E, Panfilov A S, Lyogenkaya A A 2017 Low Temp. Phys. 43 597Google Scholar

    [106]

    von Ranke P J, de Oliveira N A 1998 J. Appl. Phys. 83 6967Google Scholar

    [107]

    Morrison K, Dupas A, Mudryk Y, Pecharsky V K, Gschneidner K A, Caplin A D, Cohen L F 2013 Phys. Rev. B 87 134421Google Scholar

    [108]

    Lizarraga R 2016 Phys. Rev. B 94 174201Google Scholar

    [109]

    Ouyang Z W, Wang F W, Hang Q, Liu W F, Liu G Y, Lynn J W, Liang J K, Rao G H 2005 J. Alloys Compd. 390 21Google Scholar

    [110]

    Li W J, Lin K, Yan Y, Yu C Y, Cao Y L, Chen X, Wang C W, Kato K, Chen Y, An K, Zhang Q H, Gu L, Li Q, Deng J X, Xing X R 2022 Adv. Mater. 34 2109592Google Scholar

    [111]

    Cao Y L, Lin K, Khmelevskyi S, Avdeev M, Taddei K M, Zhang Q, Huang Q Z, Li Q, Kato K, Tang C C, Gibbs A, Wang C W, Deng J X, Chen J, Zhang H J, Xing X R 2021 Phys. Rev. Lett. 127 055501Google Scholar

    [112]

    Song Y Z, Shi N K, Deng S Q, Xing X R, Chen J 2021 Prog. Mater. Sci. 121 100835Google Scholar

    [113]

    Song Y Z, Chen J, Liu X Z, Wang C W, Zhang J, Liu H, Zhu H, Hu L, Lin K, Zhang S T, Xing X R 2018 J. Am. Chem. Soc. 140 602Google Scholar

    [114]

    Zhou H B, Yu Z B, Hu F X, Wang J T, Shen F R, Hao J Z, He L H, Huang Q Z, Gao Y H, Wang B J, Yin Z, Tian Z Y, Wang J, Chen Y Z, Sun J R, Zhao T Y, Shen B G 2023 Acta Mater. 260 119312Google Scholar

  • [1] 彭嘉欣, 唐本镇, 陈棋鑫, 李冬梅, 郭小龙, 夏雷, 余鹏. 非晶态Gd45Ni30Al15Co10合金的制备与磁热性能. 物理学报, doi: 10.7498/aps.70.20211530
    [2] 张艳, 宗朔通, 孙志刚, 刘虹霞, 陈峰华, 张克维, 胡季帆, 赵同云, 沈保根. HoCoSi快淬带的磁性和各向异性磁热效应. 物理学报, doi: 10.7498/aps.71.20220683
    [3] 张鹏, 朴红光, 张英德, 黄焦宏. 钙钛矿锰氧化物的磁相变临界行为及磁热效应研究进展. 物理学报, doi: 10.7498/aps.70.20210097
    [4] 郝志红, 王海英, 张荃, 莫兆军. Eu0.9M0.1TiO3(M=Ca,Sr,Ba,La,Ce,Sm)的磁性和磁热效应. 物理学报, doi: 10.7498/aps.67.20181750
    [5] 杨静洁, 赵金良, 许磊, 张红国, 岳明, 刘丹敏, 蒋毅坚. 间隙原子H,B,C对LaFe11.5Al1.5化合物磁性和磁热效应的影响. 物理学报, doi: 10.7498/aps.67.20172250
    [6] 张虎, 邢成芬, 龙克文, 肖亚宁, 陶坤, 王利晨, 龙毅. 一级磁结构相变材料Mn0.6Fe0.4NiSi0.5Ge0.5和Ni50Mn34Co2Sn14的磁热效应与磁场的线性相关性. 物理学报, doi: 10.7498/aps.67.20180927
    [7] 李振兴, 李珂, 沈俊, 戴巍, 高新强, 郭小惠, 公茂琼. 室温磁制冷技术的研究进展. 物理学报, doi: 10.7498/aps.66.110701
    [8] 霍军涛, 盛威, 王军强. 非晶合金的磁热效应及磁蓄冷性能. 物理学报, doi: 10.7498/aps.66.176409
    [9] 郑新奇, 沈俊, 胡凤霞, 孙继荣, 沈保根. 磁热效应材料的研究进展. 物理学报, doi: 10.7498/aps.65.217502
    [10] 王芳, 原凤英, 汪金芝. Mn42Al50-xFe8+x合金的磁性和磁热效应. 物理学报, doi: 10.7498/aps.62.167501
    [11] 陈辉, 张国营, 杨丹, 高娇. 确定磁性体在绝热磁化过程中达到最高温度的方法. 物理学报, doi: 10.7498/aps.61.097501
    [12] 姚洪斌, 郑雨军. NaI分子的非绝热效应. 物理学报, doi: 10.7498/aps.60.128201
    [13] 董浩, 任敏, 张磊, 邓宁, 陈培毅. 电流驱动磁化翻转中的热效应. 物理学报, doi: 10.7498/aps.58.7176
    [14] 张浩雷, 李哲, 乔燕飞, 曹世勋, 张金仓, 敬超. 哈斯勒合金Ni-Co-Mn-Sn的马氏体相变及其磁热效应研究. 物理学报, doi: 10.7498/aps.58.7857
    [15] 苏 杰, 王继锁, 梁宝龙, 张晓燕. 介观电容耦合LC电路在有限温度下的能量及热效应. 物理学报, doi: 10.7498/aps.57.7216
    [16] 敬 超, 陈继萍, 李 哲, 曹世勋, 张金仓. 哈斯勒合金Ni50Mn35In15的马氏体相变及其磁热效应. 物理学报, doi: 10.7498/aps.57.4450
    [17] 郝延明, 周 严, 赵 淼, 傅 斌. Mn替代对Dy2AlFe16-xMnx化合物的结构和磁性的影响. 物理学报, doi: 10.7498/aps.55.1447
    [18] 郝延明, 赵 淼, 傅 斌, 王 琳, 严达利. Er2AlFe16-xMnx化合物的磁性及反常热膨胀. 物理学报, doi: 10.7498/aps.55.4906
    [19] 陈伟, 钟伟, 潘成福, 常虹, 都有为. La0.8-xCa0.2MnO3纳米颗粒的居里温度与磁热效应. 物理学报, doi: 10.7498/aps.50.319
    [20] 沈鸿元. 正交晶系YAP晶体的热效应. 物理学报, doi: 10.7498/aps.30.1075
计量
  • 文章访问数:  301
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-10
  • 修回日期:  2023-08-01
  • 上网日期:  2023-09-12

/

返回文章
返回