-
具有优良磁热性能的材料是磁制冷技术应用的关键. 本文设计制备出了一种非晶态四元Gd45Ni30Al15Co10合金条带, 系统地研究了该合金的磁热性能. Co的引入增加了合金的非晶态热稳定性, 扩大了过冷液相区宽度. Gd45Ni30Al15Co10非晶态合金条带的居里温度和有效磁矩分别为80 K和7.21μB, 在10 K温度下饱和磁化强度达到173 A·m2·kg–1, 矫顽力为0.8 kA·m–1, 具有优异的软磁性能. 在5 T的外加磁场下, Gd45Ni30Al15Co10非晶态合金的磁熵变峰值和相对制冷能力分别高达10.2 J·kg–1·K–1和918 J·kg–1. 该合金具有典型的二级磁相变特征, 可以在较宽的温度范围内实现磁制冷, 且Gd原子含量低于50%, 成本较低, 表明该合金是一种理想的磁制冷材料.Materials with excellent magnetocaloric properties are a key factor for the application of magnetic refrigeration technology. In this work, an amorphous ribbon of quaternary Gd45Ni30Al15Co10 alloy is designed and prepared, and the magnetocaloric properties of the alloy are systematically studied. The introduction of Co can improve the thermal stability of the amorphous structure. The Curie temperature and effective magnetic moment of Gd45Ni30Al15Co10 amorphous ribbon are 80 K and 7.21 μB, respectively. At 10 K temperature, the saturation magnetization and the coercivity of the alloy reach 173 A·m2·kg–1 and 0.8 kA·m–1, respectively, which indicates excellent soft magnetic properties. At 5 T magnetic field, the peak value of magnetic entropy change and relative cooling capacity of Gd45Ni30Al15Co10 amorphous alloy are as high as 10.2 J·kg–1·K–1 and 918 J·kg–1 respectively. The amorphous alloy has typical secondary magnetic phase transition characteristics, and the magnetic refrigeration can be realized in a wide temperature range. The Gd atomic content is less than 50% with low cost, which means that the alloy is an ideal magnetic refrigeration material.
-
Keywords:
- amorphous alloy /
- magnetocaloric effect /
- magnetic entropy change /
- magnetic refrigeration
[1] Uporov S A, Ryltsev R E, Bykov V A, Uporova N S, Estemirova S K, Chtchelkatchev N M 2021 J. Alloys Compd. 854 157170Google Scholar
[2] Fang Y K, Lai C H, Hsieh C C, Zhao X G, Chang H W, Chang W C, Li W 2010 J. Appl. Phys. 107 09A901Google Scholar
[3] Yu P, Zhang J Z, Xia L 2017 J. Mater. Sci. 52 13948Google Scholar
[4] 王永田, 刘宗德, 易军, 薛志勇 2012 物理学报 61 056102Google Scholar
Wang Y T, Liu Z D, Yi J, Xue Z Y 2012 Acta Phys. Sin. 61 056102Google Scholar
[5] Warburg E 1881 Ann. Phys. 13 141
[6] Zhao X G, Lai J H, Hsieh C C, Fang Y K, Chang W C, Zhang Z D 2011 J. Appl. Phys. 109 07A911Google Scholar
[7] Tang B Z, Liu X P, Li D M, Yu P, Xia L 2020 Chin. Phys. B 29 056401Google Scholar
[8] Huang L W, Tang B Z, Ding D, Wang X, Xia L 2019 J. Alloys Compd. 811 152003Google Scholar
[9] Pecharsky V K, Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494Google Scholar
[10] Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H, Zhang X X 2001 Appl. Phys. Lett. 78 3675Google Scholar
[11] Tegus O, Brück E, Buschow K H J, De Boer F R 2002 Nature 415 150Google Scholar
[12] De Medeiros Jr L G, De Oliveira N A, Troper A 2010 J. Alloys Compd. 501 177Google Scholar
[13] Zhong X C, Tang P F, Gao B B, Min J X, Liu Z W, Zheng Z G, Zeng D C, Yu H Y, Qiu W Q 2013 Sci. China: Phys. Mech. Astron. 56 1096Google Scholar
[14] Tang B Z, Huang L W, Song M N, Ding D, Wang X, Xia L 2019 J. Non-Cryst. Solids 522 119589Google Scholar
[15] Yu P, Chen L S, Xia L 2018 J. Non-Cryst. Solids 493 82Google Scholar
[16] Zhong X C, Tang P F, Liu Z W, Zeng D C, Zheng Z G, Yu H Y, Qiu W Q, Zhang H, Ramanujan R V 2012 J. Appl. Phys. 111 07A919Google Scholar
[17] Ma Y F, Tang B Z, Xia L, Ding D 2016 Chin. Phys. Lett. 33 126101Google Scholar
[18] 霍军涛, 盛威, 王军强 2017 物理学报 66 176409Google Scholar
Huo J T, Sheng W, Wang J Q 2017 Acta Phys. Sin. 66 176409Google Scholar
[19] Wang X, Tang B Z, Wang Q, Yu P, Ding D, Xia L 2020 J. Non-Cryst. Solids 554 120146
[20] Wang X, Wang Q, Tang B Z, Yu P, Xia L, Ding D 2021 J. Rare Earths 39 998Google Scholar
[21] Uporov S, Bykov V, Uporova N 2019 J. Non-Cryst. Solids 521 119506Google Scholar
[22] Song M N, Huang L W, Tang B Z, Ding D, Wang X, Xia L 2019 Intermetallics 115 106614Google Scholar
[23] Song M N, Huang L W, Tang B Z, Ding D, Zhou Q, Xia L 2020 Mod. Phys. Lett. B 34 2050050
[24] Yuan F, Du J, Shen B L 2012 Appl. Phys. Lett. 101 032405Google Scholar
[25] Ma L Q, Inoue A 1999 Mater. Lett. 38 58Google Scholar
[26] Takeuchi A, Inoue A 2000 Mater. Trans. 41 1372Google Scholar
[27] Ding D, Tang M B, Xia L 2013 J. Alloys Compd. 581 828Google Scholar
[28] Banerjee S K 1964 Phys. Lett. 12 16
[29] Zhang H Y, Ouyang J T, Ding D, Li H L, Wang J G, Li W H 2018 J. Alloys Compd. 769 186Google Scholar
[30] Shen J, Wu J F, Sun J R 2009 J. Appl. Phys. 106 083902Google Scholar
[31] Provenzano V, Shapiro A J, Shull R D 2004 Nature 429 853Google Scholar
[32] Feng J Q, Li F M, Wang G, Wang J Q, Huo J T 2020 J. Non-Cryst. Solids 536 120004Google Scholar
[33] Gao W L, Wang X J, Wang L J, Zhang Y K, Cui J Z 2018 J. Non-Cryst. Solids 484 36Google Scholar
[34] Zhang H Y, Li R, Zhang L L, Zhang T 2014 J. Appl. Phys. 115 133903Google Scholar
[35] Luo Q, Zhao D Q, Pan M X, Wang W H 2007 Appl. Phys. Lett. 90 211903Google Scholar
[36] Franco V, Blázquez J S, Conde A 2006 Appl. Phys. Lett. 89 222512Google Scholar
[37] Pecharsky V K, Gschneidner Jr K A 1999 J. Appl. Phys. 86 565Google Scholar
[38] Zhong X C, Tang P F, Liu Z W, Zeng D C, Zheng Z G, Yu H Y, Qiu W Q, Zou M 2011 J. Alloys Compd. 509 6889Google Scholar
[39] Yu P, Wu C, Cui Y T, Xia L 2016 Mater. Lett. 173 239Google Scholar
[40] Xia L, Tang M B, Chan K C, Dong Y D 2014 J. Appl. Phys. 115 223904Google Scholar
[41] Wu C, Ding D, Xia L 2016 Chin. Phys. Lett. 33 016102Google Scholar
[42] Belo J H, Amaral J S, Pereira A M, Amara V S, Araújo J P 2012 Appl. Phys. Lett. 100 242407Google Scholar
-
图 5 (a) Gd45Ni30Al15Co10非晶条带在不同磁场下磁熵变的温度依赖关系; (b) ln(
$-\Delta S^{{\rm{peak}}} _{\rm{m}} $ )与lnH的关系图, 插图为指数n随温度变化n-T曲线Fig. 5. (a) Temperature dependence of magnetic entropy changes (–ΔSm) of the Gd45Ni30Al15Co10 amorphous ribbon under different magnetic field; (b) the ln(
$-\Delta S^{{\rm{peak}}} _{\rm{m}} $ ) vs. lnH plot of the amorphous ribbon, the inset shows the n-T curve of the amorphous ribbon.表 1 Gd55Ni30Al15和Gd45Ni30Al15Co10非晶条带的热力学参数
Table 1. Thermodynamics parameters of the Gd55Ni30Al15 and Gd45Ni30Al15Co10 amorphous ribbons.
合金 Tg/K Tx/K ∆Tx/K Tm/K Tl/K γ Gd55Ni30Al15 576 620 44 911 962 0.40 Gd45Ni30Al15Co10 525 605 80 930 1231 0.35 表 2 Gd45Ni30Al15Co10和部分Gd基非晶态(A)、晶态(C)合金的Tc、5 T磁场下的
$-\Delta S^{{\rm{peak}}} _{\rm{m}} $ 和RCP值Table 2. Tc,
$-\Delta S^{{\rm{peak}}} _{\rm{m}} $ , and RCP under 5 T applied field of the Gd45Ni30Al15Co10 amorphous alloy and some other Gd-based amorphous and crystalline alloys.合金 结构 Tc
/K$-\Delta S^{{\rm{peak}}} _{\rm{m}} $/
(J·kg–1·K–1)RCP/
(J·kg–1)参考
文献Gd45Ni30Al15Co10 A 80 10.2 918 本文 Gd65Ni35 A 122 6.9 524 [38] Gd68Ni32 A 124 8 583 [38] Gd71Ni29 A 122 9 724 [38] Gd60Ni37Co3 A 135 10.42 860 [17] Gd34Ni33Al33 A 38 11.06 — [20] Gd55Ni15Al30 A 70 6.12 606 [24] Gd55Ni20Al25 A 71 7.98 782 [24] Gd55Ni25Al20 A 75 8.49 806 [24] Gd55Ni30Al15 A 83 9.25 851 [24] Gd34Ni22Co11Al33 A 54 9.91 — [39] Gd55Al20Co20Ni5 A 105 9.8 615 [40] Gd60Al25(NiCo)15 A 91 6.31 890 [21] Gd C 293 9.7 556 [30] Gd5Si2Ge2 C 276 18.6 305 [31] -
[1] Uporov S A, Ryltsev R E, Bykov V A, Uporova N S, Estemirova S K, Chtchelkatchev N M 2021 J. Alloys Compd. 854 157170Google Scholar
[2] Fang Y K, Lai C H, Hsieh C C, Zhao X G, Chang H W, Chang W C, Li W 2010 J. Appl. Phys. 107 09A901Google Scholar
[3] Yu P, Zhang J Z, Xia L 2017 J. Mater. Sci. 52 13948Google Scholar
[4] 王永田, 刘宗德, 易军, 薛志勇 2012 物理学报 61 056102Google Scholar
Wang Y T, Liu Z D, Yi J, Xue Z Y 2012 Acta Phys. Sin. 61 056102Google Scholar
[5] Warburg E 1881 Ann. Phys. 13 141
[6] Zhao X G, Lai J H, Hsieh C C, Fang Y K, Chang W C, Zhang Z D 2011 J. Appl. Phys. 109 07A911Google Scholar
[7] Tang B Z, Liu X P, Li D M, Yu P, Xia L 2020 Chin. Phys. B 29 056401Google Scholar
[8] Huang L W, Tang B Z, Ding D, Wang X, Xia L 2019 J. Alloys Compd. 811 152003Google Scholar
[9] Pecharsky V K, Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494Google Scholar
[10] Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H, Zhang X X 2001 Appl. Phys. Lett. 78 3675Google Scholar
[11] Tegus O, Brück E, Buschow K H J, De Boer F R 2002 Nature 415 150Google Scholar
[12] De Medeiros Jr L G, De Oliveira N A, Troper A 2010 J. Alloys Compd. 501 177Google Scholar
[13] Zhong X C, Tang P F, Gao B B, Min J X, Liu Z W, Zheng Z G, Zeng D C, Yu H Y, Qiu W Q 2013 Sci. China: Phys. Mech. Astron. 56 1096Google Scholar
[14] Tang B Z, Huang L W, Song M N, Ding D, Wang X, Xia L 2019 J. Non-Cryst. Solids 522 119589Google Scholar
[15] Yu P, Chen L S, Xia L 2018 J. Non-Cryst. Solids 493 82Google Scholar
[16] Zhong X C, Tang P F, Liu Z W, Zeng D C, Zheng Z G, Yu H Y, Qiu W Q, Zhang H, Ramanujan R V 2012 J. Appl. Phys. 111 07A919Google Scholar
[17] Ma Y F, Tang B Z, Xia L, Ding D 2016 Chin. Phys. Lett. 33 126101Google Scholar
[18] 霍军涛, 盛威, 王军强 2017 物理学报 66 176409Google Scholar
Huo J T, Sheng W, Wang J Q 2017 Acta Phys. Sin. 66 176409Google Scholar
[19] Wang X, Tang B Z, Wang Q, Yu P, Ding D, Xia L 2020 J. Non-Cryst. Solids 554 120146
[20] Wang X, Wang Q, Tang B Z, Yu P, Xia L, Ding D 2021 J. Rare Earths 39 998Google Scholar
[21] Uporov S, Bykov V, Uporova N 2019 J. Non-Cryst. Solids 521 119506Google Scholar
[22] Song M N, Huang L W, Tang B Z, Ding D, Wang X, Xia L 2019 Intermetallics 115 106614Google Scholar
[23] Song M N, Huang L W, Tang B Z, Ding D, Zhou Q, Xia L 2020 Mod. Phys. Lett. B 34 2050050
[24] Yuan F, Du J, Shen B L 2012 Appl. Phys. Lett. 101 032405Google Scholar
[25] Ma L Q, Inoue A 1999 Mater. Lett. 38 58Google Scholar
[26] Takeuchi A, Inoue A 2000 Mater. Trans. 41 1372Google Scholar
[27] Ding D, Tang M B, Xia L 2013 J. Alloys Compd. 581 828Google Scholar
[28] Banerjee S K 1964 Phys. Lett. 12 16
[29] Zhang H Y, Ouyang J T, Ding D, Li H L, Wang J G, Li W H 2018 J. Alloys Compd. 769 186Google Scholar
[30] Shen J, Wu J F, Sun J R 2009 J. Appl. Phys. 106 083902Google Scholar
[31] Provenzano V, Shapiro A J, Shull R D 2004 Nature 429 853Google Scholar
[32] Feng J Q, Li F M, Wang G, Wang J Q, Huo J T 2020 J. Non-Cryst. Solids 536 120004Google Scholar
[33] Gao W L, Wang X J, Wang L J, Zhang Y K, Cui J Z 2018 J. Non-Cryst. Solids 484 36Google Scholar
[34] Zhang H Y, Li R, Zhang L L, Zhang T 2014 J. Appl. Phys. 115 133903Google Scholar
[35] Luo Q, Zhao D Q, Pan M X, Wang W H 2007 Appl. Phys. Lett. 90 211903Google Scholar
[36] Franco V, Blázquez J S, Conde A 2006 Appl. Phys. Lett. 89 222512Google Scholar
[37] Pecharsky V K, Gschneidner Jr K A 1999 J. Appl. Phys. 86 565Google Scholar
[38] Zhong X C, Tang P F, Liu Z W, Zeng D C, Zheng Z G, Yu H Y, Qiu W Q, Zou M 2011 J. Alloys Compd. 509 6889Google Scholar
[39] Yu P, Wu C, Cui Y T, Xia L 2016 Mater. Lett. 173 239Google Scholar
[40] Xia L, Tang M B, Chan K C, Dong Y D 2014 J. Appl. Phys. 115 223904Google Scholar
[41] Wu C, Ding D, Xia L 2016 Chin. Phys. Lett. 33 016102Google Scholar
[42] Belo J H, Amaral J S, Pereira A M, Amara V S, Araújo J P 2012 Appl. Phys. Lett. 100 242407Google Scholar
计量
- 文章访问数: 5562
- PDF下载量: 89
- 被引次数: 0