搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非晶态Gd45Ni30Al15Co10合金的制备与磁热性能

彭嘉欣 唐本镇 陈棋鑫 李冬梅 郭小龙 夏雷 余鹏

引用本文:
Citation:

非晶态Gd45Ni30Al15Co10合金的制备与磁热性能

彭嘉欣, 唐本镇, 陈棋鑫, 李冬梅, 郭小龙, 夏雷, 余鹏

Preparation and magnetocaloric properties of Gd45Ni30Al15Co10 amorphous alloy

Peng Jia-Xin, Tang Ben-Zhen, Chen Qi-Xin, Li Dong-Mei, Guo Xiao-Long, Xia Lei, Yu Peng
PDF
HTML
导出引用
  • 具有优良磁热性能的材料是磁制冷技术应用的关键. 本文设计制备出了一种非晶态四元Gd45Ni30Al15Co10合金条带, 系统地研究了该合金的磁热性能. Co的引入增加了合金的非晶态热稳定性, 扩大了过冷液相区宽度. Gd45Ni30Al15Co10非晶态合金条带的居里温度和有效磁矩分别为80 K和7.21μB, 在10 K温度下饱和磁化强度达到173 A·m2·kg–1, 矫顽力为0.8 kA·m–1, 具有优异的软磁性能. 在5 T的外加磁场下, Gd45Ni30Al15Co10非晶态合金的磁熵变峰值和相对制冷能力分别高达10.2 J·kg–1·K–1和918 J·kg–1. 该合金具有典型的二级磁相变特征, 可以在较宽的温度范围内实现磁制冷, 且Gd原子含量低于50%, 成本较低, 表明该合金是一种理想的磁制冷材料.
    Materials with excellent magnetocaloric properties are a key factor for the application of magnetic refrigeration technology. In this work, an amorphous ribbon of quaternary Gd45Ni30Al15Co10 alloy is designed and prepared, and the magnetocaloric properties of the alloy are systematically studied. The introduction of Co can improve the thermal stability of the amorphous structure. The Curie temperature and effective magnetic moment of Gd45Ni30Al15Co10 amorphous ribbon are 80 K and 7.21 μB, respectively. At 10 K temperature, the saturation magnetization and the coercivity of the alloy reach 173 A·m2·kg–1 and 0.8 kA·m–1, respectively, which indicates excellent soft magnetic properties. At 5 T magnetic field, the peak value of magnetic entropy change and relative cooling capacity of Gd45Ni30Al15Co10 amorphous alloy are as high as 10.2 J·kg–1·K–1 and 918 J·kg–1 respectively. The amorphous alloy has typical secondary magnetic phase transition characteristics, and the magnetic refrigeration can be realized in a wide temperature range. The Gd atomic content is less than 50% with low cost, which means that the alloy is an ideal magnetic refrigeration material.
      通信作者: 余鹏, pengyu@cqnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52071043)和重庆市教委科学技术研究重点项目(批准号: KJZD-K201900501)资助的课题.
      Corresponding author: Yu Peng, pengyu@cqnu.edu.cn
    • Funds: Project supported by the National Nature Science Foundation of China (Grant No. 52071043) and the Key Project of Science and Technology Research Program of Chongqing Education Commission of China (Grant No. KJZD-K201900501).
    [1]

    Uporov S A, Ryltsev R E, Bykov V A, Uporova N S, Estemirova S K, Chtchelkatchev N M 2021 J. Alloys Compd. 854 157170Google Scholar

    [2]

    Fang Y K, Lai C H, Hsieh C C, Zhao X G, Chang H W, Chang W C, Li W 2010 J. Appl. Phys. 107 09A901Google Scholar

    [3]

    Yu P, Zhang J Z, Xia L 2017 J. Mater. Sci. 52 13948Google Scholar

    [4]

    王永田, 刘宗德, 易军, 薛志勇 2012 物理学报 61 056102Google Scholar

    Wang Y T, Liu Z D, Yi J, Xue Z Y 2012 Acta Phys. Sin. 61 056102Google Scholar

    [5]

    Warburg E 1881 Ann. Phys. 13 141

    [6]

    Zhao X G, Lai J H, Hsieh C C, Fang Y K, Chang W C, Zhang Z D 2011 J. Appl. Phys. 109 07A911Google Scholar

    [7]

    Tang B Z, Liu X P, Li D M, Yu P, Xia L 2020 Chin. Phys. B 29 056401Google Scholar

    [8]

    Huang L W, Tang B Z, Ding D, Wang X, Xia L 2019 J. Alloys Compd. 811 152003Google Scholar

    [9]

    Pecharsky V K, Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494Google Scholar

    [10]

    Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H, Zhang X X 2001 Appl. Phys. Lett. 78 3675Google Scholar

    [11]

    Tegus O, Brück E, Buschow K H J, De Boer F R 2002 Nature 415 150Google Scholar

    [12]

    De Medeiros Jr L G, De Oliveira N A, Troper A 2010 J. Alloys Compd. 501 177Google Scholar

    [13]

    Zhong X C, Tang P F, Gao B B, Min J X, Liu Z W, Zheng Z G, Zeng D C, Yu H Y, Qiu W Q 2013 Sci. China: Phys. Mech. Astron. 56 1096Google Scholar

    [14]

    Tang B Z, Huang L W, Song M N, Ding D, Wang X, Xia L 2019 J. Non-Cryst. Solids 522 119589Google Scholar

    [15]

    Yu P, Chen L S, Xia L 2018 J. Non-Cryst. Solids 493 82Google Scholar

    [16]

    Zhong X C, Tang P F, Liu Z W, Zeng D C, Zheng Z G, Yu H Y, Qiu W Q, Zhang H, Ramanujan R V 2012 J. Appl. Phys. 111 07A919Google Scholar

    [17]

    Ma Y F, Tang B Z, Xia L, Ding D 2016 Chin. Phys. Lett. 33 126101Google Scholar

    [18]

    霍军涛, 盛威, 王军强 2017 物理学报 66 176409Google Scholar

    Huo J T, Sheng W, Wang J Q 2017 Acta Phys. Sin. 66 176409Google Scholar

    [19]

    Wang X, Tang B Z, Wang Q, Yu P, Ding D, Xia L 2020 J. Non-Cryst. Solids 554 120146

    [20]

    Wang X, Wang Q, Tang B Z, Yu P, Xia L, Ding D 2021 J. Rare Earths 39 998Google Scholar

    [21]

    Uporov S, Bykov V, Uporova N 2019 J. Non-Cryst. Solids 521 119506Google Scholar

    [22]

    Song M N, Huang L W, Tang B Z, Ding D, Wang X, Xia L 2019 Intermetallics 115 106614Google Scholar

    [23]

    Song M N, Huang L W, Tang B Z, Ding D, Zhou Q, Xia L 2020 Mod. Phys. Lett. B 34 2050050

    [24]

    Yuan F, Du J, Shen B L 2012 Appl. Phys. Lett. 101 032405Google Scholar

    [25]

    Ma L Q, Inoue A 1999 Mater. Lett. 38 58Google Scholar

    [26]

    Takeuchi A, Inoue A 2000 Mater. Trans. 41 1372Google Scholar

    [27]

    Ding D, Tang M B, Xia L 2013 J. Alloys Compd. 581 828Google Scholar

    [28]

    Banerjee S K 1964 Phys. Lett. 12 16

    [29]

    Zhang H Y, Ouyang J T, Ding D, Li H L, Wang J G, Li W H 2018 J. Alloys Compd. 769 186Google Scholar

    [30]

    Shen J, Wu J F, Sun J R 2009 J. Appl. Phys. 106 083902Google Scholar

    [31]

    Provenzano V, Shapiro A J, Shull R D 2004 Nature 429 853Google Scholar

    [32]

    Feng J Q, Li F M, Wang G, Wang J Q, Huo J T 2020 J. Non-Cryst. Solids 536 120004Google Scholar

    [33]

    Gao W L, Wang X J, Wang L J, Zhang Y K, Cui J Z 2018 J. Non-Cryst. Solids 484 36Google Scholar

    [34]

    Zhang H Y, Li R, Zhang L L, Zhang T 2014 J. Appl. Phys. 115 133903Google Scholar

    [35]

    Luo Q, Zhao D Q, Pan M X, Wang W H 2007 Appl. Phys. Lett. 90 211903Google Scholar

    [36]

    Franco V, Blázquez J S, Conde A 2006 Appl. Phys. Lett. 89 222512Google Scholar

    [37]

    Pecharsky V K, Gschneidner Jr K A 1999 J. Appl. Phys. 86 565Google Scholar

    [38]

    Zhong X C, Tang P F, Liu Z W, Zeng D C, Zheng Z G, Yu H Y, Qiu W Q, Zou M 2011 J. Alloys Compd. 509 6889Google Scholar

    [39]

    Yu P, Wu C, Cui Y T, Xia L 2016 Mater. Lett. 173 239Google Scholar

    [40]

    Xia L, Tang M B, Chan K C, Dong Y D 2014 J. Appl. Phys. 115 223904Google Scholar

    [41]

    Wu C, Ding D, Xia L 2016 Chin. Phys. Lett. 33 016102Google Scholar

    [42]

    Belo J H, Amaral J S, Pereira A M, Amara V S, Araújo J P 2012 Appl. Phys. Lett. 100 242407Google Scholar

  • 图 1  Gd45Ni30Al15Co10合金条带的XRD图像, 插图为合金条带的DSC曲线

    Fig. 1.  XRD pattern of the Gd45Ni30Al15Co10 alloy ribbon, the inset shows DSC trance of the alloy ribbon.

    图 2  (a) Gd45Ni30Al15Co10非晶合金在0.03 T外加磁场下的M-T曲线, 插图为(dM/dT)-T曲线; (b) Gd45Ni30Al15Co10非晶合金磁场强度/磁化强度的温度依赖(H/M-T)曲线

    Fig. 2.  (a) The M-T curve of Gd45Ni30Al15Co10 amorphous ribbon under a field of 0.03 T, the inset shows (dM/dT)-T curve; (b) the H/M-T curve for the Gd45Ni30Al15Co10 amorphous ribbon.

    图 3  Gd45Ni30Al15Co10非晶合金在5 T外加磁场下10 和160 K的磁滞回线, 插图为10 K温度下磁滞回线的放大部分

    Fig. 3.  The hysteresis loops of Gd45Ni30Al15Co10 amorphous alloy at 10 and 160 K under a field of 5 T, the inset shows the enlarged part of magnetic hysteresis loop at 10 K.

    图 4  (a) Gd45Ni30Al15Co10非晶条带在不同温度下的绝热M-H曲线; (b) 合金的Arrott曲线

    Fig. 4.  (a) The adiabatic M-H curves of the Gd45Ni30Al15Co10 amorphous ribbon at different temperatures; (b) arrott curves of the amorphous ribbon.

    图 5  (a) Gd45Ni30Al15Co10非晶条带在不同磁场下磁熵变的温度依赖关系; (b) ln($-\Delta S^{{\rm{peak}}} _{\rm{m}} $)与lnH的关系图, 插图为指数n随温度变化n-T曲线

    Fig. 5.  (a) Temperature dependence of magnetic entropy changes (–ΔSm) of the Gd45Ni30Al15Co10 amorphous ribbon under different magnetic field; (b) the ln($-\Delta S^{{\rm{peak}}} _{\rm{m}} $) vs. lnH plot of the amorphous ribbon, the inset shows the n-T curve of the amorphous ribbon.

    表 1  Gd55Ni30Al15和Gd45Ni30Al15Co10非晶条带的热力学参数

    Table 1.  Thermodynamics parameters of the Gd55Ni30Al15 and Gd45Ni30Al15Co10 amorphous ribbons.

    合金Tg/KTx/KTx/KTm/KTl/Kγ
    Gd55Ni30Al15576620449119620.40
    Gd45Ni30Al15Co105256058093012310.35
    下载: 导出CSV

    表 2  Gd45Ni30Al15Co10和部分Gd基非晶态(A)、晶态(C)合金的Tc、5 T磁场下的$-\Delta S^{{\rm{peak}}} _{\rm{m}} $和RCP值

    Table 2.  Tc, $-\Delta S^{{\rm{peak}}} _{\rm{m}} $, and RCP under 5 T applied field of the Gd45Ni30Al15Co10 amorphous alloy and some other Gd-based amorphous and crystalline alloys.

    合金结构Tc
    /K
    $-\Delta S^{{\rm{peak}}} _{\rm{m}} $/
    (J·kg–1·K–1)
    RCP/
    (J·kg–1)
    参考
    文献
    Gd45Ni30Al15Co10A8010.2918本文
    Gd65Ni35A1226.9524[38]
    Gd68Ni32A1248583[38]
    Gd71Ni29A1229724[38]
    Gd60Ni37Co3A13510.42860[17]
    Gd34Ni33Al33A3811.06[20]
    Gd55Ni15Al30A706.12606[24]
    Gd55Ni20Al25A717.98782[24]
    Gd55Ni25Al20A758.49806[24]
    Gd55Ni30Al15A839.25851[24]
    Gd34Ni22Co11Al33A549.91[39]
    Gd55Al20Co20Ni5A1059.8615[40]
    Gd60Al25(NiCo)15A916.31890[21]
    GdC2939.7556[30]
    Gd5Si2Ge2C27618.6305[31]
    下载: 导出CSV
  • [1]

    Uporov S A, Ryltsev R E, Bykov V A, Uporova N S, Estemirova S K, Chtchelkatchev N M 2021 J. Alloys Compd. 854 157170Google Scholar

    [2]

    Fang Y K, Lai C H, Hsieh C C, Zhao X G, Chang H W, Chang W C, Li W 2010 J. Appl. Phys. 107 09A901Google Scholar

    [3]

    Yu P, Zhang J Z, Xia L 2017 J. Mater. Sci. 52 13948Google Scholar

    [4]

    王永田, 刘宗德, 易军, 薛志勇 2012 物理学报 61 056102Google Scholar

    Wang Y T, Liu Z D, Yi J, Xue Z Y 2012 Acta Phys. Sin. 61 056102Google Scholar

    [5]

    Warburg E 1881 Ann. Phys. 13 141

    [6]

    Zhao X G, Lai J H, Hsieh C C, Fang Y K, Chang W C, Zhang Z D 2011 J. Appl. Phys. 109 07A911Google Scholar

    [7]

    Tang B Z, Liu X P, Li D M, Yu P, Xia L 2020 Chin. Phys. B 29 056401Google Scholar

    [8]

    Huang L W, Tang B Z, Ding D, Wang X, Xia L 2019 J. Alloys Compd. 811 152003Google Scholar

    [9]

    Pecharsky V K, Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494Google Scholar

    [10]

    Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H, Zhang X X 2001 Appl. Phys. Lett. 78 3675Google Scholar

    [11]

    Tegus O, Brück E, Buschow K H J, De Boer F R 2002 Nature 415 150Google Scholar

    [12]

    De Medeiros Jr L G, De Oliveira N A, Troper A 2010 J. Alloys Compd. 501 177Google Scholar

    [13]

    Zhong X C, Tang P F, Gao B B, Min J X, Liu Z W, Zheng Z G, Zeng D C, Yu H Y, Qiu W Q 2013 Sci. China: Phys. Mech. Astron. 56 1096Google Scholar

    [14]

    Tang B Z, Huang L W, Song M N, Ding D, Wang X, Xia L 2019 J. Non-Cryst. Solids 522 119589Google Scholar

    [15]

    Yu P, Chen L S, Xia L 2018 J. Non-Cryst. Solids 493 82Google Scholar

    [16]

    Zhong X C, Tang P F, Liu Z W, Zeng D C, Zheng Z G, Yu H Y, Qiu W Q, Zhang H, Ramanujan R V 2012 J. Appl. Phys. 111 07A919Google Scholar

    [17]

    Ma Y F, Tang B Z, Xia L, Ding D 2016 Chin. Phys. Lett. 33 126101Google Scholar

    [18]

    霍军涛, 盛威, 王军强 2017 物理学报 66 176409Google Scholar

    Huo J T, Sheng W, Wang J Q 2017 Acta Phys. Sin. 66 176409Google Scholar

    [19]

    Wang X, Tang B Z, Wang Q, Yu P, Ding D, Xia L 2020 J. Non-Cryst. Solids 554 120146

    [20]

    Wang X, Wang Q, Tang B Z, Yu P, Xia L, Ding D 2021 J. Rare Earths 39 998Google Scholar

    [21]

    Uporov S, Bykov V, Uporova N 2019 J. Non-Cryst. Solids 521 119506Google Scholar

    [22]

    Song M N, Huang L W, Tang B Z, Ding D, Wang X, Xia L 2019 Intermetallics 115 106614Google Scholar

    [23]

    Song M N, Huang L W, Tang B Z, Ding D, Zhou Q, Xia L 2020 Mod. Phys. Lett. B 34 2050050

    [24]

    Yuan F, Du J, Shen B L 2012 Appl. Phys. Lett. 101 032405Google Scholar

    [25]

    Ma L Q, Inoue A 1999 Mater. Lett. 38 58Google Scholar

    [26]

    Takeuchi A, Inoue A 2000 Mater. Trans. 41 1372Google Scholar

    [27]

    Ding D, Tang M B, Xia L 2013 J. Alloys Compd. 581 828Google Scholar

    [28]

    Banerjee S K 1964 Phys. Lett. 12 16

    [29]

    Zhang H Y, Ouyang J T, Ding D, Li H L, Wang J G, Li W H 2018 J. Alloys Compd. 769 186Google Scholar

    [30]

    Shen J, Wu J F, Sun J R 2009 J. Appl. Phys. 106 083902Google Scholar

    [31]

    Provenzano V, Shapiro A J, Shull R D 2004 Nature 429 853Google Scholar

    [32]

    Feng J Q, Li F M, Wang G, Wang J Q, Huo J T 2020 J. Non-Cryst. Solids 536 120004Google Scholar

    [33]

    Gao W L, Wang X J, Wang L J, Zhang Y K, Cui J Z 2018 J. Non-Cryst. Solids 484 36Google Scholar

    [34]

    Zhang H Y, Li R, Zhang L L, Zhang T 2014 J. Appl. Phys. 115 133903Google Scholar

    [35]

    Luo Q, Zhao D Q, Pan M X, Wang W H 2007 Appl. Phys. Lett. 90 211903Google Scholar

    [36]

    Franco V, Blázquez J S, Conde A 2006 Appl. Phys. Lett. 89 222512Google Scholar

    [37]

    Pecharsky V K, Gschneidner Jr K A 1999 J. Appl. Phys. 86 565Google Scholar

    [38]

    Zhong X C, Tang P F, Liu Z W, Zeng D C, Zheng Z G, Yu H Y, Qiu W Q, Zou M 2011 J. Alloys Compd. 509 6889Google Scholar

    [39]

    Yu P, Wu C, Cui Y T, Xia L 2016 Mater. Lett. 173 239Google Scholar

    [40]

    Xia L, Tang M B, Chan K C, Dong Y D 2014 J. Appl. Phys. 115 223904Google Scholar

    [41]

    Wu C, Ding D, Xia L 2016 Chin. Phys. Lett. 33 016102Google Scholar

    [42]

    Belo J H, Amaral J S, Pereira A M, Amara V S, Araújo J P 2012 Appl. Phys. Lett. 100 242407Google Scholar

  • [1] 林源, 胡凤霞, 沈保根. 相变调控、磁热效应和反常热膨胀. 物理学报, 2023, 72(23): 237501. doi: 10.7498/aps.72.20231118
    [2] 张艳, 宗朔通, 孙志刚, 刘虹霞, 陈峰华, 张克维, 胡季帆, 赵同云, 沈保根. HoCoSi快淬带的磁性和各向异性磁热效应. 物理学报, 2022, 71(16): 167501. doi: 10.7498/aps.71.20220683
    [3] 张鹏, 朴红光, 张英德, 黄焦宏. 钙钛矿锰氧化物的磁相变临界行为及磁热效应研究进展. 物理学报, 2021, 70(15): 157501. doi: 10.7498/aps.70.20210097
    [4] 苏文霞, 陆海鸣, 曾子芮, 张一飞, 刘剑, 徐坤, 王敦辉, 都有为. 磁制冷材料LaFe11.5Si1.5基合金成分与磁相变温度关系的高通量计算. 物理学报, 2021, 70(20): 207501. doi: 10.7498/aps.70.20211085
    [5] 杨静洁, 赵金良, 许磊, 张红国, 岳明, 刘丹敏, 蒋毅坚. 间隙原子H,B,C对LaFe11.5Al1.5化合物磁性和磁热效应的影响. 物理学报, 2018, 67(7): 077501. doi: 10.7498/aps.67.20172250
    [6] 张虎, 邢成芬, 龙克文, 肖亚宁, 陶坤, 王利晨, 龙毅. 一级磁结构相变材料Mn0.6Fe0.4NiSi0.5Ge0.5和Ni50Mn34Co2Sn14的磁热效应与磁场的线性相关性. 物理学报, 2018, 67(20): 207501. doi: 10.7498/aps.67.20180927
    [7] 郝志红, 王海英, 张荃, 莫兆军. Eu0.9M0.1TiO3(M=Ca,Sr,Ba,La,Ce,Sm)的磁性和磁热效应. 物理学报, 2018, 67(24): 247502. doi: 10.7498/aps.67.20181750
    [8] 孙晓东, 徐宝, 吴鸿业, 曹凤泽, 赵建军, 鲁毅. Tb掺杂双层锰氧化物La4/3Sr5/3Mn2O7的磁熵变和电输运性质. 物理学报, 2017, 66(15): 157501. doi: 10.7498/aps.66.157501
    [9] 霍军涛, 盛威, 王军强. 非晶合金的磁热效应及磁蓄冷性能. 物理学报, 2017, 66(17): 176409. doi: 10.7498/aps.66.176409
    [10] 郑新奇, 沈俊, 胡凤霞, 孙继荣, 沈保根. 磁热效应材料的研究进展. 物理学报, 2016, 65(21): 217502. doi: 10.7498/aps.65.217502
    [11] 高新强, 沈俊, 和晓楠, 唐成春, 戴巍, 李珂, 公茂琼, 吴剑峰. 耦合高压斯特林制冷效应的复合磁制冷循环的数值模拟. 物理学报, 2015, 64(21): 210201. doi: 10.7498/aps.64.210201
    [12] 黄逸佳, 张国营, 胡风, 夏往所, 刘海顺. PrNi2的磁和磁热性能研究. 物理学报, 2014, 63(22): 227501. doi: 10.7498/aps.63.227501
    [13] 王芳, 原凤英, 汪金芝. Mn42Al50-xFe8+x合金的磁性和磁热效应. 物理学报, 2013, 62(16): 167501. doi: 10.7498/aps.62.167501
    [14] 蔡培阳, 冯尚申, 陈卫平, 薛双喜, 李志刚, 周英, 王海波, 王古平. Ni47Mn32Ga21多晶合金的磁熵变和磁感生应变. 物理学报, 2011, 60(10): 107501. doi: 10.7498/aps.60.107501
    [15] 张浩雷, 李哲, 乔燕飞, 曹世勋, 张金仓, 敬超. 哈斯勒合金Ni-Co-Mn-Sn的马氏体相变及其磁热效应研究. 物理学报, 2009, 58(11): 7857-7863. doi: 10.7498/aps.58.7857
    [16] 鲍丙豪, 任乃飞, 王国余. 各向异性场对非晶态合金应力阻抗效应的影响. 物理学报, 2008, 57(4): 2519-2523. doi: 10.7498/aps.57.2519
    [17] 敬 超, 陈继萍, 李 哲, 曹世勋, 张金仓. 哈斯勒合金Ni50Mn35In15的马氏体相变及其磁热效应. 物理学报, 2008, 57(7): 4450-4455. doi: 10.7498/aps.57.4450
    [18] 赵鹤云, 阚家德, 柳清菊, 刘佐权. 几种铁基非晶合金激波诱导晶化中的若干奇异物理效应研究. 物理学报, 2005, 54(4): 1711-1718. doi: 10.7498/aps.54.1711
    [19] 沈 俊, 李养贤, 胡凤霞, 王光军, 张绍英. Ce2Fe16Al化合物在居里温度附近的磁性和磁熵变. 物理学报, 2003, 52(5): 1250-1254. doi: 10.7498/aps.52.1250
    [20] 陈伟, 钟伟, 潘成福, 常虹, 都有为. La0.8-xCa0.2MnO3纳米颗粒的居里温度与磁热效应. 物理学报, 2001, 50(2): 319-323. doi: 10.7498/aps.50.319
计量
  • 文章访问数:  4316
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-19
  • 修回日期:  2021-09-14
  • 上网日期:  2021-09-22
  • 刊出日期:  2022-01-20

/

返回文章
返回