搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钙钛矿锰氧化物的磁相变临界行为及磁热效应研究进展

张鹏 朴红光 张英德 黄焦宏

引用本文:
Citation:

钙钛矿锰氧化物的磁相变临界行为及磁热效应研究进展

张鹏, 朴红光, 张英德, 黄焦宏

Research progress of critical behaviors and magnetocaloric effects of perovskite manganites

Zhang Peng, Piao Hong-Guang, Zhang Ying-De, Huang Jiao-Hong
PDF
HTML
导出引用
  • 钙钛矿锰氧化物具备磁热效应高、性能稳定可控、成本低廉等显著优点, 是适用于室温磁制冷领域的优质候选工质材料之一. 但该体系内部电磁学性质复杂, 特别是关于铁磁相互作用机制和磁相变性质等关键科学问题仍然有待深入探索. 分析磁相变临界行为有利于揭示磁性材料内部的铁磁相互作用距离和机制等重要信息. 本文简要介绍了钙钛矿锰氧化物相关理论背景以及各种磁相变临界行为分析方法, 随后归纳了近年来多种钙钛矿锰氧化物的磁相变临界行为研究, 系统对比了不同带宽典型锰氧化物在单晶和多晶形态下的磁相变临界行为, 讨论了A/B位掺杂不同元素以及不同制备工艺条件对其临界参数的影响, 对其中渡越于一级和二级相变的La-Ca-Mn-O体系在不同磁场范围下的临界参数演化进行了讨论. 最后对处于磁相变三重临界点附近的部分锰氧化物材料的磁热效应研究进行了总结和展望.
    Hole-doped perovskite-type manganites have received intensive attention due to their intriguing physical phenomena such as giant magnetocaloric effect and magnetic-phase transitions. However, the mechanism of internal ferromagnetic interaction still needs to be further explored due to the complex natures of competing double-exchange (DE) and super-exchange (SE) interaction, Jahn-Teller (JT) polaron localization, charge ordering, and phase separation scenarios. Critical exponent analysis near magnetic phase transition is a powerful tool to investigate the details of the ferromagnetic interactions and has been used frequently in various magnetocaloric materials. In this article, the critical behavior analyses of perovskite manganites in recent years are comprehensively reviewed. A large number of studies have shown that even in single-phase materials with uniform structure and composition, the critical behavior can be affected by multiple factors such as grain boundary density and the degree of disorder, making them difficult to fully describe the intrinsic ferromagnetism. In this review, firstly, the critical behaviors of typical manganites with different bandwidths in single crystal and polycrystalline are discussed. In a double-exchange dominated system such as La-Sr-Mn-O, short-range 3D-Heisenberg model is basically in good accordance with optimally-doped single crystal sample. However, it would be replaced by long-range mean-field critical behavior in polycrystalline sample when the correlation length exceeds the crystallite size. In a typical intermediate bandwidth system such as La-Ca-Mn-O exhibiting a complex phase diagram described by competing SE/DE interactions, JT polaron localization/delocalization, and Griffith phase disorder, the critical exponent can vary from 3D-Heisenberg model to tricritical mean-field model, for the crossover from first to second order phase transition. Secondly, the studies of elements doping and different fabrication methods indicate that the critical behavior of manganites can be effectively modulated, and vary between different theoretical models including even nonuniversal exponent for highly disordered magnetic system. In the following part, the influence of magnetic field on the critical behavior and field induced crossover phenomena of La-Ca-Mn-O system near tricritical point is analyzed and discussed in detail. Furthermore, the magnetocaloric effects of materials near the tricritical point collected in many studies are listed and compared with each other. Excellent magnetocaloric properties with high magnetic entropy change and relative cooling power in plenty of researches indicate that ideal magnetocaloric material would be very likely to be found in the materials near the tricritical point, which lay at the borderline between first-order and second-order phase transition. Consequently, it is suggested that perovskite manganites are still quite promising in the potential magnetic refrigeration applications, and need to be further developed.
      通信作者: 朴红光, hgpiao@ctgu.edu.cn
    • 基金项目: 湖北省自然科学基金(批准号: ZRMS2018001866)、湖北工业大学博士启动金(批准号: BSQD13030)和国家重点研发计划(批准号: 2017YFB0903702)资助的课题
      Corresponding author: Piao Hong-Guang, hgpiao@ctgu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Hubei Province, China (Grant No. ZRMS2018001866), the Doctoral Research Startup Fund of Hubei University of Technology, China (Grant No. BSQD13030), and the National Key R&D Program of China (Grant No. 2017YFB0903702)
    [1]

    Pecharsky V K, Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494Google Scholar

    [2]

    Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H, Zhang X X 2001 Appl. Phys. Lett. 78 3675Google Scholar

    [3]

    Tegus O, Bruck E, Buschow K H J, de Boer F R 2002 Nature 415 150Google Scholar

    [4]

    Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Mañosa L, Planes A 2005 Nat. Mater. 4 450Google Scholar

    [5]

    Hu F X, Shen B G, Sun J R 2000 Appl. Phys. Lett. 76 3460Google Scholar

    [6]

    Guo Z B, Du Y W, Zhu J S, Huang H, Ding W P, Feng D 1997 Phys. Rev. Lett. 78 1142Google Scholar

    [7]

    Phan M H, Yu S C 2007 J. Magn. Magn. Mater. 308 325Google Scholar

    [8]

    Law J Y, Franco V, Moreno-Ramírez L M, Conde A, Karpenkov D Y, Radulov I, Skokov K P, Gutfleisch O 2018 Nat. Commun. 9 2680Google Scholar

    [9]

    Fujita A, Fujieda S, Hasegawa Y, Fukamichi K 2003 Phys. Rev. B 67 104416Google Scholar

    [10]

    Sun Y, Arnold Z, Kamarad J, Wang G J, Shen B G, Cheng Z H 2006 Appl. Phys. Lett. 89 172513Google Scholar

    [11]

    Liu J, Gottschall T, Skokov K P, Moore J D, Gutfleisch O 2012 Nat. Mater. 11 620Google Scholar

    [12]

    Romero-Muñiz C, Tamura R, Tanaka S, Franco V 2016 Phys. Rev. B 94 134401Google Scholar

    [13]

    Franco V, Law J Y, Conde A, Brabander V, Karpenkov D Y, Radulov I, Skokov K, Gutfleisch O 2017 J. Phys. D 50 414004Google Scholar

    [14]

    Romero-Muñiz C, Franco V, Conde A 2017 Phys. Chem. Chem. Phys. 19 3582Google Scholar

    [15]

    Dagotto E, Hotta T, Moreo A 2001 Phys. Rep. 344 1Google Scholar

    [16]

    Alexandrov A S, Bratkovsky A M 1999 Phys. Rev. Lett. 82 141Google Scholar

    [17]

    Yunoki S, Hu J, Malvezzi A L, Moreo A, Furukawa N, Dagotto E 1998 Phys. Rev. Lett. 80 845Google Scholar

    [18]

    Banerjee B K 1964 Phys. Lett. 12 16Google Scholar

    [19]

    Franco V, Blázquez J S, Conde A 2006 Appl. Phys. Lett. 89 222512Google Scholar

    [20]

    Bonilla C M, Herrero-Albillos J, Bartolomé F, García L M, Parra-Borderías M, Franco V 2010 Phys. Rev. B 81 224424Google Scholar

    [21]

    张蕾 2018 物理学报 67 137501Google Scholar

    Zhang L 2018 Acta Phys. Sin. 67 137501Google Scholar

    [22]

    Fan J, Pi L, Zhang L, Tong W, Ling L, Hong B, Shi Y, Zhang W, Lu D, Zhang Y 2011 Appl. Phys. Lett. 98 072508Google Scholar

    [23]

    Huang K 1987 Statistical Mechanics (2nd Ed.) (New York: Wiley) pp398–432

    [24]

    Kaul S N 1985 J. Magn. Magn. Mater. 53 5Google Scholar

    [25]

    Fisher M E, Ma S K, Nickel B G 1972 Phys. Rev. Lett. 29 917Google Scholar

    [26]

    Jiang W, Zhou X, Williams G, Mukovskii Y, Glazyrin K 2008 Phys. Rev. B 77 064424Google Scholar

    [27]

    Linh D C, Thanh T D, Anh L H, Dao V D, Piao H G, Yu S C 2017 J. Alloys Compd. 725 484Google Scholar

    [28]

    Moutis N, Panagiotopoulos I, Pissas M, Niarchos D 1999 Phys. Rev. B 59 1129Google Scholar

    [29]

    Ghosh K, Lobb C J, Greene R L, Karabashev S G, Shulyatev D A, Arsenov A A, Mukovskii Y 1998 Phys. Rev. Lett. 81 4740Google Scholar

    [30]

    Kim D, Zink B L, Hellman F, Coey J M D 2002 Phys. Rev. B 65 214424Google Scholar

    [31]

    Mohan C V, Seeger M, Kronmüller H, Murugaraj P, Maier J 1998 J. Magn. Magn. Mater. 183 348Google Scholar

    [32]

    Nair S, Banerjee A, Narlikar A V, Prabhakaran D, Boothroyd A T 2003 Phys. Rev. B 68 132404Google Scholar

    [33]

    Kim D, Revaz B, Zink B L, Hellman F, Rhyne J J, Mitchell J F 2002 Phys. Rev. Lett. 89 227202Google Scholar

    [34]

    Jiang W, Zhou X, Williams G, Mukovskii Y, Glazyrin K 2007 Phys. Rev. Lett. 99 177203Google Scholar

    [35]

    Jiang W, Zhou X, Williams G, Privezentsev R, Mukovskii Y 2009 Phys. Rev. B 79 214433Google Scholar

    [36]

    Oleaga A, Salazar A, Hatnean M C, Balakrishnan G 2015 Phys. Rev. B 92 024409Google Scholar

    [37]

    Venkatesh R, Pattabiraman M, Sethupathi K, Rangarajan G, Angappane S, Park J G 2008 J. Appl. Phys. 103 07B319Google Scholar

    [38]

    Phan T L, Ho T A, Thang P D, Tran Q T, Thanh T D, Phuc N X, Phan M H, Huy B T, Yu S C 2014 J. Alloys Compd. 615 937Google Scholar

    [39]

    Rößler S, Nair H S, Rößler U K, Kumar C M N, Elizabeth S, Wirth S 2011 Phys. Rev. B 84 184422Google Scholar

    [40]

    Elleuch F, Bekri M, Hussein M, Triki M, Dhahri E, Hlil E K, Bessais L 2015 Dalton Trans. 44 17712Google Scholar

    [41]

    Jiang W, Zhou X, Williams G, Mukovskii Y, Glazyrin K 2008 Phys. Rev. B 78 144409Google Scholar

    [42]

    Ho T A, Thanh T D, Yu Y, Tartakovsky D M, Ho T O, Thang P D, Le A T, Phan T L, Yu S C 2015 J. Appl. Phys. 117 17D122Google Scholar

    [43]

    Ezaami A, Sellami-Jmal E, Cheikhrouhou-Koubaa W, Hlil E K, Cheikhrouhou A 2017 J. Mater. Sci. Mater. Electron. 28 6837Google Scholar

    [44]

    Phan M H, Franco V, Bingham N S, Srikanth H, Hur N H, Yu S C 2010 J. Alloys Compd. 508 238Google Scholar

    [45]

    Debbebi I S, Ezaami A, Cheikhrouhou-Koubaa W, Cheikhrouhou A, Hlil E K 2017 J. Mater. Sci. Mater. Electron. 28 14000Google Scholar

    [46]

    Lam D S, Dung N T, Thanh T D, Linh D C, Nan W Z, Yu S C 2020 Mater. Res. Express 7 046101Google Scholar

    [47]

    Elghoul A, Krichene A, Boudjada N C, Boujelben W 2018 Ceram. Int. 44 14510Google Scholar

    [48]

    Fan J, Ling L, Hong B, Zhang L, Pi L, Zhang Y 2010 Phys. Rev. B 81 144426Google Scholar

    [49]

    Mleiki A, Othmani S, Cheikhrouhou-Koubaa W, Koubaa M, Cheikhrouhou A, Hlil E K 2015 J. Alloys Compd. 648 1043Google Scholar

    [50]

    Mnefgui S, Dhahri A, Dhahri N, Hlil E K, Dhahri J 2013 Solid State Sci. 21 19Google Scholar

    [51]

    Oumezzine M, Peña O, Kallel S, Zemni S 2011 Solid State Sci. 13 1829Google Scholar

    [52]

    Baazaoui M, Hcini S, Boudard M, Zemni S, Oumezzine M 2015 J. Supercond. Nov. Magn. 28 1887Google Scholar

    [53]

    Ho T A, Phan M H, Phuc N X, Lam V D, Phan T L, Yu S C 2016 J. Electron. Mater. 45 2508Google Scholar

    [54]

    Ghodhbane S, Dhahri A, Dhahri N, Hlil E K, Dhahri J, Alhabradi M, Zaidi M 2013 J. Alloys Compd. 580 558Google Scholar

    [55]

    Wang G F, Zhao Z R, Li H L, Zhang X F 2016 Ceram. Int. 42 18196Google Scholar

    [56]

    Khiem N V, Phong P T, Bau L V, Nam D N H, Hong L V, Phuc N X 2009 J. Magn. Magn. Mater. 321 2027Google Scholar

    [57]

    Thanh T D, Linh D C, Manh T V, Ho T A, Phan T L, Yu S C 2015 J. Appl. Phys. 117 17C101Google Scholar

    [58]

    Ginting D, Nanto D, Zhang Y D, Yu S C, Phan T L 2013 Physica B 412 17Google Scholar

    [59]

    Phong P T, Ngan L T T, Bau, L V, Nam P H, Linh P H, Dang N V, Lee I J 2017 Ceram. Int. 43 16859Google Scholar

    [60]

    Nisha P, Pillai S S, Varma M R, Suresh K G 2012 Solid State Sci. 14 40Google Scholar

    [61]

    Rößler S, Rößler U K, Nenkov K, Eckert D, Yusuf S M, Dörr K, Müller K H 2004 Phys. Rev. B 70 104417Google Scholar

    [62]

    Zhu X, Sun Y, Luo X, Lei H, Wang B, Song W, Yang Z, Dai J, Shi D, Dou S 2010 J. Magn. Magn. Mater. 322 242Google Scholar

    [63]

    Phan T L, Tran Q T, Thanh P Q, Yen P D H, Thanh T D, Yu S C 2014 Solid State Commun. 184 40Google Scholar

    [64]

    Phan T L, Thanh P Q, Sinh N H, Zhang Y D, Yu S C 2012 IEEE Trans. Magn. 48 1293Google Scholar

    [65]

    Phan T L, Thanh P Q, Sinh N H, Lee K W, Yu S C 2011 Curr. Appl. Phys. 11 830Google Scholar

    [66]

    Turki D, Ghouri Z K, Al-Meer S, Elsaid K, Ahmad M I, Easa A, Remenyi G, Mahmood S, Hlil E K, Ellouze M, Elhalouani F 2017 Magnetochemistry 3 28Google Scholar

    [67]

    Arun B, Suneesh, Sudakshina B, Akshay V R. Chandrasekhar K D, Vasundhara M 2018 J. Phys. Chem. Solids 123 327Google Scholar

    [68]

    Dhahr J, Belgacem C H, Dhahri A, Oumezzine M 2016 Appl. Phys. A 122 483Google Scholar

    [69]

    Raoufi T, Ehsani M H, Khoshnoud D S 2017 Ceram. Int. 43 5204Google Scholar

    [70]

    Mnefgui S, Zaidi N, Dhahri A, Hlil E K, Dhahri J 2014 J. Solid State Chem. 215 193Google Scholar

    [71]

    Munazat D R, Kurniawan B, Razaq D S, Watanabe K, Tanaka H 2020 Physica B 592 412227Google Scholar

    [72]

    Ezaami A, Sellami-Jmal E, Cheikhrouhou-Koubaa W, Cheikhrouhou A, Hlil E K 2017 J. Phys. Chem. Solids 109 109Google Scholar

    [73]

    Thanh T D, Phan T L, Chien N V, Manh D H, Yu S C 2014 IEEE Trans. Magn. 50 2501504Google Scholar

    [74]

    Ezaami A, Sfifir I, Cheikhrouhou-Koubaa W, Koubaa M, Cheikhrouhou A 2017 J. Alloys Compd. 693 658Google Scholar

    [75]

    Ho T A, Thanh T D, Manh T V, Ho T O, Thang P D, Phan T L, Yu S C 2015 Mater. Trans. 56 1331Google Scholar

    [76]

    Makni-Chakroun J, Cheikhrouhou-Koubaa W, Koubaa M, Cheikhrouhou A 2015 J. Alloys Compd. 650 421Google Scholar

    [77]

    Phong P T, Ngan L T T, Dang N V, Nguyen L H, Nam P H, Thuy D M, Tuan N D, Bau L V, Lee I J 2018 J. Magn. Magn. Mater. 449 558Google Scholar

    [78]

    Phong P T, Ngan L T T, Bau L V, Phuc N X, Nam P H, Phong L T H, Dang N V, Lee I J 2019 J. Magn. Magn. Mater. 475 374Google Scholar

    [79]

    Messaoui I, Omrani H, Mansouri M, Cheikhrouhou-Koubaa W, Koubaa M, Cheikhrouhou A, Hlil E K 2016 Ceram. Int. 42 17032Google Scholar

    [80]

    Mahjoub S, Baazaoui M, Hlil E K, Oumezzine M 2015 Ceram. Int. 41 12407Google Scholar

    [81]

    Kharrat A B J, Hlil E K, Boujelben W 2018 J. Alloys Compd. 739 101Google Scholar

    [82]

    Kharrat A B J, Boujelben W 2019 J. Low Temp. Phys. 197 357Google Scholar

    [83]

    Zhang P, Lampen P, Phan T L, Yu S C, Thanh T D, Dan N H, Lam V D, Srikanth H, Phan M H 2013 J. Magn. Magn. Mater. 348 146Google Scholar

    [84]

    Phan T L, Dang N T, Ho T A, Manh T V, Thanh T D, Jung C U, Lee B W, Le A T, Phan A D, Yu S C 2016 J. Alloys Compd. 657 818Google Scholar

    [85]

    Phan T L, Tola P S, Dang N T, Rhyee J S, Shon W H, Ho T A 2017 J. Magn. Magn. Mater. 441 290Google Scholar

    [86]

    Ghorai S, Skini R, Hedlund D, Ström P, Svedlindh P 2020 Sci. Rep. 10 19485Google Scholar

    [87]

    Zaidi M A, Dhahri J, Zeydi I, Alharbi T, Belmabrouk H 2017 RSC Adv. 7 43590Google Scholar

    [88]

    Assoudi N, Walha I, Nouri K, Dhahri E, Bessais L 2018 J. Alloys Compd. 753 282Google Scholar

    [89]

    Jeddi M, Gharsallah H, Bejar M, Bekri M, Dhahri E, Hlil E K 2018 RSC Adv. 8 9430Google Scholar

    [90]

    Phan T L, Zhang Y D, Zhang P, Thanh T D, Yu S C 2012 J. Appl. Phys. 112 093906Google Scholar

    [91]

    Ho T A, Dang N T, Phan T L, Yang D S, Lee B W, Yu S C 2016 J. Alloys Compd. 676 305Google Scholar

    [92]

    Laouyenne M R, Baazaoui M R, Farah K, Hlil E K, Oumezzine M 2019 J. Magn. Magn. Mater. 474 393Google Scholar

    [93]

    Dhahri A, Dhahri E, Hlil E K 2017 J. Alloys Compd. 727 449Google Scholar

    [94]

    Belkahla A, Cherif K, Dhahri J, Hlil E K 2017 J. Alloys Compd. 715 266Google Scholar

  • 图 1  理想钙钛矿ABO3立方结构示意图

    Fig. 1.  Ideal perovskite ABO3 cubic structure.

    图 2  不同带宽钙钛矿锰氧化物的典型磁相图 (a)大带宽型La1–xSrxMnO3; (b)中等带宽型La1–xCaxMnO3; (c)小带宽型Pr1–xCaxMnO3[15]

    Fig. 2.  Typical magnetic phase diagrams of different bandwidth manganites: (a) Large bandwidth La1–xSrxMnO3; (b) intermediate bandwidth La1–xCaxMnO3; (c) small bandwidth Pr1–xCaxMnO3[15].

    图 3  三重临界点的示意图

    Fig. 3.  Schematic diagram of Tricritical point.

    表 1  典型理论模型的临界参数

    Table 1.  Critical parameters of theoretical models.

    ModelβγδRef.
    Mean-field0.51.03.0[23]
    Tricritical-Mean-field0.251.05.0[23]
    3D-Heisenberg0.3651.3864.80[24]
    3D-Ising0.3251.2414.82[24]
    下载: 导出CSV

    表 2  典型锰氧化物材料在各种形态下的临界行为分析

    Table 2.  Critical behavior analysis of manganites in different morphologies (SC, single crystal; PC, polycrystalline).

    MaterialTechniqueβγδModelRef.
    La0.7Ba0.3MnO3SCMAP0.351.415.53D-Heisenberg[26]
    La0.7Ba0.3MnO3PCMAP0.4931.0593.15Mean-field[27]
    La0.67Ba0.33MnO3PCMAP0.4641.293.78Mean-field/3D-Heisenberg[28]
    La0.7Sr0.3MnO3SCMAP0.371.224.25close to 3D-Heisenberg[29]
    La0.75Sr0.25MnO3SCMAP0.41.274.12Mean-field/3D-Ising[30]
    La0.8Sr0.2MnO3PCMAP0.51.083.13Mean-field[31]
    La0.875Sr0.125MnO3SCMAP0.371.384.723D-Heisenberg[32]
    La0.6Ca0.4MnO3PCMAP0.251.035Tricritical-Mean-field[33]
    La0.79Ca0.21MnO3SCMAP0.091.7120nonuniversal[34]
    La0.8Ca0.2MnO3SCMAP0.3741.3824.7793D-Heisenberg[35]
    La0.82Ca0.18MnO3SCMAP0.3741.3794.7833D-Heisenberg[35]
    Nd0.6Sr0.4MnO3SCKF0.3081.1724.753D-Ising[36]
    Nd0.6Sr0.4MnO3PCMAP0.511.013.13Mean-field[37]
    Nd0.67Sr0.33MnO3PCMAP0.231.055.13Tricritical-Mean-field[37]
    Nd0.7Sr0.3MnO3PCMAP0.2710.9224.4Tricritical-Mean-field[38]
    Pr0.6Sr0.4MnO3SCKF0.3121.1064.5453D-Ising[36]
    Pr0.6Sr0.4MnO3SCMAP0.3651.3094.6483D-Heisenberg[39]
    Pr0.6Sr0.4MnO3PCMAP0.2760.9184.325Tricritical-Mean-field[40]
    KF0.2731.0014.325
    Pr0.71Ca0.29MnO3SCMAP0.371.384.623D-Heisenberg[41]
    Pr0.71Ca0.29MnO3PCMAP0.5210.9122.71Mean-field[42]
    Pr0.73Ca0.27MnO3SCMAP0.361.364.813D-Heisenberg[41]
    Pr0.73Ca0.27MnO3PCMAP0.3621.1324.093D-Heisenberg[42]
    注: SC表示单晶; PC表示多晶.
    下载: 导出CSV

    表 3  A位掺杂不同元素或空位的锰氧化物临界行为分析

    Table 3.  Critical behavior analysis of manganites doped with different elements (vacancy) at A site (□, Ion vacancy).

    MaterialTechniqueβγδModelRef.
    La0.67(Ca0.5Ba0.5)0.33MnO3MAP0.4021.1103.761Mean-field/3D-Heisenberg[28]
    La0.7Ca0.15Ba0.15MnO3MAP0.4381.0323.360Mean-field[27]
    La0.7Ca0.2Ba0.1MnO3MAP0.2840.9094.200Tricritical-Mean-field/3D-Ising[43]
    KF0.2970.9254.110
    La0.7Ca0.15Sr0.15MnO3MAP0.4911.0543.150Mean-field[27]
    La0.7Ca0.1Sr0.2MnO3KF0.3601.2204.4003D-Heisenberg[44]
    La0.7Ca0.2Sr0.1MnO3KF0.2601.0605.100Tricritical-Mean-field[44]
    La0.69Dy0.01Ca0.3MnO3MAP0.2300.9205.000Tricritical-Mean-field[45]
    KF0.2500.8704.480
    La0.7Ca0.28Sn0.02MnO3KF0.2180.8584.936Tricritical-Mean-field[46]
    La0.7Ca0.26Sn0.04MnO3KF0.4671.0953.345Mean-field[46]
    La0.75Dy0.05Sr0.2MnO3MAP0.2660.9204.460Tricritical-Mean-field[47]
    KF0.2720.9314.420
    La0.1Nd0.6Sr0.3MnO3MAP0.2481.0665.170Tricritical-Mean-field[48]
    KF0.2571.1205.170
    Pr0.4Sm0.15Sr0.45MnO3KF0.3241.2124.8123D-Ising[49]
    Pr0.3Sm0.25Sr0.45MnO3KF0.2550.9575.105Tricritical-Mean-field[49]
    La0.57Nd0.1Sr0.33MnO3MAP0.3561.1524.2353D-Heisenberg[50]
    KF0.3681.1914.236
    La0.57Nd0.1Sr0.280.05MnO3MAP0.3121.1734.7603D-Ising[50]
    KF0.3261.1834.619
    Pr0.6Sr0.4MnO3MAP0.2760.9184.325Tricritical-Mean-field[40]
    KF0.2731.0014.325
    Pr0.6Sr0.30.1MnO3MAP0.2530.9874.890Tricritical-Mean-field[40]
    KF0.2420.9454.890
    Pr0.50.1Sr0.4MnO3MAP0.3231.1134.4463D-Ising[40]
    KF0.3251.0924.446
    注: □表示离子空位.
    下载: 导出CSV

    表 4  B位掺杂不同元素的锰氧化物临界行为分析

    Table 4.  Critical behavior analysis of manganites doped with different elements at B site.

    MaterialTechniqueβγ δModelRef.
    La0.67Ba0.33Mn0.98Ti0.02O3MAP0.5371.0152.890Mean-field[51]
    KF0.5511.0202.851
    La0.67Ba0.33Mn0.95Fe0.05O3KF0.5041.0133.040Mean-field[52]
    La0.7Ba0.3Mn0.95Ti0.05O3MAP0.3741.2284.2603D-Heisenberg[53]
    La0.7Ba0.3Mn0.9Ti0.1O3MAP0.3391.3074.7803D-Ising[53]
    La0.8Ba0.2Mn0.8Fe0.2O3MAP0.3651.2274.3623D-Heisenberg[54]
    KF0.3181.1594.645
    La0.67Sr0.33Mn0.9Fe0.1O3MAP0.4501.2403.740Mean-field/3D-Heisenberg[55]
    KF0.5381.3303.470
    La0.7Sr0.3Mn0.95Al0.05O3KF0.4581.0013.185Mean-field[56]
    La0.7Sr0.3Mn0.95Ti0.05O3KF0.3441.1494.340Mean-field/3D-Heisenberg[56]
    La0.7Sr0.3Mn0.9Co0.1O3KF0.4571.1143.440Mean-field/3D-Heisenberg[57]
    La0.7Sr0.3Mn0.99Ni0.01O3MAP0.3941.0923.990Mean-field/3D-Heisenberg[58]
    La0.7Sr0.3Mn0.98Ni0.02O3MAP0.4001.0823.790Mean-field/3D-Heisenberg[58]
    La0.7Sr0.3Mn0.97Ni0.03O3MAP0.4681.0102.670Mean-field[58]
    La0.7Sr0.3Mn0.98Cu0.02O3KF0.4641.1623.546close to Mean-field[59]
    La0.7Sr0.3Mn0.96Cu0.04O3KF0.4491.2023.681close to Mean-field[59]
    La0.67Ca0.33Mn0.9Cr0.1O3MAP0.5551.1702.710Mean-field[60]
    La0.67Ca0.33Mn0.75Cr0.25O3MAP0.6801.0902.936close to Mean-field[60]
    La0.67Ca0.33Mn0.9Ga0.1O3MAP0.3801.3654.5903D-Heisenberg[61]
    KF0.3871.3624.520
    La0.7Ca0.3Mn0.95Ti0.05O3KF0.6011.1712.950Mean-field[62]
    La0.7Ca0.3Mn0.9Ti0.1O3KF0.3891.4034.4003D-Heisenberg[62]
    La0.7Ca0.3Mn0.91Ni0.09O3MAP0.1710.9766.700Tricritical-Mean-field[63]
    La0.7Ca0.3Mn0.88Ni0.12O3MAP0.2620.9784.700Tricritical-Mean-field[63]
    La0.7Ca0.3Mn0.85Ni0.15O3MAP0.3200.9904.1003D-Ising[63]
    La0.7Ca0.3Mn0.95Cu0.05O3MAP0.4901.0403.120Mean-field[64]
    La0.7Ca0.3Mn0.9Zn0.1O3MAP0.4741.1523.430Mean-field[65]
    La0.8Ca0.2Mn0.9Co0.1O3MAP0.2041.96911.983nonuniversal[66]
    KF0.1231.35111.983
    La0.8Ca0.2Mn0.8Co0.2O3MAP0.4011.3324.3213D-Heisenberg[66]
    KF0.4181.3034.321
    Nd0.67Sr0.33Mn0.9Cr0.1O3MAP0.3370.7843.326nonuniversal[67]
    Nd0.67Sr0.33Mn0.9Fe0.1O3MAP0.4360.943.156Mean-field[67]
    Nd0.67Sr0.33Mn0.9Co0.1O3MAP0.4310.9293.155Mean-field[67]
    Pr0.67Sr0.33Mn0.95Al0.05O3MAP0.3811.3234.6353D-Heisenberg[68]
    KF0.3811.3204.635
    Pr0.67Sr0.33Mn0.9Al0.1O3MAP0.3741.3334.6673D-Heisenberg[68]
    KF0.3771.3314.667
    下载: 导出CSV

    表 5  不同制备方法锰氧化物的临界行为对比分析

    Table 5.  Critical behavior analysis of manganites from different preparation methods (SS, solid state reaction; SG, sol-gel; WM, wet mixing; BM, ball milling).

    MaterialTechniqueβγδModelRef.
    La0.6Sr0.4MnO3SG/800 ºCKF0.5601.1403.035close to Mean-field[69]
    La0.6Sr0.4MnO3SG/1100 ºCKF0.4801.0523.190Mean-field[69]
    La0.6Sr0.4MnO3SSKF0.5301.1103.094Mean-field[69]
    La0.67Sr0.33MnO3SSMAP0.3331.3254.9783D-Heisenberg[70]
    La0.67Sr0.33MnO3SGMAP0.5001.1503.290Mean-field[55]
    KF0.4791.2603.630
    La0.7Ba0.1Ca0.1Sr0.1MnO3WMMAP0.4481.1483.563Mean-field[71]
    KF0.4761.0293.096
    La0.7Ba0.1Ca0.1Sr0.1MnO3SGMAP0.2351.1535.906Tricritical-Mean-field[71]
    KF0.2621.1655.447
    La0.7Ca0.2Ba0.1MnO3BMMAP0.2650.8674.271Tricritical-Mean-field[72]
    KF0.2610.9884.386
    La0.7Ca0.2Ba0.1MnO3SSMAP0.2840.9094.200Tricritical-Mean-field/3D-Ising[43]
    KF0.2970.9254.110
    La0.7Ca0.2Sr0.1MnO3BMMAP0.3970.9663.4303D-Heisenberg[73]
    La0.7Ca0.2Sr0.1MnO3SSMAP0.2760.9664.500Tricritical-Mean-field[74]
    KF0.3150.9544.028
    La0.7Ca0.2Sr0.1MnO3SGMAP0.4841.0373.143Mean-field[74]
    KF0.4691.0133.160
    La0.7Ca0.3MnO3BM/40 nmMAP0.4851.0513.100Mean-field[75]
    La0.7Ca0.3MnO3BM/16 nmMAP0.6210.8252.200nonuniversal
    La0.7Ca0.3MnO3SGMAP0.2401.0103.090Tricritical-Mean-field[76]
    La0.75Ca0.25MnO3SGMAP0.5210.942.804Mean-field[77]
    KF0.5290.9392.775
    La0.8Ca0.2MnO3SGMAP0.5051.0043.060Mean-field[78]
    KF0.4991.0073.060
    Nd0.7Ca0.15Sr0.15MnO3BM/4 hKF0.2430.9074.540Tricritical-Mean-field[79]
    Nd0.7Ca0.15Sr0.15MnO3BM/24 hKF0.3111.1004.1303D-Ising[79]
    Pr0.6Ca0.1Sr0.3Mn0.975Fe0.025O3SSMAP0.6441.0752.763Mean-field[80]
    KF0.6221.0972.763
    Pr0.6Ca0.1Sr0.3Mn0.975Fe0.025O3SGMAP0.3571.2924.2903D-Heisenberg[80]
    KF0.3701.2204.290
    Pr0.8Sr0.2MnO3SGMAP0.2600.9784.760Tricritical-Mean-field[81]
    KF0.2600.9934.810
    Pr0.8Sr0.2MnO3SSMAP0.3181.2604.9603D-Ising[82]
    KF0.3261.2464.960
    注: SS表示固相反应法; SG表示溶胶凝胶法(附烧结温度工艺条件); WM表示湿混法; BM表示球磨法(附平均粒径尺寸或球磨时间等工艺条件).
    下载: 导出CSV

    表 6  关于不同磁场强度范围所得磁相变临界参数的对比分析

    Table 6.  Comparative analysis of critical parameters in different magnetic field ranges.

    MaterialField rangeTechniqueβγδModelRef.
    La0.6Ca0.4MnO31—2 TKF0.2491.0085.043Tricritical-Mean-field[83]
    2—3 TKF0.2550.8574.359crossover
    3—4 TKF0.2620.8334.18crossover
    4—5 TKF0.2670.7973.983crossover
    5—6 TKF0.2630.7763.954close to Tricritical-Mean-field
    La0.8Ca0.2MnO31—2 TKF0.3491.2314.5243D-Heisenberg/Ising[83]
    2—3 TKF0.3161.0814.421crossover
    3—4 TKF0.2810.9924.534crossover
    4—5 TKF0.2720.914.341crossover
    5—6 TKF0.2590.9184.552Tricritical-Mean-field
    La0.7Ca0.275Ba0.025MnO32—3 TMAP0.209Tricritical-Mean-field[84]
    3—4 TMAP0.2181.0986.04
    4—5 TMAP0.2271.065.67
    La0.7Ca0.25Ba0.05MnO31—2 TMAP0.221Tricritical-Mean-field[84]
    2—3 TMAP0.2251.0525.68
    3—4 TMAP0.2351.0125.31
    4—5 TMAP0.2491.0225.1
    La0.7Ca0.225Ba0.075MnO31—2 TMAP0.2160.9735.5Tricritical-Mean-field[84]
    2—3 TMAP0.2240.9825.38
    3—4 TMAP0.2381.0165.27
    4—5 TMAP0.2530.9924.92
    La0.7Ca0.2Ba0.1MnO31—2 TMAP0.3011.3825.59Tricritical-Mean-field/3D-Ising[84]
    2—3 TMAP0.3121.385.423D-Ising
    3—4 TMAP0.3221.3815.293D-Ising
    4—5 TMAP0.3261.3425.123D-Ising
    La0.7Ca0.3MnO310—14 TMAP0.2521.005Tricritical-Mean-field[85]
    下载: 导出CSV

    表 7  接近三重临界点的部分近室温钙钛矿锰氧化物的最大磁熵变和相对制冷能力

    Table 7.  Maximum magnetic entropy change and RCP values of perovskite manganites near tricritical point.

    MaterialTC/KΔH/ T–ΔSM/(J·kg–1·K–1)RCP/(J·kg–1)Ref.
    La0.7Ba0.2Ca0.1MnO3SG35022.3570[87]
    55.80167
    La0.7Ba0.2Ca0.1Mn0.95Al0.05O3SG32122.1285[87]
    55.30180
    La0.7Ba0.2Ca0.1Mn0.9Al0.1O3SG30021.8696[87]
    54.60193
    La0.7Ca0.3MnO3SS25514.5245.2[46]
    La0.7Ca0.28Sn0.02MnO3SS20012.7955.8[46]
    La0.7Ca0.26Sn0.04MnO3SS16711.5869.5[46]
    La0.69Dy0.01Ca0.3MnO3SS246514.94100.24[45]
    La0.6Ca0.3Ag0.1MnO3SS25623.8955.51[88]
    56.95179.78
    La0.6Ca0.3Ag0.1MnO3SG27025.5584.46[88]
    58.67230.35
    La0.6Ca0.3Sr0.1MnO3SG30422.8998.17[89]
    55.26262.53
    La0.7Ca0.2Sr0.1MnO3SS28434.30150[90]
    La0.7Ca0.2Sr0.1MnO3BM29711.4754.4[73]
    La0.7Ca0.19Sr0.11MnO3BM30111.4252.5[73]
    La0.7Ca0.18Sr0.12MnO3BM30911.3844.2[73]
    La0.7Ca0.27Na0.03MnO3SS26048.10232[91]
    La0.7Ca0.24Na0.06MnO3SS26347.00234[91]
    La0.7Ca0.21Na0.09MnO3SS27146.90236[91]
    La0.7Ba0.1Ca0.1Sr0.1MnO3WM31521.34102.51[71]
    53.16284.53
    La0.7Ba0.1Ca0.1Sr0.1MnO3SG33022.5874.92[71]
    54.89229.29
    La0.8Na0.2Mn0.97Bi0.03O3SS32054.77218[92]
    La0.8Na0.2Mn0.97Bi0.03O3SG25755.88252[92]
    La0.4Pr0.3Ca0.1Sr0.2MnO3SS28923.0883.3[86]
    La0.6Gd0.1Sr0.3Mn0.8Si0.2O3SG27155.35180[93]
    La0.7Bi0.05Sr0.15Ca0.1Mn0.95In0.05O3SG31056.00258[94]
    注: 1) 表中符号含义如下: TC为居里温度; ΔH为磁场变化范围; –ΔSM为最大磁熵变值; RCP为相对制冷能力, 由磁熵变曲线的峰值与半峰宽数值相乘而得; 2) SS表示固相反应法; SG表示溶胶凝胶法; WM表示湿混法; BM表示球磨法.
    下载: 导出CSV
  • [1]

    Pecharsky V K, Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494Google Scholar

    [2]

    Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H, Zhang X X 2001 Appl. Phys. Lett. 78 3675Google Scholar

    [3]

    Tegus O, Bruck E, Buschow K H J, de Boer F R 2002 Nature 415 150Google Scholar

    [4]

    Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Mañosa L, Planes A 2005 Nat. Mater. 4 450Google Scholar

    [5]

    Hu F X, Shen B G, Sun J R 2000 Appl. Phys. Lett. 76 3460Google Scholar

    [6]

    Guo Z B, Du Y W, Zhu J S, Huang H, Ding W P, Feng D 1997 Phys. Rev. Lett. 78 1142Google Scholar

    [7]

    Phan M H, Yu S C 2007 J. Magn. Magn. Mater. 308 325Google Scholar

    [8]

    Law J Y, Franco V, Moreno-Ramírez L M, Conde A, Karpenkov D Y, Radulov I, Skokov K P, Gutfleisch O 2018 Nat. Commun. 9 2680Google Scholar

    [9]

    Fujita A, Fujieda S, Hasegawa Y, Fukamichi K 2003 Phys. Rev. B 67 104416Google Scholar

    [10]

    Sun Y, Arnold Z, Kamarad J, Wang G J, Shen B G, Cheng Z H 2006 Appl. Phys. Lett. 89 172513Google Scholar

    [11]

    Liu J, Gottschall T, Skokov K P, Moore J D, Gutfleisch O 2012 Nat. Mater. 11 620Google Scholar

    [12]

    Romero-Muñiz C, Tamura R, Tanaka S, Franco V 2016 Phys. Rev. B 94 134401Google Scholar

    [13]

    Franco V, Law J Y, Conde A, Brabander V, Karpenkov D Y, Radulov I, Skokov K, Gutfleisch O 2017 J. Phys. D 50 414004Google Scholar

    [14]

    Romero-Muñiz C, Franco V, Conde A 2017 Phys. Chem. Chem. Phys. 19 3582Google Scholar

    [15]

    Dagotto E, Hotta T, Moreo A 2001 Phys. Rep. 344 1Google Scholar

    [16]

    Alexandrov A S, Bratkovsky A M 1999 Phys. Rev. Lett. 82 141Google Scholar

    [17]

    Yunoki S, Hu J, Malvezzi A L, Moreo A, Furukawa N, Dagotto E 1998 Phys. Rev. Lett. 80 845Google Scholar

    [18]

    Banerjee B K 1964 Phys. Lett. 12 16Google Scholar

    [19]

    Franco V, Blázquez J S, Conde A 2006 Appl. Phys. Lett. 89 222512Google Scholar

    [20]

    Bonilla C M, Herrero-Albillos J, Bartolomé F, García L M, Parra-Borderías M, Franco V 2010 Phys. Rev. B 81 224424Google Scholar

    [21]

    张蕾 2018 物理学报 67 137501Google Scholar

    Zhang L 2018 Acta Phys. Sin. 67 137501Google Scholar

    [22]

    Fan J, Pi L, Zhang L, Tong W, Ling L, Hong B, Shi Y, Zhang W, Lu D, Zhang Y 2011 Appl. Phys. Lett. 98 072508Google Scholar

    [23]

    Huang K 1987 Statistical Mechanics (2nd Ed.) (New York: Wiley) pp398–432

    [24]

    Kaul S N 1985 J. Magn. Magn. Mater. 53 5Google Scholar

    [25]

    Fisher M E, Ma S K, Nickel B G 1972 Phys. Rev. Lett. 29 917Google Scholar

    [26]

    Jiang W, Zhou X, Williams G, Mukovskii Y, Glazyrin K 2008 Phys. Rev. B 77 064424Google Scholar

    [27]

    Linh D C, Thanh T D, Anh L H, Dao V D, Piao H G, Yu S C 2017 J. Alloys Compd. 725 484Google Scholar

    [28]

    Moutis N, Panagiotopoulos I, Pissas M, Niarchos D 1999 Phys. Rev. B 59 1129Google Scholar

    [29]

    Ghosh K, Lobb C J, Greene R L, Karabashev S G, Shulyatev D A, Arsenov A A, Mukovskii Y 1998 Phys. Rev. Lett. 81 4740Google Scholar

    [30]

    Kim D, Zink B L, Hellman F, Coey J M D 2002 Phys. Rev. B 65 214424Google Scholar

    [31]

    Mohan C V, Seeger M, Kronmüller H, Murugaraj P, Maier J 1998 J. Magn. Magn. Mater. 183 348Google Scholar

    [32]

    Nair S, Banerjee A, Narlikar A V, Prabhakaran D, Boothroyd A T 2003 Phys. Rev. B 68 132404Google Scholar

    [33]

    Kim D, Revaz B, Zink B L, Hellman F, Rhyne J J, Mitchell J F 2002 Phys. Rev. Lett. 89 227202Google Scholar

    [34]

    Jiang W, Zhou X, Williams G, Mukovskii Y, Glazyrin K 2007 Phys. Rev. Lett. 99 177203Google Scholar

    [35]

    Jiang W, Zhou X, Williams G, Privezentsev R, Mukovskii Y 2009 Phys. Rev. B 79 214433Google Scholar

    [36]

    Oleaga A, Salazar A, Hatnean M C, Balakrishnan G 2015 Phys. Rev. B 92 024409Google Scholar

    [37]

    Venkatesh R, Pattabiraman M, Sethupathi K, Rangarajan G, Angappane S, Park J G 2008 J. Appl. Phys. 103 07B319Google Scholar

    [38]

    Phan T L, Ho T A, Thang P D, Tran Q T, Thanh T D, Phuc N X, Phan M H, Huy B T, Yu S C 2014 J. Alloys Compd. 615 937Google Scholar

    [39]

    Rößler S, Nair H S, Rößler U K, Kumar C M N, Elizabeth S, Wirth S 2011 Phys. Rev. B 84 184422Google Scholar

    [40]

    Elleuch F, Bekri M, Hussein M, Triki M, Dhahri E, Hlil E K, Bessais L 2015 Dalton Trans. 44 17712Google Scholar

    [41]

    Jiang W, Zhou X, Williams G, Mukovskii Y, Glazyrin K 2008 Phys. Rev. B 78 144409Google Scholar

    [42]

    Ho T A, Thanh T D, Yu Y, Tartakovsky D M, Ho T O, Thang P D, Le A T, Phan T L, Yu S C 2015 J. Appl. Phys. 117 17D122Google Scholar

    [43]

    Ezaami A, Sellami-Jmal E, Cheikhrouhou-Koubaa W, Hlil E K, Cheikhrouhou A 2017 J. Mater. Sci. Mater. Electron. 28 6837Google Scholar

    [44]

    Phan M H, Franco V, Bingham N S, Srikanth H, Hur N H, Yu S C 2010 J. Alloys Compd. 508 238Google Scholar

    [45]

    Debbebi I S, Ezaami A, Cheikhrouhou-Koubaa W, Cheikhrouhou A, Hlil E K 2017 J. Mater. Sci. Mater. Electron. 28 14000Google Scholar

    [46]

    Lam D S, Dung N T, Thanh T D, Linh D C, Nan W Z, Yu S C 2020 Mater. Res. Express 7 046101Google Scholar

    [47]

    Elghoul A, Krichene A, Boudjada N C, Boujelben W 2018 Ceram. Int. 44 14510Google Scholar

    [48]

    Fan J, Ling L, Hong B, Zhang L, Pi L, Zhang Y 2010 Phys. Rev. B 81 144426Google Scholar

    [49]

    Mleiki A, Othmani S, Cheikhrouhou-Koubaa W, Koubaa M, Cheikhrouhou A, Hlil E K 2015 J. Alloys Compd. 648 1043Google Scholar

    [50]

    Mnefgui S, Dhahri A, Dhahri N, Hlil E K, Dhahri J 2013 Solid State Sci. 21 19Google Scholar

    [51]

    Oumezzine M, Peña O, Kallel S, Zemni S 2011 Solid State Sci. 13 1829Google Scholar

    [52]

    Baazaoui M, Hcini S, Boudard M, Zemni S, Oumezzine M 2015 J. Supercond. Nov. Magn. 28 1887Google Scholar

    [53]

    Ho T A, Phan M H, Phuc N X, Lam V D, Phan T L, Yu S C 2016 J. Electron. Mater. 45 2508Google Scholar

    [54]

    Ghodhbane S, Dhahri A, Dhahri N, Hlil E K, Dhahri J, Alhabradi M, Zaidi M 2013 J. Alloys Compd. 580 558Google Scholar

    [55]

    Wang G F, Zhao Z R, Li H L, Zhang X F 2016 Ceram. Int. 42 18196Google Scholar

    [56]

    Khiem N V, Phong P T, Bau L V, Nam D N H, Hong L V, Phuc N X 2009 J. Magn. Magn. Mater. 321 2027Google Scholar

    [57]

    Thanh T D, Linh D C, Manh T V, Ho T A, Phan T L, Yu S C 2015 J. Appl. Phys. 117 17C101Google Scholar

    [58]

    Ginting D, Nanto D, Zhang Y D, Yu S C, Phan T L 2013 Physica B 412 17Google Scholar

    [59]

    Phong P T, Ngan L T T, Bau, L V, Nam P H, Linh P H, Dang N V, Lee I J 2017 Ceram. Int. 43 16859Google Scholar

    [60]

    Nisha P, Pillai S S, Varma M R, Suresh K G 2012 Solid State Sci. 14 40Google Scholar

    [61]

    Rößler S, Rößler U K, Nenkov K, Eckert D, Yusuf S M, Dörr K, Müller K H 2004 Phys. Rev. B 70 104417Google Scholar

    [62]

    Zhu X, Sun Y, Luo X, Lei H, Wang B, Song W, Yang Z, Dai J, Shi D, Dou S 2010 J. Magn. Magn. Mater. 322 242Google Scholar

    [63]

    Phan T L, Tran Q T, Thanh P Q, Yen P D H, Thanh T D, Yu S C 2014 Solid State Commun. 184 40Google Scholar

    [64]

    Phan T L, Thanh P Q, Sinh N H, Zhang Y D, Yu S C 2012 IEEE Trans. Magn. 48 1293Google Scholar

    [65]

    Phan T L, Thanh P Q, Sinh N H, Lee K W, Yu S C 2011 Curr. Appl. Phys. 11 830Google Scholar

    [66]

    Turki D, Ghouri Z K, Al-Meer S, Elsaid K, Ahmad M I, Easa A, Remenyi G, Mahmood S, Hlil E K, Ellouze M, Elhalouani F 2017 Magnetochemistry 3 28Google Scholar

    [67]

    Arun B, Suneesh, Sudakshina B, Akshay V R. Chandrasekhar K D, Vasundhara M 2018 J. Phys. Chem. Solids 123 327Google Scholar

    [68]

    Dhahr J, Belgacem C H, Dhahri A, Oumezzine M 2016 Appl. Phys. A 122 483Google Scholar

    [69]

    Raoufi T, Ehsani M H, Khoshnoud D S 2017 Ceram. Int. 43 5204Google Scholar

    [70]

    Mnefgui S, Zaidi N, Dhahri A, Hlil E K, Dhahri J 2014 J. Solid State Chem. 215 193Google Scholar

    [71]

    Munazat D R, Kurniawan B, Razaq D S, Watanabe K, Tanaka H 2020 Physica B 592 412227Google Scholar

    [72]

    Ezaami A, Sellami-Jmal E, Cheikhrouhou-Koubaa W, Cheikhrouhou A, Hlil E K 2017 J. Phys. Chem. Solids 109 109Google Scholar

    [73]

    Thanh T D, Phan T L, Chien N V, Manh D H, Yu S C 2014 IEEE Trans. Magn. 50 2501504Google Scholar

    [74]

    Ezaami A, Sfifir I, Cheikhrouhou-Koubaa W, Koubaa M, Cheikhrouhou A 2017 J. Alloys Compd. 693 658Google Scholar

    [75]

    Ho T A, Thanh T D, Manh T V, Ho T O, Thang P D, Phan T L, Yu S C 2015 Mater. Trans. 56 1331Google Scholar

    [76]

    Makni-Chakroun J, Cheikhrouhou-Koubaa W, Koubaa M, Cheikhrouhou A 2015 J. Alloys Compd. 650 421Google Scholar

    [77]

    Phong P T, Ngan L T T, Dang N V, Nguyen L H, Nam P H, Thuy D M, Tuan N D, Bau L V, Lee I J 2018 J. Magn. Magn. Mater. 449 558Google Scholar

    [78]

    Phong P T, Ngan L T T, Bau L V, Phuc N X, Nam P H, Phong L T H, Dang N V, Lee I J 2019 J. Magn. Magn. Mater. 475 374Google Scholar

    [79]

    Messaoui I, Omrani H, Mansouri M, Cheikhrouhou-Koubaa W, Koubaa M, Cheikhrouhou A, Hlil E K 2016 Ceram. Int. 42 17032Google Scholar

    [80]

    Mahjoub S, Baazaoui M, Hlil E K, Oumezzine M 2015 Ceram. Int. 41 12407Google Scholar

    [81]

    Kharrat A B J, Hlil E K, Boujelben W 2018 J. Alloys Compd. 739 101Google Scholar

    [82]

    Kharrat A B J, Boujelben W 2019 J. Low Temp. Phys. 197 357Google Scholar

    [83]

    Zhang P, Lampen P, Phan T L, Yu S C, Thanh T D, Dan N H, Lam V D, Srikanth H, Phan M H 2013 J. Magn. Magn. Mater. 348 146Google Scholar

    [84]

    Phan T L, Dang N T, Ho T A, Manh T V, Thanh T D, Jung C U, Lee B W, Le A T, Phan A D, Yu S C 2016 J. Alloys Compd. 657 818Google Scholar

    [85]

    Phan T L, Tola P S, Dang N T, Rhyee J S, Shon W H, Ho T A 2017 J. Magn. Magn. Mater. 441 290Google Scholar

    [86]

    Ghorai S, Skini R, Hedlund D, Ström P, Svedlindh P 2020 Sci. Rep. 10 19485Google Scholar

    [87]

    Zaidi M A, Dhahri J, Zeydi I, Alharbi T, Belmabrouk H 2017 RSC Adv. 7 43590Google Scholar

    [88]

    Assoudi N, Walha I, Nouri K, Dhahri E, Bessais L 2018 J. Alloys Compd. 753 282Google Scholar

    [89]

    Jeddi M, Gharsallah H, Bejar M, Bekri M, Dhahri E, Hlil E K 2018 RSC Adv. 8 9430Google Scholar

    [90]

    Phan T L, Zhang Y D, Zhang P, Thanh T D, Yu S C 2012 J. Appl. Phys. 112 093906Google Scholar

    [91]

    Ho T A, Dang N T, Phan T L, Yang D S, Lee B W, Yu S C 2016 J. Alloys Compd. 676 305Google Scholar

    [92]

    Laouyenne M R, Baazaoui M R, Farah K, Hlil E K, Oumezzine M 2019 J. Magn. Magn. Mater. 474 393Google Scholar

    [93]

    Dhahri A, Dhahri E, Hlil E K 2017 J. Alloys Compd. 727 449Google Scholar

    [94]

    Belkahla A, Cherif K, Dhahri J, Hlil E K 2017 J. Alloys Compd. 715 266Google Scholar

  • [1] 王壮, 金凡, 李伟, 阮嘉艺, 王龙飞, 吴雪莲, 张义坤, 袁晨晨. 设计制备具有优异形成能力和磁热效应的GdHoErCoNiAl高熵非晶合金. 物理学报, 2024, 73(21): 217101. doi: 10.7498/aps.73.20241132
    [2] 林源, 胡凤霞, 沈保根. 相变调控、磁热效应和反常热膨胀. 物理学报, 2023, 72(23): 237501. doi: 10.7498/aps.72.20231118
    [3] 彭嘉欣, 唐本镇, 陈棋鑫, 李冬梅, 郭小龙, 夏雷, 余鹏. 非晶态Gd45Ni30Al15Co10合金的制备与磁热性能. 物理学报, 2022, 71(2): 026102. doi: 10.7498/aps.70.20211530
    [4] 张艳, 宗朔通, 孙志刚, 刘虹霞, 陈峰华, 张克维, 胡季帆, 赵同云, 沈保根. HoCoSi快淬带的磁性和各向异性磁热效应. 物理学报, 2022, 71(16): 167501. doi: 10.7498/aps.71.20220683
    [5] 张虎, 邢成芬, 龙克文, 肖亚宁, 陶坤, 王利晨, 龙毅. 一级磁结构相变材料Mn0.6Fe0.4NiSi0.5Ge0.5和Ni50Mn34Co2Sn14的磁热效应与磁场的线性相关性. 物理学报, 2018, 67(20): 207501. doi: 10.7498/aps.67.20180927
    [6] 郝志红, 王海英, 张荃, 莫兆军. Eu0.9M0.1TiO3(M=Ca,Sr,Ba,La,Ce,Sm)的磁性和磁热效应. 物理学报, 2018, 67(24): 247502. doi: 10.7498/aps.67.20181750
    [7] 杨静洁, 赵金良, 许磊, 张红国, 岳明, 刘丹敏, 蒋毅坚. 间隙原子H,B,C对LaFe11.5Al1.5化合物磁性和磁热效应的影响. 物理学报, 2018, 67(7): 077501. doi: 10.7498/aps.67.20172250
    [8] 霍军涛, 盛威, 王军强. 非晶合金的磁热效应及磁蓄冷性能. 物理学报, 2017, 66(17): 176409. doi: 10.7498/aps.66.176409
    [9] 郑新奇, 沈俊, 胡凤霞, 孙继荣, 沈保根. 磁热效应材料的研究进展. 物理学报, 2016, 65(21): 217502. doi: 10.7498/aps.65.217502
    [10] 武力乾, 齐伟华, 李雨辰, 李世强, 李壮志, 唐贵德, 葛兴烁, 丁丽莉. 热处理对钙钛矿锰氧化物La0.95Sr0.05MnO3离子价态和磁结构的影响. 物理学报, 2016, 65(2): 027501. doi: 10.7498/aps.65.027501
    [11] 王强. 电子自旋共振研究Bi0.2Ca0.8MnO3纳米晶粒的电荷有序和自旋有序. 物理学报, 2015, 64(18): 187501. doi: 10.7498/aps.64.187501
    [12] 王志国, 向俊尤, 徐宝, 万素磊, 鲁毅, 张雪峰, 赵建军. 钙钛矿锰氧化物(La1-xGdx)4/3Sr5/3Mn2O7 (x=0, 0.025) 磁性和输运性质研究. 物理学报, 2015, 64(6): 067501. doi: 10.7498/aps.64.067501
    [13] 杨虹, 齐伟华, 纪登辉, 尚志丰, 张晓云, 徐静, 郎莉莉, 唐贵德. 钙钛矿锰氧化物La2/3Sr1/3FexMn1-xO3的结构与磁性研究. 物理学报, 2014, 63(8): 087503. doi: 10.7498/aps.63.087503
    [14] 王芳, 原凤英, 汪金芝. Mn42Al50-xFe8+x合金的磁性和磁热效应. 物理学报, 2013, 62(16): 167501. doi: 10.7498/aps.62.167501
    [15] 王强. Bi0.5Ca0.5Mn1-xCoxO3体系中的电荷有序和相分离. 物理学报, 2010, 59(9): 6569-6574. doi: 10.7498/aps.59.6569
    [16] 李晓娟, 王强. 晶粒尺寸对Bi0.2Ca0.8MnO3电荷有序的影响. 物理学报, 2009, 58(9): 6482-6486. doi: 10.7498/aps.58.6482
    [17] 张浩雷, 李哲, 乔燕飞, 曹世勋, 张金仓, 敬超. 哈斯勒合金Ni-Co-Mn-Sn的马氏体相变及其磁热效应研究. 物理学报, 2009, 58(11): 7857-7863. doi: 10.7498/aps.58.7857
    [18] 赵华英, 杨 欢, 马继云, 方 煦, M. Kamran, 戴耀民, 李 明, 赵柏儒, 邱祥冈. La0.33Pr0.34Ca0.33MnO3薄膜的应变效应. 物理学报, 2008, 57(11): 7168-7172. doi: 10.7498/aps.57.7168
    [19] 敬 超, 陈继萍, 李 哲, 曹世勋, 张金仓. 哈斯勒合金Ni50Mn35In15的马氏体相变及其磁热效应. 物理学报, 2008, 57(7): 4450-4455. doi: 10.7498/aps.57.4450
    [20] 陈伟, 钟伟, 潘成福, 常虹, 都有为. La0.8-xCa0.2MnO3纳米颗粒的居里温度与磁热效应. 物理学报, 2001, 50(2): 319-323. doi: 10.7498/aps.50.319
计量
  • 文章访问数:  10438
  • PDF下载量:  253
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-15
  • 修回日期:  2021-03-10
  • 上网日期:  2021-07-31
  • 刊出日期:  2021-08-05

/

返回文章
返回