搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非晶合金的磁热效应及磁蓄冷性能

霍军涛 盛威 王军强

引用本文:
Citation:

非晶合金的磁热效应及磁蓄冷性能

霍军涛, 盛威, 王军强

Magnetocaloric effects and magnetic regenerator performances in metallic glasses

Huo Jun-Tao, Sheng Wei, Wang Jun-Qiang
PDF
导出引用
  • 非晶合金的功能物性开发是突破非晶合金应用瓶颈的关键点之一.磁相变是非晶合金的一个重要特征.利用非晶合金的磁相变所带来的独特效应,可以将其应用于制冷领域.一方面非晶合金的磁热效应可以作为磁制冷材料应用于磁制冷机,另一方面非晶合金的比热突变可以作为磁蓄冷材料应用于低温制冷机.本文就非晶合金的磁热效应和磁蓄冷性能的原理、特征及其应用前景进行了详细介绍.
    Metallic glasses with functional properties, such as magnetic properties, are promising materials for potential applications and have aroused great interest. Magnetic phase transition is an important feature of metallic glass. The unique effect of the magnetic phase transition can be applied to the field of refrigeration. On the one hand, due to its magnetocaloric effect, the amorphous alloy can be used as a magnetic refrigeration material for magnetic refrigerator. On the other hand, because of its specific heat anomaly the amorphous alloy can be used as a magnetic regenerator material for cryogenic refrigerator. In recent years, the magnetocaloric effects and magnetic regenerator performances of metallic glasses have become hot topics in the field, and opened up possibilities for the functional applications of metallic glasses. In this paper, the principle of magnetocaloric effect and magnetic regenerator performance of metallic glass and its characteristics and application prospect are introduced in detail.
      通信作者: 霍军涛, huojuntao@nimte.ac.cn
    • 基金项目: 国家自然科学基金(批准号:51771217)和浙江省自然科学基金(批准号:LY17E010005)资助的课题.
      Corresponding author: Huo Jun-Tao, huojuntao@nimte.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51771217) and the Natural Science Foundation of Zhejiang Province, China (Grant No. LY17E010005).
    [1]

    Wang W H 2011 Physics 11 701 (in Chinese) [汪卫华 2011 物理 11 701]

    [2]

    Wang J F, Li R, Hua N B, Zhang T 2011 J. Mater. Res. 26 2072

    [3]

    Inoue A, Zhang T, Takeuchi A 1998 Mater. Sci. Forum. 269-272 855

    [4]

    Wang Y B 2010 Ph. D. Dissertation (Beijing: Peking University) (in Chinese) [王彦波 2010 博士学位论文 (北京: 北京大学)]

    [5]

    Wang W, Dong C, Shi C H 2007 Sci. Focus. 5 37 (in Chinese) [汪卫华, 董闯, 石灿鸿 2007 科学观察 5 37]

    [6]

    Luo Q, Zhao D Q, Pan M X, Wang W H 2006 Appl. Phys. Lett. 89 081914

    [7]

    Du J, Zheng Q, Bruck E, Buschowc K H J, Cui W B, Feng W J, Zhang Z D 2009 J. Mag. Mag. Mater. 321 413

    [8]

    Liang L, Hui X, Zhang C M, et al. 2008 J. Alloy. Compd. 463 30

    [9]

    Liang L, Hui X, Zhang C M, et al. 2008 Solid State Commun. 146 49

    [10]

    Luo Q, Zhao D Q, Pan M X, Wang W H 2007 Appl. Phys. Lett. 90 211903

    [11]

    Huo J T, Zhao D Q, Bai H Y, Axinte E, Wang W H 2013 J. Non-Cryst. Solids 359 1

    [12]

    Shen T D, Schwarz R B, Coulter J Y, Thompson J D 2002 J. Appl. Phys. 91 5240

    [13]

    Zhong X C, Tian H C, Wang S S, Liu Z W, Zheng Z G, Zeng D C 2015 J. Alloy. Compd. 633 188

    [14]

    Kucuk Ⅱ, Sarlar K, Adam A, Civan E 2016 Philos. Mag. 96 3120

    [15]

    Chang J, Hui X, Xu Z Y, Lu Z P, Chen G L 2010 Intermetallics 18 1132

    [16]

    Chikazumi S (traslated by Ge S H )2002 Ferromagnetic Physics (Lanzhou: Lanzhou University Press) pp97-110 (in Chinese) [近角聪信 著, 葛世慧 译 2002 铁磁性物理(兰州: 兰州大学出版社) 第97-110页]

    [17]

    Zheng X Q, Shen J, Hu F X, Sun J R, Shen B G 2016 Acta Phys. Sin. 65 217502 (in Chinese) [郑新奇, 沈俊, 胡凤霞, 孙继荣, 沈保根 2016 物理学报 65 217502]

    [18]

    Franco V, Blázquez J S, Conde C F, et al. 2006 Appl. Phys. Lett. 88 042505

    [19]

    Hernando B, Sánchez Llamazares J L, Prida V M 2009 Appl. Phys. Lett. 94 222502

    [20]

    Pecharsky V K, Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494

    [21]

    Annaorazov M P, Asatryan K A, Myalikgulyev G, Nikitin S A, Tishin A M, Tyurin A L 1992 Cryogenics 32 867

    [22]

    Guo Z B, Du Y W, Huang H, Feng D 1997 Phys. Rev. Lett. 78 1142

    [23]

    Wada H, Tanabe H 2001 Appl. Phys. Lett. 79 3302

    [24]

    Tegus O, Bruck E, Buschow K H J, de Boer F R 2002 Nature 415 150

    [25]

    Pecharsky V K, Gschneidner Jr K A 1999 J. Mag. Mag. Mater. 200 44

    [26]

    Giauque W F, MacDougall D P 1933 Phys. Rev. 43 768

    [27]

    Teng Y, Li B 1994 J. Funct. Mater. 25 111 (in Chinese) [腾云, 李碚 1994 功能材料 25 111]

    [28]

    Huang H, Guo Z B, Wang D H, Du Y W 1997 J. Magn. Magn. Mater. 173 302

    [29]

    Hu F X, Shen B G, Sun J R, et al. 2002 Appl. Phys. Lett. 80 826

    [30]

    Gschneidner Jr K A, Pecharsky V K, Tsokol A O 2005 Rep. Prog. Phys. 68 1479

    [31]

    Qin F X, Bingham F X, Wang H, Peng H X, Srikantha H, Phan M H, Franco V, Xing D W, Sun J F 2012 Acta Mater. 61 1284

    [32]

    Liang L, Hui X, Chen G L 2008 Mater. Sci. Eng. B 147 13

    [33]

    Liang L, Hui X, Zhang C M, et al. 2008 Intermetallics 16 198

    [34]

    Jo C L, Xia L, Ding D, et al. 2008 J. Alloy. Compd. 458 18

    [35]

    Dong Q Y, Shen B G, Chen J, et al. 2009 J. Appl. Phys. 105 053908

    [36]

    Fu H, Guo M S, Yu H J, et al. 2009 J. Magn. Magn. Mater. 19 3342

    [37]

    Zhang C L, Wang D H, Han Z D, et al. 2009 J. Appl. Lett. 105 013912

    [38]

    Fang Y K, Lai C H, Hsieh C C, et al. 2010 J. Appl. Phys. 107 09A901

    [39]

    Guo D Q, Chan K C, Xia L, Yu P 2017 J. Magn. Magn. Mater. 423 379

    [40]

    Li J W, Law J Y, Huo J T, He A N, Man Q K, Chang C T, Men H, Wang J Q, Wang X M, Li R W 2015 J. Alloy. Compd. 644 346

    [41]

    Huo J T, Huo L S, Li J W, Men H, Wang X M, Inoue A, Wang J Q, Chang C T, Li R W 2015 J. Appl. Phys. 117 073902

    [42]

    Huo J T, Huo L S, Men H, X. M. Wang X M, Inoue A, Wang J Q, Chang C T, Li R W 2015 Intermetallics 58 31

    [43]

    Zhong X C, Huang X W, Shen X Y, et al. 2016 J. Alloy. Compd. 682 476

    [44]

    Zhang L L, Bao M D, Zheng Q, Tian L H, Du J 2016 AIP Adv. 6 035220

    [45]

    Wang Z W, Yu P, Cui Y T, Xia L 2016 J. Alloy. Compd. 658 598

    [46]

    Li J W, Law J Y, Ma H R, He A N, Man Q K, Men H, Huo J T, Chang C T, Wang X M, Li R W 2015 J. Non-Cryst. Solids 425 114

    [47]

    Bian S X 1990 Cryogenic Refrigerator (Beijing: China Machine Press) (in Chinese) [边绍雄 1990 低温制冷机 (北京: 机械工业出版社)]

    [48]

    Radebaugh R 1990 Adv. Cryo. Eng. 35 1191

    [49]

    Wang C, Thummes G, Heiden C 1997 Cryogenics 37 159

    [50]

    Wang H J 2005 J. China Acad. Electron. Inform. Technol. 4 60 (in Chinese) [王和军 2005 电子科学技术评论 4 60]

    [51]

    Du B Y 2010 Infrared Technolog 9 549 (in Chinese) [杜冰雁 2010 红外技术 9 549]

    [52]

    Tsukagoshi K, Matsumoto K, Hashimoto T, Kuriyama T, Nakagome H 1997 Cryogenics 37 11

    [53]

    Chan C K, Nguyen T, Colbert R, Raab J, Ross Jr R, Johnson D L 1999 Cryocoolers 10 139

    [54]

    Biwa T, Ikuta1 H, Mizutani U 1998 Jpn. J. Appl. Phys. 37 5808

    [55]

    Qiu L M, Numazawa T, Thummes G 2001 Cryogenics 41 693

    [56]

    Trevisani L, Kuriyama T, Negrini F, Okamura T, Ohtani Y, Okamura M, Fabbri M 2002 Cryogenics 42 653

    [57]

    Tristan N V, Nenkov K, Skokov K, Palewski T 2004 Physica B 344 462

    [58]

    Takahashi A, Tokai Y, Sahashi M, Hashimoto T 1994 Jpn. J. Appl. Phys. 33 1023

    [59]

    Zhang L Y, Long Y, Chen C D, Wu C Y 1999 Cryogenics 4 332 (in Chinese) [张丽英, 龙毅, 陈昌达, 吴承义 1999 低温工程 4 332]

    [60]

    Tanaeva I A, Ikeda H, van Bokhoven L J A, Matsubara Y, de Waele A T A M 2003 Cryogenics 43 441

    [61]

    Ikeda H, Matsubara T 2009 Cryogenics 49 291

    [62]

    Satoh T, Numazawa T 2002 Cryocoolers 12 397

    [63]

    Numazawa T, Yanagitani T, Nozawa H, Ikeya Y, Li R, Satoh T 2003 Cryocoolers 12 473

    [64]

    Masuyama S, Fukuda Y, Imazu T, Numazawa T 2011 Cryogenics 51 337

    [65]

    Huo J T, Bai H Y, Li L F, Wang W H 2012 J. Non-Cryst. Solid 358 637

    [66]

    Huo J T, Yu H B, Zhao D Q, Bai H Y, Wang W H 2012 J. Non-Cryst. Solids 358 1716

    [67]

    Wang Y T, Bai H Y, Pan M X, Zhao D Q, Wang W H 2006 Phys. Rev. B 74 064422

    [68]

    Luo Q, Wang W H 2010 J. Alloys Compd. 495 209

    [69]

    Wang W H 2009 Adv. Mater. 2 1

    [70]

    Fiorani D, Dormann J L, Cherkaoui R 1999 J. Mag. Mag. Mater. 196 143

    [71]

    Hellman F, Queen D R, Potok R M, Zink B L 2000 Phys. Rev. Lett. 84 5411

  • [1]

    Wang W H 2011 Physics 11 701 (in Chinese) [汪卫华 2011 物理 11 701]

    [2]

    Wang J F, Li R, Hua N B, Zhang T 2011 J. Mater. Res. 26 2072

    [3]

    Inoue A, Zhang T, Takeuchi A 1998 Mater. Sci. Forum. 269-272 855

    [4]

    Wang Y B 2010 Ph. D. Dissertation (Beijing: Peking University) (in Chinese) [王彦波 2010 博士学位论文 (北京: 北京大学)]

    [5]

    Wang W, Dong C, Shi C H 2007 Sci. Focus. 5 37 (in Chinese) [汪卫华, 董闯, 石灿鸿 2007 科学观察 5 37]

    [6]

    Luo Q, Zhao D Q, Pan M X, Wang W H 2006 Appl. Phys. Lett. 89 081914

    [7]

    Du J, Zheng Q, Bruck E, Buschowc K H J, Cui W B, Feng W J, Zhang Z D 2009 J. Mag. Mag. Mater. 321 413

    [8]

    Liang L, Hui X, Zhang C M, et al. 2008 J. Alloy. Compd. 463 30

    [9]

    Liang L, Hui X, Zhang C M, et al. 2008 Solid State Commun. 146 49

    [10]

    Luo Q, Zhao D Q, Pan M X, Wang W H 2007 Appl. Phys. Lett. 90 211903

    [11]

    Huo J T, Zhao D Q, Bai H Y, Axinte E, Wang W H 2013 J. Non-Cryst. Solids 359 1

    [12]

    Shen T D, Schwarz R B, Coulter J Y, Thompson J D 2002 J. Appl. Phys. 91 5240

    [13]

    Zhong X C, Tian H C, Wang S S, Liu Z W, Zheng Z G, Zeng D C 2015 J. Alloy. Compd. 633 188

    [14]

    Kucuk Ⅱ, Sarlar K, Adam A, Civan E 2016 Philos. Mag. 96 3120

    [15]

    Chang J, Hui X, Xu Z Y, Lu Z P, Chen G L 2010 Intermetallics 18 1132

    [16]

    Chikazumi S (traslated by Ge S H )2002 Ferromagnetic Physics (Lanzhou: Lanzhou University Press) pp97-110 (in Chinese) [近角聪信 著, 葛世慧 译 2002 铁磁性物理(兰州: 兰州大学出版社) 第97-110页]

    [17]

    Zheng X Q, Shen J, Hu F X, Sun J R, Shen B G 2016 Acta Phys. Sin. 65 217502 (in Chinese) [郑新奇, 沈俊, 胡凤霞, 孙继荣, 沈保根 2016 物理学报 65 217502]

    [18]

    Franco V, Blázquez J S, Conde C F, et al. 2006 Appl. Phys. Lett. 88 042505

    [19]

    Hernando B, Sánchez Llamazares J L, Prida V M 2009 Appl. Phys. Lett. 94 222502

    [20]

    Pecharsky V K, Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494

    [21]

    Annaorazov M P, Asatryan K A, Myalikgulyev G, Nikitin S A, Tishin A M, Tyurin A L 1992 Cryogenics 32 867

    [22]

    Guo Z B, Du Y W, Huang H, Feng D 1997 Phys. Rev. Lett. 78 1142

    [23]

    Wada H, Tanabe H 2001 Appl. Phys. Lett. 79 3302

    [24]

    Tegus O, Bruck E, Buschow K H J, de Boer F R 2002 Nature 415 150

    [25]

    Pecharsky V K, Gschneidner Jr K A 1999 J. Mag. Mag. Mater. 200 44

    [26]

    Giauque W F, MacDougall D P 1933 Phys. Rev. 43 768

    [27]

    Teng Y, Li B 1994 J. Funct. Mater. 25 111 (in Chinese) [腾云, 李碚 1994 功能材料 25 111]

    [28]

    Huang H, Guo Z B, Wang D H, Du Y W 1997 J. Magn. Magn. Mater. 173 302

    [29]

    Hu F X, Shen B G, Sun J R, et al. 2002 Appl. Phys. Lett. 80 826

    [30]

    Gschneidner Jr K A, Pecharsky V K, Tsokol A O 2005 Rep. Prog. Phys. 68 1479

    [31]

    Qin F X, Bingham F X, Wang H, Peng H X, Srikantha H, Phan M H, Franco V, Xing D W, Sun J F 2012 Acta Mater. 61 1284

    [32]

    Liang L, Hui X, Chen G L 2008 Mater. Sci. Eng. B 147 13

    [33]

    Liang L, Hui X, Zhang C M, et al. 2008 Intermetallics 16 198

    [34]

    Jo C L, Xia L, Ding D, et al. 2008 J. Alloy. Compd. 458 18

    [35]

    Dong Q Y, Shen B G, Chen J, et al. 2009 J. Appl. Phys. 105 053908

    [36]

    Fu H, Guo M S, Yu H J, et al. 2009 J. Magn. Magn. Mater. 19 3342

    [37]

    Zhang C L, Wang D H, Han Z D, et al. 2009 J. Appl. Lett. 105 013912

    [38]

    Fang Y K, Lai C H, Hsieh C C, et al. 2010 J. Appl. Phys. 107 09A901

    [39]

    Guo D Q, Chan K C, Xia L, Yu P 2017 J. Magn. Magn. Mater. 423 379

    [40]

    Li J W, Law J Y, Huo J T, He A N, Man Q K, Chang C T, Men H, Wang J Q, Wang X M, Li R W 2015 J. Alloy. Compd. 644 346

    [41]

    Huo J T, Huo L S, Li J W, Men H, Wang X M, Inoue A, Wang J Q, Chang C T, Li R W 2015 J. Appl. Phys. 117 073902

    [42]

    Huo J T, Huo L S, Men H, X. M. Wang X M, Inoue A, Wang J Q, Chang C T, Li R W 2015 Intermetallics 58 31

    [43]

    Zhong X C, Huang X W, Shen X Y, et al. 2016 J. Alloy. Compd. 682 476

    [44]

    Zhang L L, Bao M D, Zheng Q, Tian L H, Du J 2016 AIP Adv. 6 035220

    [45]

    Wang Z W, Yu P, Cui Y T, Xia L 2016 J. Alloy. Compd. 658 598

    [46]

    Li J W, Law J Y, Ma H R, He A N, Man Q K, Men H, Huo J T, Chang C T, Wang X M, Li R W 2015 J. Non-Cryst. Solids 425 114

    [47]

    Bian S X 1990 Cryogenic Refrigerator (Beijing: China Machine Press) (in Chinese) [边绍雄 1990 低温制冷机 (北京: 机械工业出版社)]

    [48]

    Radebaugh R 1990 Adv. Cryo. Eng. 35 1191

    [49]

    Wang C, Thummes G, Heiden C 1997 Cryogenics 37 159

    [50]

    Wang H J 2005 J. China Acad. Electron. Inform. Technol. 4 60 (in Chinese) [王和军 2005 电子科学技术评论 4 60]

    [51]

    Du B Y 2010 Infrared Technolog 9 549 (in Chinese) [杜冰雁 2010 红外技术 9 549]

    [52]

    Tsukagoshi K, Matsumoto K, Hashimoto T, Kuriyama T, Nakagome H 1997 Cryogenics 37 11

    [53]

    Chan C K, Nguyen T, Colbert R, Raab J, Ross Jr R, Johnson D L 1999 Cryocoolers 10 139

    [54]

    Biwa T, Ikuta1 H, Mizutani U 1998 Jpn. J. Appl. Phys. 37 5808

    [55]

    Qiu L M, Numazawa T, Thummes G 2001 Cryogenics 41 693

    [56]

    Trevisani L, Kuriyama T, Negrini F, Okamura T, Ohtani Y, Okamura M, Fabbri M 2002 Cryogenics 42 653

    [57]

    Tristan N V, Nenkov K, Skokov K, Palewski T 2004 Physica B 344 462

    [58]

    Takahashi A, Tokai Y, Sahashi M, Hashimoto T 1994 Jpn. J. Appl. Phys. 33 1023

    [59]

    Zhang L Y, Long Y, Chen C D, Wu C Y 1999 Cryogenics 4 332 (in Chinese) [张丽英, 龙毅, 陈昌达, 吴承义 1999 低温工程 4 332]

    [60]

    Tanaeva I A, Ikeda H, van Bokhoven L J A, Matsubara Y, de Waele A T A M 2003 Cryogenics 43 441

    [61]

    Ikeda H, Matsubara T 2009 Cryogenics 49 291

    [62]

    Satoh T, Numazawa T 2002 Cryocoolers 12 397

    [63]

    Numazawa T, Yanagitani T, Nozawa H, Ikeya Y, Li R, Satoh T 2003 Cryocoolers 12 473

    [64]

    Masuyama S, Fukuda Y, Imazu T, Numazawa T 2011 Cryogenics 51 337

    [65]

    Huo J T, Bai H Y, Li L F, Wang W H 2012 J. Non-Cryst. Solid 358 637

    [66]

    Huo J T, Yu H B, Zhao D Q, Bai H Y, Wang W H 2012 J. Non-Cryst. Solids 358 1716

    [67]

    Wang Y T, Bai H Y, Pan M X, Zhao D Q, Wang W H 2006 Phys. Rev. B 74 064422

    [68]

    Luo Q, Wang W H 2010 J. Alloys Compd. 495 209

    [69]

    Wang W H 2009 Adv. Mater. 2 1

    [70]

    Fiorani D, Dormann J L, Cherkaoui R 1999 J. Mag. Mag. Mater. 196 143

    [71]

    Hellman F, Queen D R, Potok R M, Zink B L 2000 Phys. Rev. Lett. 84 5411

  • [1] 糜晓磊, 胡亮, 武博文, 龙强, 魏炳波. 钆含量对Fe-B-Nb-Gd非晶合金磁学性能和氧化机制的影响规律. 物理学报, 2024, 73(9): 097102. doi: 10.7498/aps.73.20232040
    [2] 王壮, 金凡, 李伟, 阮嘉艺, 王龙飞, 吴雪莲, 张义坤, 袁晨晨. 设计制备具有优异形成能力和磁热效应的GdHoErCoNiAl高熵非晶合金. 物理学报, 2024, 73(21): 217101. doi: 10.7498/aps.73.20241132
    [3] 林源, 胡凤霞, 沈保根. 相变调控、磁热效应和反常热膨胀. 物理学报, 2023, 72(23): 237501. doi: 10.7498/aps.72.20231118
    [4] 陈波, 杨詹詹, 王玉楹, 王寅岗. 退火时间对Fe80Si9B10Cu1非晶合金纳米尺度结构不均匀性和磁性能的影响. 物理学报, 2022, 71(15): 156102. doi: 10.7498/aps.71.20220446
    [5] 张艳, 宗朔通, 孙志刚, 刘虹霞, 陈峰华, 张克维, 胡季帆, 赵同云, 沈保根. HoCoSi快淬带的磁性和各向异性磁热效应. 物理学报, 2022, 71(16): 167501. doi: 10.7498/aps.71.20220683
    [6] 彭嘉欣, 唐本镇, 陈棋鑫, 李冬梅, 郭小龙, 夏雷, 余鹏. 非晶态Gd45Ni30Al15Co10合金的制备与磁热性能. 物理学报, 2022, 71(2): 026102. doi: 10.7498/aps.70.20211530
    [7] 张鹏, 朴红光, 张英德, 黄焦宏. 钙钛矿锰氧化物的磁相变临界行为及磁热效应研究进展. 物理学报, 2021, 70(15): 157501. doi: 10.7498/aps.70.20210097
    [8] 张虎, 邢成芬, 龙克文, 肖亚宁, 陶坤, 王利晨, 龙毅. 一级磁结构相变材料Mn0.6Fe0.4NiSi0.5Ge0.5和Ni50Mn34Co2Sn14的磁热效应与磁场的线性相关性. 物理学报, 2018, 67(20): 207501. doi: 10.7498/aps.67.20180927
    [9] 郝志红, 王海英, 张荃, 莫兆军. Eu0.9M0.1TiO3(M=Ca,Sr,Ba,La,Ce,Sm)的磁性和磁热效应. 物理学报, 2018, 67(24): 247502. doi: 10.7498/aps.67.20181750
    [10] 杨静洁, 赵金良, 许磊, 张红国, 岳明, 刘丹敏, 蒋毅坚. 间隙原子H,B,C对LaFe11.5Al1.5化合物磁性和磁热效应的影响. 物理学报, 2018, 67(7): 077501. doi: 10.7498/aps.67.20172250
    [11] 姚可夫, 施凌翔, 陈双琴, 邵洋, 陈娜, 贾蓟丽. 铁基软磁非晶/纳米晶合金研究进展及应用前景. 物理学报, 2018, 67(1): 016101. doi: 10.7498/aps.67.20171473
    [12] 王峥, 汪卫华. 非晶合金中的流变单元. 物理学报, 2017, 66(17): 176103. doi: 10.7498/aps.66.176103
    [13] 卞西磊, 王刚. 非晶合金的离子辐照效应. 物理学报, 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [14] 郑新奇, 沈俊, 胡凤霞, 孙继荣, 沈保根. 磁热效应材料的研究进展. 物理学报, 2016, 65(21): 217502. doi: 10.7498/aps.65.217502
    [15] 王芳, 原凤英, 汪金芝. Mn42Al50-xFe8+x合金的磁性和磁热效应. 物理学报, 2013, 62(16): 167501. doi: 10.7498/aps.62.167501
    [16] 张浩雷, 李哲, 乔燕飞, 曹世勋, 张金仓, 敬超. 哈斯勒合金Ni-Co-Mn-Sn的马氏体相变及其磁热效应研究. 物理学报, 2009, 58(11): 7857-7863. doi: 10.7498/aps.58.7857
    [17] 敬 超, 陈继萍, 李 哲, 曹世勋, 张金仓. 哈斯勒合金Ni50Mn35In15的马氏体相变及其磁热效应. 物理学报, 2008, 57(7): 4450-4455. doi: 10.7498/aps.57.4450
    [18] 闫志杰, 李金富, 周尧和, 仵彦卿. 压痕塑性变形诱导非晶合金的晶化. 物理学报, 2007, 56(2): 999-1003. doi: 10.7498/aps.56.999
    [19] 陆曹卫, 卢志超, 孙 克, 李德仁, 周少雄. 水雾化制备Fe74Al4Sn2P10C2B4Si4非晶合金粉末及其磁粉芯性能研究. 物理学报, 2006, 55(5): 2553-2556. doi: 10.7498/aps.55.2553
    [20] 陈伟, 钟伟, 潘成福, 常虹, 都有为. La0.8-xCa0.2MnO3纳米颗粒的居里温度与磁热效应. 物理学报, 2001, 50(2): 319-323. doi: 10.7498/aps.50.319
计量
  • 文章访问数:  7179
  • PDF下载量:  439
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-21
  • 修回日期:  2017-07-20
  • 刊出日期:  2017-09-05

/

返回文章
返回