搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Eu0.9M0.1TiO3(M=Ca,Sr,Ba,La,Ce,Sm)的磁性和磁热效应

郝志红 王海英 张荃 莫兆军

引用本文:
Citation:

Eu0.9M0.1TiO3(M=Ca,Sr,Ba,La,Ce,Sm)的磁性和磁热效应

郝志红, 王海英, 张荃, 莫兆军

Magnetic and magnetocaloric effects of Eu0.9M0.1TiO3 (M=Ca, Sr, Ba, La, Ce, Sm) compounds

Hao Zhi-Hong, Wang Hai-Ying, Zhang Quan, Mo Zhao-Jun
PDF
导出引用
  • EuTiO3是直接带隙半导体材料,在液氦温度附近呈现反铁磁性,且具有较大的磁熵变,但是当其转变为铁磁性时,可以有效提高低磁场下的磁熵变.本文通过元素替代,研究晶格常数的变化和电子掺杂对磁性和磁热效应的影响.实验采用溶胶凝胶法制备EuTiO3和Eu0.9M0.1TiO3M=Ca,Sr,Ba,La,Ce,Sm)系列样品.结果表明:大离子半径的碱土金属离子替代提高了铁磁性耦合,有利于提高低磁场下的磁热效应.电子掺杂可以抑制其反铁磁性耦合从而使其表现为铁磁性.当大离子半径的稀土La和Ce离子替代Eu离子时,既增大了晶格常数也实现了电子掺杂,表现出较强的铁磁性.在1 T的磁场变化下,Eu0.9La0.1TiO3和Eu0.9Ce0.1TiO3的最大磁熵变分别为10.8和11 J/(kg· K),均大于EuTiO3的9.8 J/(kg· K);制冷能力分别为39.3和51.8 J/kg,相对于EuTiO3也有所提高.
    EuTiO3 is a direct band-gap semiconductor material and exhibits antiferromagnetism with large magnetic entropy change around the liquid helium temperature. The ferromagnetic state can be changed into antiferromagnetic state through lattice constant change and electron doping by element substitution due to strong spin-lattice coupling coexistence of ferromagnetic coupling, and antiferromagnetic coupling. The values of magnetic entropy change can be effectively improved under low magnetic field change after changing into ferromagnetism. Samples of EuTiO3 and Eu0.9M0.1TiO3 (M=Ca, Sr, Ba, La, Ce, Sm) are prepared by the sol gel method. The Eu0.9Ca0.1TiO3 exhibits the antiferromagnetism due to similar ion radius. The ferromagnetic coupling between Eu0.9Sr0.1TiO3 and Eu0.9Ba0.1TiO3 is enhanced, for alkaline earth metal (Sr and Ba) has larger ion radius, which is beneficial to improving the magnetocaloric effect under low magnetic field. Electron doping can inhibit the antiferromagnetic coupling because the extra carrier may occupy the Ti 3d and reduce the hybridization of Eu 4f-Ti 3d-Eu 4f. When the electron doping concentration is greater than 10%, the spin polarization rate of Ti 3d state on the Fermi surface is negative, resulting in the transition from antiferromagnetic to ferromagnetic state. When the Eu ions are replaced with the Sm ions (Sm ion radius is similar to Eu ion radius), the ferromagnetic coupling is enhanced. However, when the Eu ions are replaced with the La or Ce ions, the samples show strong ferromagnetism, for the lattice constant and electron doping are increased. A giant reversible magnetocaloric effect and large refrigerant capacity for each of Eu0.9M0.1TiO3 (M=Sr, Ba, La, Ce) compounds are observed. Under the magnetic field change of 1 T, the values of maximum magnetic entropy change and refrigeration capacity are 9.8 J/(kg·K) and 36.6 J/kg for Eu0.9Sr0.1TiO3, and 10 J/(kg·K) and 45.1 J/kg for Eu0.9Ba0.1TiO3. The values of maximum magnetic entropy change of Eu0.9La0.1TiO3 and Eu0.9Ce0.1TiO3 are 10.8 J/(kg·K) and 11 J/(kg·K), respectively, which are larger than that of EuTiO3 (9.8 J/(kg·K)). The values of refrigeration capacity are 39.3 J/kg and 51.8 J/kg, which are also improved compared with those of EuTiO3. In a word, the results suggest that these compounds could be considered as good candidates for low-temperature and low-field magnetic refrigerant.
    [1]

    Benford S M, Brown G V 1981 J. Appl. Phys. 52 2110

    [2]

    Shen B G, Sun J R, Hu F X, Zhang H W, Chen Z H 2009 Materials. Adv. Mater. 21 4545

    [3]

    Tegus O, Bruck E, Buschow K H, DeBoer F R 2002 Nature 415 150

    [4]

    Zhang H, Shen B G, Xu Z Y, Shen J, Hu F X, Sun J R, Long Y 2013 Appl. Phys. Lett. 102 092401

    [5]

    Gupta S B, Suresh K G 2013 Appl. Phys. Lett. 102 022408

    [6]

    Mo Z J, Shen J, Yan LQ, Wu J F, Wang L C, Tang C C, Shen B G 2013 Appl. Phys. Lett. 102 192407

    [7]

    Chen J, Shen B G, Dong Q Y, Sun J R 2010 Solid State Commun. 150 1429

    [8]

    Li L W, Saensunon B, Hutchison W D, Huo D X, Nishimura K 2014 J. Alloys Compd. 582 670

    [9]

    Cui L, Wang L C, Dong Q Y, Liu F H, Mo Z J, Zhang Y, Niu E, Xu Z Y, Hu F X, Sun J R, Shen B G 2015 J. Alloys Compd. 622 24

    [10]

    Li L, Hutchison W D, Huo D X, Namiki T, Qian Z H, Nishimura K 2012 Scr. Mater. 67 237

    [11]

    Li L W, Namiki T, Huo D X, Qian Z H, Nishimura K 2013 Appl. Phys. Lett. 103 222405

    [12]

    Mo Z J, Shen J, Yan L Q, Tang C C, Lin J, Wu J F, Sun J R, Wang L C, Zheng X Q, Shen B G 2013 Appl. Phys. Lett. 103 052409

    [13]

    Balli M, Jandl S, Fournier P, Gospodinov M M 2014 Appl. Phys. Lett. 104 232402

    [14]

    Balli M, Jandl S, Fournier P, Mansouri S, Mukhin A, Ivanov Yu V, Balbashov A M 2015 J. Magn. Magn. Mater. 374 252

    [15]

    Alho B P, Magnus A, Carvalho G, von Ranke P J 2014 J. Appl. Phys. 116 113907

    [16]

    Scagnoli V, Allieta M, Walker H, Scavini M, Katsufuji T, Sagarna L, Zaharko O, Mazzoli C 2012 Phys. Rve. B 86 094432

    [17]

    Guguchia Z, Keller H, Kremer R K, J Köhler, Luetkens H, Goko T, Amato A, Bussmann-Holder A 2014 Phys. Rve. B 90 064413

    [18]

    Akamatsu H, Kumagai Y, Oba F, Fujita K, Murakami H, Tanaka K, Tanaka L 2011 Phys. Rev. B 83 214421

    [19]

    Mo Z J, Hao Z H, Deng J Z, Shen J, Li L, Wu J F, Hu F X, Sun J R, Shen B G 2017 J. Alloys Compd. 694 235

    [20]

    Mo Z J, Sun Q L, Wang C H, Wu H Z, Li L, Meng F B, Tang C C, Zhao Y, Shen J 2017 Ceram. Int. 43 2083

    [21]

    Li W W, Zhao R, Wang L, Tang R J, Zhu Y Y, Lee J H, Cao H X, Cai T Y, Guo H Z, Wang C, Ling L S, Pi L, Jin K J, Zhang Y H, Wang H Y, Wang Y Q, Ju S, Yang H 2013 Sci. Rep. 3 2618

    [22]

    Rubi K, Midya A, Mahendiran R, Repaka D V M, Ramanujan R V 2016 J. Appl. Phys. 119 243901

    [23]

    Mo Z J, Sun Q L, Shen J, Mo Y, Li Y J, Li L, Liu G D, Tang C C, Meng F B 2018 Chin. Phys. B 27 017501

  • [1]

    Benford S M, Brown G V 1981 J. Appl. Phys. 52 2110

    [2]

    Shen B G, Sun J R, Hu F X, Zhang H W, Chen Z H 2009 Materials. Adv. Mater. 21 4545

    [3]

    Tegus O, Bruck E, Buschow K H, DeBoer F R 2002 Nature 415 150

    [4]

    Zhang H, Shen B G, Xu Z Y, Shen J, Hu F X, Sun J R, Long Y 2013 Appl. Phys. Lett. 102 092401

    [5]

    Gupta S B, Suresh K G 2013 Appl. Phys. Lett. 102 022408

    [6]

    Mo Z J, Shen J, Yan LQ, Wu J F, Wang L C, Tang C C, Shen B G 2013 Appl. Phys. Lett. 102 192407

    [7]

    Chen J, Shen B G, Dong Q Y, Sun J R 2010 Solid State Commun. 150 1429

    [8]

    Li L W, Saensunon B, Hutchison W D, Huo D X, Nishimura K 2014 J. Alloys Compd. 582 670

    [9]

    Cui L, Wang L C, Dong Q Y, Liu F H, Mo Z J, Zhang Y, Niu E, Xu Z Y, Hu F X, Sun J R, Shen B G 2015 J. Alloys Compd. 622 24

    [10]

    Li L, Hutchison W D, Huo D X, Namiki T, Qian Z H, Nishimura K 2012 Scr. Mater. 67 237

    [11]

    Li L W, Namiki T, Huo D X, Qian Z H, Nishimura K 2013 Appl. Phys. Lett. 103 222405

    [12]

    Mo Z J, Shen J, Yan L Q, Tang C C, Lin J, Wu J F, Sun J R, Wang L C, Zheng X Q, Shen B G 2013 Appl. Phys. Lett. 103 052409

    [13]

    Balli M, Jandl S, Fournier P, Gospodinov M M 2014 Appl. Phys. Lett. 104 232402

    [14]

    Balli M, Jandl S, Fournier P, Mansouri S, Mukhin A, Ivanov Yu V, Balbashov A M 2015 J. Magn. Magn. Mater. 374 252

    [15]

    Alho B P, Magnus A, Carvalho G, von Ranke P J 2014 J. Appl. Phys. 116 113907

    [16]

    Scagnoli V, Allieta M, Walker H, Scavini M, Katsufuji T, Sagarna L, Zaharko O, Mazzoli C 2012 Phys. Rve. B 86 094432

    [17]

    Guguchia Z, Keller H, Kremer R K, J Köhler, Luetkens H, Goko T, Amato A, Bussmann-Holder A 2014 Phys. Rve. B 90 064413

    [18]

    Akamatsu H, Kumagai Y, Oba F, Fujita K, Murakami H, Tanaka K, Tanaka L 2011 Phys. Rev. B 83 214421

    [19]

    Mo Z J, Hao Z H, Deng J Z, Shen J, Li L, Wu J F, Hu F X, Sun J R, Shen B G 2017 J. Alloys Compd. 694 235

    [20]

    Mo Z J, Sun Q L, Wang C H, Wu H Z, Li L, Meng F B, Tang C C, Zhao Y, Shen J 2017 Ceram. Int. 43 2083

    [21]

    Li W W, Zhao R, Wang L, Tang R J, Zhu Y Y, Lee J H, Cao H X, Cai T Y, Guo H Z, Wang C, Ling L S, Pi L, Jin K J, Zhang Y H, Wang H Y, Wang Y Q, Ju S, Yang H 2013 Sci. Rep. 3 2618

    [22]

    Rubi K, Midya A, Mahendiran R, Repaka D V M, Ramanujan R V 2016 J. Appl. Phys. 119 243901

    [23]

    Mo Z J, Sun Q L, Shen J, Mo Y, Li Y J, Li L, Liu G D, Tang C C, Meng F B 2018 Chin. Phys. B 27 017501

  • [1] 弭孟娟, 于立轩, 肖寒, 吕兵兵, 王以林. 有机阳离子插层调控二维反铁磁MPX3磁性能. 物理学报, 2024, 73(5): 057501. doi: 10.7498/aps.73.20232010
    [2] 谭碧, 高栋, 邓登福, 陈姝瑶, 毕磊, 刘冬华, 刘涛. Mn3Sn薄膜磁相变的输运表征. 物理学报, 2024, 73(6): 067501. doi: 10.7498/aps.73.20231766
    [3] 林源, 胡凤霞, 沈保根. 相变调控、磁热效应和反常热膨胀. 物理学报, 2023, 72(23): 237501. doi: 10.7498/aps.72.20231118
    [4] 彭嘉欣, 唐本镇, 陈棋鑫, 李冬梅, 郭小龙, 夏雷, 余鹏. 非晶态Gd45Ni30Al15Co10合金的制备与磁热性能. 物理学报, 2022, 71(2): 026102. doi: 10.7498/aps.70.20211530
    [5] 张艳, 宗朔通, 孙志刚, 刘虹霞, 陈峰华, 张克维, 胡季帆, 赵同云, 沈保根. HoCoSi快淬带的磁性和各向异性磁热效应. 物理学报, 2022, 71(16): 167501. doi: 10.7498/aps.71.20220683
    [6] 张鹏, 朴红光, 张英德, 黄焦宏. 钙钛矿锰氧化物的磁相变临界行为及磁热效应研究进展. 物理学报, 2021, 70(15): 157501. doi: 10.7498/aps.70.20210097
    [7] 张虎, 邢成芬, 龙克文, 肖亚宁, 陶坤, 王利晨, 龙毅. 一级磁结构相变材料Mn0.6Fe0.4NiSi0.5Ge0.5和Ni50Mn34Co2Sn14的磁热效应与磁场的线性相关性. 物理学报, 2018, 67(20): 207501. doi: 10.7498/aps.67.20180927
    [8] 杨静洁, 赵金良, 许磊, 张红国, 岳明, 刘丹敏, 蒋毅坚. 间隙原子H,B,C对LaFe11.5Al1.5化合物磁性和磁热效应的影响. 物理学报, 2018, 67(7): 077501. doi: 10.7498/aps.67.20172250
    [9] 霍军涛, 盛威, 王军强. 非晶合金的磁热效应及磁蓄冷性能. 物理学报, 2017, 66(17): 176409. doi: 10.7498/aps.66.176409
    [10] 孙晓东, 徐宝, 吴鸿业, 曹凤泽, 赵建军, 鲁毅. Tb掺杂双层锰氧化物La4/3Sr5/3Mn2O7的磁熵变和电输运性质. 物理学报, 2017, 66(15): 157501. doi: 10.7498/aps.66.157501
    [11] 郑新奇, 沈俊, 胡凤霞, 孙继荣, 沈保根. 磁热效应材料的研究进展. 物理学报, 2016, 65(21): 217502. doi: 10.7498/aps.65.217502
    [12] 王芳, 原凤英, 汪金芝. Mn42Al50-xFe8+x合金的磁性和磁热效应. 物理学报, 2013, 62(16): 167501. doi: 10.7498/aps.62.167501
    [13] 蔡培阳, 冯尚申, 陈卫平, 薛双喜, 李志刚, 周英, 王海波, 王古平. Ni47Mn32Ga21多晶合金的磁熵变和磁感生应变. 物理学报, 2011, 60(10): 107501. doi: 10.7498/aps.60.107501
    [14] 张浩雷, 李哲, 乔燕飞, 曹世勋, 张金仓, 敬超. 哈斯勒合金Ni-Co-Mn-Sn的马氏体相变及其磁热效应研究. 物理学报, 2009, 58(11): 7857-7863. doi: 10.7498/aps.58.7857
    [15] 敬 超, 陈继萍, 李 哲, 曹世勋, 张金仓. 哈斯勒合金Ni50Mn35In15的马氏体相变及其磁热效应. 物理学报, 2008, 57(7): 4450-4455. doi: 10.7498/aps.57.4450
    [16] 张立刚, 陈 静, 朱伯铨, 李亚伟, 汪汝武, 李云宝, 张国宏, 李 钰. NaZn13型结构LaFe13-xAlxCy化合物的磁熵变与磁相变的研究. 物理学报, 2006, 55(10): 5506-5510. doi: 10.7498/aps.55.5506
    [17] 沈 俊, 李养贤, 胡凤霞, 王光军, 张绍英. Ce2Fe16Al化合物在居里温度附近的磁性和磁熵变. 物理学报, 2003, 52(5): 1250-1254. doi: 10.7498/aps.52.1250
    [18] 陈伟, 钟伟, 潘成福, 常虹, 都有为. La0.8-xCa0.2MnO3纳米颗粒的居里温度与磁热效应. 物理学报, 2001, 50(2): 319-323. doi: 10.7498/aps.50.319
    [19] 金属间化合物DyMn2Ge2的自发磁相变和场诱导的磁相变. 物理学报, 2001, 50(2): 313-318. doi: 10.7498/aps.50.313
    [20] 郭光华, R.Z.LEVITIN. 金属间化合物RMn2Ge2(R=La,Pr,Nd,Sm,Gd,Tb和Y)中的自发磁相变 及相变时的磁弹性异常. 物理学报, 2000, 49(9): 1838-1845. doi: 10.7498/aps.49.1838
计量
  • 文章访问数:  5295
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-21
  • 修回日期:  2018-10-19
  • 刊出日期:  2019-12-20

/

返回文章
返回