搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mn3Sn薄膜磁相变的输运表征

谭碧 高栋 邓登福 陈姝瑶 毕磊 刘冬华 刘涛

引用本文:
Citation:

Mn3Sn薄膜磁相变的输运表征

谭碧, 高栋, 邓登福, 陈姝瑶, 毕磊, 刘冬华, 刘涛

Transport characterization of magnetic phase transition in Mn3Sn thin films

Tan Bi, Gao Dong, Deng Deng-Fu, Chen Shu-Yao, Bi Lei, Liu Dong-Hua, Liu Tao
PDF
HTML
导出引用
  • 六角笼目(Kagome)相拓扑反铁磁材料近年来引起了人们极大的研究兴趣, 这主要是因为它们拥有众多独特的性能, 例如虽然净磁矩跟反铁磁材料一样接近零, 但确有与铁磁性材料强度相当的磁电、磁光和磁热效应, 极具应用价值. 以上的这些特性绝大多数都与其磁结构紧密相关, 然而人们却发现其磁结构对于生长条件和材料成分非常敏感. 因此, 开发一种简单、普适的Kagome相拓扑反铁磁材料磁结构相变测量方法, 对于大多数难以获得高能中子衍射等先进实验手段的实验室来说, 无论是材料的生长优化还是物理现象机理的理解都具有重要的意义. 本文采用脉冲激光沉积方法在($1 \bar{1}02 $)取向的Al2O3单晶衬底上成功外延制备了高质量($ 11\bar{2}0 $)取向的六角Kagome相Mn3Sn薄膜, 并系统地测量了不同温度下该Mn3Sn薄膜的磁性和磁输运特性. 结果发现, 该Mn3Sn薄膜的磁化曲线、霍尔电阻率曲线和磁电阻曲线在其三类磁相变温度中的某些或全部均表现出一定的异常特征. 这些特征可以作为该六角Kagome相Mn3Sn薄膜中磁相变的证据, 甚至用于测量这些磁相变的温度. 本工作有助于进一步推动六角Kagome相拓扑反铁磁材料在自旋电子器件中的应用.
    In recent years, topological antiferromagnetic material with hexagonal Kagome structure has attracted great research interest due to its unique properties. Although its net magnetic moment is close to zero, the topological antiferromagnet exhibits the strong magnetoelectric, the magneto-optical, and the magnetothermal effect, with a strength comparable to that of ferromagnetic material, which makes it highly valuable for various applications. After several years of extensive studies, it has been realized that most of the unique properties of topological antiferromagnet are actually closely related to its magnetic structure. However, it has been found that the magnetic structure of the material is highly sensitive to its chemical composition and growth condition. Therefore, it is crucial to develop a universal and simple method of measuring the magnetic structure and determining the magnetic phase transition of hexagonal Kagome topological antiferromagnetic material, which can severe as a good supplement for the current high-energy neutron diffraction approach that is not accessible for ordinary laboratories. In this study, we have successfully prepared high-quality ($ 11\bar{2}0 $)-oriented hexagonal Kagome antiferromagnetic Mn3Sn thin films on ($1 \bar{1} 02$)-oriented Al2O3 single crystal substrates by using the pulsed laser deposition method. After systematically measuring how the magnetic and transport properties of the Mn3Sn thin film change with temperature, it is found that its magnetization curve, Hall resistivity curve, and magnetoresistance curve exhibit certain anomalous features at some or all of its three magnetic phase transition temperatures. These features can serve as good evidences of magnetic phase transitions in this hexagonal Kagome antiferromagnetic Mn3Sn thin film, or even could be used to measure the temperatures of these magnetic phase transitions. Our work contributes to the further advancement of the application of hexagonal Kagome topological antiferromagnetic materials to spin electronic devices.
      通信作者: 刘冬华, dhliu@uestc.edu.cn ; 刘涛, liu.tao@uestc.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2021YFB2801600)、四川省自然科学基金(批准号: 2022NSFSC1990)和四川省科技部(批准号: 99203070)资助的课题.
      Corresponding author: Liu Dong-Hua, dhliu@uestc.edu.cn ; Liu Tao, liu.tao@uestc.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFB2801600), the Natural Science Foundation of Sichuan Province, China (Grant No. 2022NSFSC1990), and the Science and Technology Department of Sichuan Province, China (Grant No. 99203070).
    [1]

    Xiong D R, Jiang Y H, Shi K W, Du A, Yao Y X, Guo Z X, Zhu D Q, Cao K H, Peng S Z, Cai W L, Zhu D P, Zhao W S 2022 Fundam. Res. 2 522Google Scholar

    [2]

    Jungwirth T, Marti X, Wadley P, Wunderlich J 2016 Nat. Nanotechnol. 11 231Google Scholar

    [3]

    Bai H, Zhang Y C, Han L, Zhou Y J, Pan F, Song C 2022 Appl. Phys. Rev. 9 041316Google Scholar

    [4]

    Zhang B, Zeng Y, Zhao Z J, Qiu D P, Zhang T, Hou Y L 2022 Rare Met. 41 2921Google Scholar

    [5]

    Mak K Y, Xia J, Zhang X C, Li L, Fattouhi M, Ezawa M, Liu X X, Zhou Y 2022 Rare Met. 41 2249Google Scholar

    [6]

    Nakatsuji S, Kiyohara N, Higo T 2015 Nature 527 212Google Scholar

    [7]

    Zhao Z P, Guo Q, Chen F H, Zhang K W, Jiang Y 2021 Rare Met. 40 2862

    [8]

    Higo T, Man H Y, Gopman D B, et al. 2018 Nat. Photo. 12 73Google Scholar

    [9]

    Li X K, Xu L C, Ding L C, Wang J H, Shen M S, Lu X F, Zhu Z W, Behnia K 2017 Phys. Rev. Lett. 119 056601Google Scholar

    [10]

    Yang H, Sun Y, Zhang Y, Shi W J, Parkin S S P, Yan B H 2017 New J. Phys. 19 015008Google Scholar

    [11]

    Kuroda K, Tomita T, Suzuki M T, et al. 2017 Nat. Mater. 16 1090Google Scholar

    [12]

    Gao D, Peng Z, Zhang N B, Xie Y F, Yang Y C, Yang W H, Xia S, Yan W, Deng L J, Liu T, Qin J, Zhong X Y, Bi L 2022 Appl. Phys. Lett. 121 242403Google Scholar

    [13]

    Brown P J, Nunezt V, Tassett F, Forsytht J B, Radhakrishna P 1990 J. Phys. Condens. Matter. 2 9409Google Scholar

    [14]

    Cable J W, Wakabayashi N, Radhakrishna P 1994 J. Appl. Phys. 75 6601Google Scholar

    [15]

    Zimmer G J, Kren E 1972 AIP Conf. Proc. 5 513

    [16]

    Liu J J, Meng K K, Chen J K, Wu Y, Miao J, Xu X G, Jiang Y 2022 Rare Met. 41 3012Google Scholar

    [17]

    Yoon J Y, Takeuchi Y, Itoh R, Kanai S, Fukami S, Ohno H 2020 Appl. Phys. Express 13 013001Google Scholar

    [18]

    Kurdi S, Zilske P, Xu X D, Frentrup M, Vickers M E, Sakuraba Y, Reiss G, Barber Z H, Koo J W J 2020 Appl. Phys. 127 165302Google Scholar

    [19]

    Sung N H, Ronning F, Thompson J D, Bauer E D 2018 Appl. Phys. Lett. 112 132406Google Scholar

    [20]

    Duan T F, Ren W J, Liu W L, Li S J, Liu W, Zhang Z D 2015 Appl. Phys. Lett. 107 082403Google Scholar

    [21]

    Deng Y C, Liu X H, Chen Y Y, Du Z Z, Jiang N, Shen C, Zhang E Z, Zheng H Z, Lu H Z, Wang K Y 2023 Nat. Sci. Rev. 10 nwac154Google Scholar

    [22]

    Liu X H, Feng Q Y, Zhang D, Deng Y C, Dong S, Zhang E Z, Li W H, Lu Q Y, Chang K, Wang K Y 2023 Adv. Mater. 35 2211634Google Scholar

    [23]

    Jiang N, Deng Y C, Liu X H, Zhang D, Zhang E Z, Zheng H Z, Chang K, Shen C, Wang K Y 2023 Appl. Phys. Lett. 123 072401Google Scholar

    [24]

    Kimata M, Chen H, Kondou K, Sujimoto S, Muduli P K, Ikhlas M, Omori Y, Tomita T, Macdonald A H, Nakatsuji S, Otani Y 2019 Nature 565 627Google Scholar

    [25]

    Chen T S, Tomita T, Minami S, Fu M X, Koretsune T, Kitatani M, Muhammad I, Nishio-Hamane D, Ishii R, Ishii F, Arita R, Nakatsuji S 2021 Nat Commun. 12 572Google Scholar

  • 图 1  微观结构测量结果 (a) 2θ-ω 扫描衍射图谱; (b)面内$\varphi $扫描图谱; (c) RSM; (d) AFM图

    Fig. 1.  Microstructure measurement results: (a) 2θ-ω scan XRD spectrum; (b) in-plane $\varphi $ scan XRD; (c) RSM; (d) AFM image.

    图 2  室温下Mn3Sn薄膜的(a)垂直磁化曲线, 以及(b) AHE电阻率随磁场的变化

    Fig. 2.  Room temperature magnetic and transport properties: (a) Out-of-plane hysteresis loop; (b) ρAH-H loop.

    图 3  (a)不同温度下的磁化曲线(1 emu/cm3 = 103 A/m); (b)饱和磁化强度(Ms)和(c)矫顽力(Hc)随温度的变化

    Fig. 3.  Temperature dependence of magnetic properties: (a) Out-of-plane hysteresis loops at different temperatures; (b) Ms -T; (c) Hc -T.

    图 4  (a)霍尔电阻率(ρxy)随磁场(H)的变化; (b)载流子浓度(ne)、(c)霍尔矫顽力($ {H}_{{\mathrm{c}}}^{{\mathrm{A}}{\mathrm{H}}} $)和(d)饱和反常霍尔电阻率(|ρAH |)随温度的变化

    Fig. 4.  Temperature dependence of Hall resistance: (a) ρxy -H loops at different temperatures; (b) ne -T; (c) $ {H}_{{\mathrm{c}}}^{{\mathrm{A}}{\mathrm{H}}} $ -T; (d) |ρAH | -T.

    图 5  (a)—(c)不同温度下磁电阻(MR)随磁场(H )的变化; (d) MR随温度的变化

    Fig. 5.  Temperature dependence of anisotropic magnetoresistance: (a)–(c) MR -H loops at different temperatures; (d) MR -T.

  • [1]

    Xiong D R, Jiang Y H, Shi K W, Du A, Yao Y X, Guo Z X, Zhu D Q, Cao K H, Peng S Z, Cai W L, Zhu D P, Zhao W S 2022 Fundam. Res. 2 522Google Scholar

    [2]

    Jungwirth T, Marti X, Wadley P, Wunderlich J 2016 Nat. Nanotechnol. 11 231Google Scholar

    [3]

    Bai H, Zhang Y C, Han L, Zhou Y J, Pan F, Song C 2022 Appl. Phys. Rev. 9 041316Google Scholar

    [4]

    Zhang B, Zeng Y, Zhao Z J, Qiu D P, Zhang T, Hou Y L 2022 Rare Met. 41 2921Google Scholar

    [5]

    Mak K Y, Xia J, Zhang X C, Li L, Fattouhi M, Ezawa M, Liu X X, Zhou Y 2022 Rare Met. 41 2249Google Scholar

    [6]

    Nakatsuji S, Kiyohara N, Higo T 2015 Nature 527 212Google Scholar

    [7]

    Zhao Z P, Guo Q, Chen F H, Zhang K W, Jiang Y 2021 Rare Met. 40 2862

    [8]

    Higo T, Man H Y, Gopman D B, et al. 2018 Nat. Photo. 12 73Google Scholar

    [9]

    Li X K, Xu L C, Ding L C, Wang J H, Shen M S, Lu X F, Zhu Z W, Behnia K 2017 Phys. Rev. Lett. 119 056601Google Scholar

    [10]

    Yang H, Sun Y, Zhang Y, Shi W J, Parkin S S P, Yan B H 2017 New J. Phys. 19 015008Google Scholar

    [11]

    Kuroda K, Tomita T, Suzuki M T, et al. 2017 Nat. Mater. 16 1090Google Scholar

    [12]

    Gao D, Peng Z, Zhang N B, Xie Y F, Yang Y C, Yang W H, Xia S, Yan W, Deng L J, Liu T, Qin J, Zhong X Y, Bi L 2022 Appl. Phys. Lett. 121 242403Google Scholar

    [13]

    Brown P J, Nunezt V, Tassett F, Forsytht J B, Radhakrishna P 1990 J. Phys. Condens. Matter. 2 9409Google Scholar

    [14]

    Cable J W, Wakabayashi N, Radhakrishna P 1994 J. Appl. Phys. 75 6601Google Scholar

    [15]

    Zimmer G J, Kren E 1972 AIP Conf. Proc. 5 513

    [16]

    Liu J J, Meng K K, Chen J K, Wu Y, Miao J, Xu X G, Jiang Y 2022 Rare Met. 41 3012Google Scholar

    [17]

    Yoon J Y, Takeuchi Y, Itoh R, Kanai S, Fukami S, Ohno H 2020 Appl. Phys. Express 13 013001Google Scholar

    [18]

    Kurdi S, Zilske P, Xu X D, Frentrup M, Vickers M E, Sakuraba Y, Reiss G, Barber Z H, Koo J W J 2020 Appl. Phys. 127 165302Google Scholar

    [19]

    Sung N H, Ronning F, Thompson J D, Bauer E D 2018 Appl. Phys. Lett. 112 132406Google Scholar

    [20]

    Duan T F, Ren W J, Liu W L, Li S J, Liu W, Zhang Z D 2015 Appl. Phys. Lett. 107 082403Google Scholar

    [21]

    Deng Y C, Liu X H, Chen Y Y, Du Z Z, Jiang N, Shen C, Zhang E Z, Zheng H Z, Lu H Z, Wang K Y 2023 Nat. Sci. Rev. 10 nwac154Google Scholar

    [22]

    Liu X H, Feng Q Y, Zhang D, Deng Y C, Dong S, Zhang E Z, Li W H, Lu Q Y, Chang K, Wang K Y 2023 Adv. Mater. 35 2211634Google Scholar

    [23]

    Jiang N, Deng Y C, Liu X H, Zhang D, Zhang E Z, Zheng H Z, Chang K, Shen C, Wang K Y 2023 Appl. Phys. Lett. 123 072401Google Scholar

    [24]

    Kimata M, Chen H, Kondou K, Sujimoto S, Muduli P K, Ikhlas M, Omori Y, Tomita T, Macdonald A H, Nakatsuji S, Otani Y 2019 Nature 565 627Google Scholar

    [25]

    Chen T S, Tomita T, Minami S, Fu M X, Koretsune T, Kitatani M, Muhammad I, Nishio-Hamane D, Ishii R, Ishii F, Arita R, Nakatsuji S 2021 Nat Commun. 12 572Google Scholar

  • [1] 弭孟娟, 于立轩, 肖寒, 吕兵兵, 王以林. 有机阳离子插层调控二维反铁磁MPX3磁性能. 物理学报, 2024, 73(5): 057501. doi: 10.7498/aps.73.20232010
    [2] 张蔚曦, 李勇, 田昌海, 佘彦超. 具有大磁晶各向异性能的单层BaPb的室温量子反常霍尔效应. 物理学报, 2021, 70(15): 157502. doi: 10.7498/aps.70.20210014
    [3] 郝志红, 王海英, 张荃, 莫兆军. Eu0.9M0.1TiO3(M=Ca,Sr,Ba,La,Ce,Sm)的磁性和磁热效应. 物理学报, 2018, 67(24): 247502. doi: 10.7498/aps.67.20181750
    [4] 杨静洁, 赵金良, 许磊, 张红国, 岳明, 刘丹敏, 蒋毅坚. 间隙原子H,B,C对LaFe11.5Al1.5化合物磁性和磁热效应的影响. 物理学报, 2018, 67(7): 077501. doi: 10.7498/aps.67.20172250
    [5] 包黎红, 陶如玉, 特古斯, 黄颖楷, 冷华倩, Anne de Visser. 单晶CeB6发射性能及磁电阻各向异性研究. 物理学报, 2017, 66(18): 186102. doi: 10.7498/aps.66.186102
    [6] 顾文娟, 潘靖, 杜薇, 胡经国. 铁磁共振法测磁各向异性. 物理学报, 2011, 60(5): 057601. doi: 10.7498/aps.60.057601
    [7] 贾兴涛, 夏钶. IrMn基反铁磁自旋阀的巨磁电阻效应. 物理学报, 2011, 60(12): 127202. doi: 10.7498/aps.60.127202
    [8] 丁磊, 王聪, 褚立华, 纳元元, 闫君. 反钙钛矿Mn3AX化合物的晶格、磁性和电输运性质的研究进展. 物理学报, 2011, 60(9): 097507. doi: 10.7498/aps.60.097507
    [9] 许涌, 蔡建旺. 几种元素的界面插层对Ta/NiFe/Ta的各向异性磁电阻效应的影响. 物理学报, 2011, 60(11): 117308. doi: 10.7498/aps.60.117308
    [10] 许小勇, 钱丽洁, 胡经国. 铁磁多层膜中的力致磁电阻效应. 物理学报, 2009, 58(3): 2023-2029. doi: 10.7498/aps.58.2023
    [11] 苏喜平, 包 瑾, 闫树科, 徐晓光, 姜 勇. 双合成反铁磁结构及其对自旋阀巨磁电阻效应的影响. 物理学报, 2008, 57(4): 2509-2513. doi: 10.7498/aps.57.2509
    [12] 许小勇, 潘 靖, 胡经国. 交换偏置双层膜中的反铁磁自旋结构及其交换各向异性. 物理学报, 2007, 56(9): 5476-5482. doi: 10.7498/aps.56.5476
    [13] 吉高峰, 刘胜利. 各向异性超导体电阻转变的修正Kosterlitz-Thouless相变模型. 物理学报, 2007, 56(7): 4148-4151. doi: 10.7498/aps.56.4148
    [14] 张立刚, 陈 静, 朱伯铨, 李亚伟, 汪汝武, 李云宝, 张国宏, 李 钰. NaZn13型结构LaFe13-xAlxCy化合物的磁熵变与磁相变的研究. 物理学报, 2006, 55(10): 5506-5510. doi: 10.7498/aps.55.5506
    [15] 石 玉, 邢怀中, 张怀武, 荆玉兰, 刘颖力. 磁场诱导的单离子各向异性反铁磁链的比热. 物理学报, 2005, 54(1): 280-283. doi: 10.7498/aps.54.280
    [16] 姜宏伟, 王艾玲, 郑 鹉. 自旋阀中的各向异性磁电阻效应. 物理学报, 2005, 54(5): 2338-2341. doi: 10.7498/aps.54.2338
    [17] 金属间化合物DyMn2Ge2的自发磁相变和场诱导的磁相变. 物理学报, 2001, 50(2): 313-318. doi: 10.7498/aps.50.313
    [18] 童六牛, 何贤美, 鹿 牧. 真空退火对周期性界面掺杂Ni80Co20薄膜磁性的影响. 物理学报, 2000, 49(11): 2290-2295. doi: 10.7498/aps.49.2290
    [19] 郭光华, R.Z.LEVITIN. 金属间化合物RMn2Ge2(R=La,Pr,Nd,Sm,Gd,Tb和Y)中的自发磁相变 及相变时的磁弹性异常. 物理学报, 2000, 49(9): 1838-1845. doi: 10.7498/aps.49.1838
    [20] 陈慧余, 罗有泉, 朱弘, 温琳清. 81NiFe/Cr多层膜磁电阻单向各向异性与交换耦合. 物理学报, 1994, 43(7): 1185-1191. doi: 10.7498/aps.43.1185
计量
  • 文章访问数:  2840
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-07
  • 修回日期:  2023-12-19
  • 上网日期:  2023-12-26
  • 刊出日期:  2024-03-20

/

返回文章
返回