搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有机阳离子插层调控二维反铁磁MPX3磁性能

弭孟娟 于立轩 肖寒 吕兵兵 王以林

引用本文:
Citation:

有机阳离子插层调控二维反铁磁MPX3磁性能

弭孟娟, 于立轩, 肖寒, 吕兵兵, 王以林

Tuning magnetic properties of two-dimensional antiferromagnetic MPX3 by organic cations intercalation

Mi Meng-Juan, Yu Li-Xuan, Xiao Han, Lü Bing-Bing, Wang Yi-Lin
PDF
HTML
导出引用
  • 电控磁效应调控二维 (2D) 反铁磁 (AFM) 材料的研究结合了电控磁效应与半导体工艺兼容且低能耗的优势, 2D材料范德瓦耳斯界面便于异质集成以及AFM材料无杂散场、抗外磁场干扰、内禀频率高的优势, 成为领域内研究的重点. 载流子浓度调控是电控磁效应的主要机制, 已被证明是调控材料磁性能的有效途径. 层内AFM材料的净磁矩为零, 磁性调控测量存在挑战, 故其电控磁效应研究尚少且潜在的机制尚不清楚. 基于有机阳离子的多样性, 本文利用有机阳离子插层系统地调控了2D 层内AFM材料MPX3 (M = Mn, Fe, Ni; X = S, Se) 的载流子浓度, 并研究了电子掺杂对其磁性能的影响. 笔者在MPX3家族材料中发现了依赖载流子浓度变化的AFM-亚铁磁 (FIM)/铁磁 (FM) 的转变, 并结合理论计算揭示了其调控机制. 本研究为2D磁性材料的载流子调控磁相变提供了新的见解, 并为研究2D磁体的电子结构与磁性之间的强相关性以及设计新型自旋电子器件开辟了一条途径.
    Electrical control of magnetism of two-dimensional (2D) antiferromagnetic (AFM) materials combines the advantages of controlling magnetism by purely electrical means, compatibility with semiconductor process, low energy consumption, heterogeneous integration of 2D materials with van der Waals (vdW) interface, and AFM materials with no stray field, resistance to external magnetic field interference, and high intrinsic frequency, and thus becomes a research focus in the field. The carrier concentration control is the main mechanism of electrical control of magnetism, and has been proved to be an effective way to control the magnetic properties of materials. The intralayer-antiferromagnetic materials have net-zero magnetic moments, and it is a challenging task to measure their regulated magnetic properties. Therefore, there is limited research on the electrical control of magnetism of intralayer-antiferromagnetic materials, and their potential mechanisms are not yet clear. Based on the diversity of organic cations, the present work systematically modulates the carrier concentrations of 2D intralayer-antiferromagnetic materials MPX3 (M = Mn, Fe, Ni; X = S, Se) by utilizing organic cations intercalation, and investigates the influence of electron doping on their magnetic properties. Phase transitions between AFM-ferrimagnetic (FIM)/ferromagnetic (FM) depending on carrier concentration changes are observed in MPX3 materials, and the corresponding regulation mechanism is revealed through theoretical calculations. This research provides new insights into the carrier-controlled magnetic phase transition of 2D magnetic materials, and opens up a pathway for studying the correlation between the electronic structure and magnetic properties of 2D magnets, and designing novel spintronic devices as well.
      通信作者: 吕兵兵, bingbinglyu@sdu.edu.cn ; 王以林, yilinwang@email.sdu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 92065206, 12304042)、国家重点研发计划 (批准号: 2022YFA1602704)、山东省自然科学基金 (批准号: ZR2023ZD10)和国家资助博士后研究人员计划 (批准号: GZC20231434)资助的课题.
      Corresponding author: Lü Bing-Bing, bingbinglyu@sdu.edu.cn ; Wang Yi-Lin, yilinwang@email.sdu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 92065206, 12304042), the National Key R&D Program of China (Grant No. 2022YFA1602704), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2023ZD10), and the Postdoctoral Fellowship Program of China Postdocoral Science Foundation (Grant No. GZC20231434).
    [1]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133Google Scholar

    [2]

    Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [3]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X D 2017 Nature 546 270Google Scholar

    [4]

    Zhang Z, Shang J, Jiang C, Rasmita A, Gao W, Yu T 2019 Nano Lett. 19 3138Google Scholar

    [5]

    Sun X D, Li W Y, Wang X, Sui Q, Zhang T Y, Wang Z, Liu L, Li D, Feng S, Zhong S Y, Wang H W, Bouchiat V, Nunez Regueiro M, Rougemaille N, Coraux J, Purbawati A, Hadj-Azzem A, Wang Z H, Dong B J, Wu X, Yang T, Yu G Q, Wang B W, Han Z, Han X F, Zhang Z D 2020 Nano Res. 13 3358Google Scholar

    [6]

    Meng L J, Zhou Z, Xu M Q, Yang S Q, Si K P, Liu L X, Wang X G, Jiang H N, Li B X, Qin P X, Zhang P, Wang J L, Liu Z X, Tang P Z, Ye Y, Zhou W, Bao L H, Gao H J, Gong Y J 2021 Nat. Commun. 12 809Google Scholar

    [7]

    Kang L X, Ye C, Zhao X X, Zhou X Y, Hu J X, Li Q, Liu D, Das C M, Yang J F, Hu D Y, Chen J Q, Cao X, Zhang Y, Xu M Z, Di J, Tian D, Song P, Kutty G, Zeng Q S, Fu Q D, Deng Y, Zhou J D, Ariando A, Miao F, Hong G, Huang Y Z, Pennycook S J, Yong K T, Ji W, Wang X R , Liu Z 2020 Nat. Commun. 11 3729Google Scholar

    [8]

    Zhang Y, Chu J W, Yin L, Shifa T A, Cheng Z Z, Cheng R Q, Wang F, Wen Y, Zhan X Y, Wang Z X, He J 2019 Adv. Mater. 31 1900056Google Scholar

    [9]

    Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnol. 13 289Google Scholar

    [10]

    Zhang Z P, Niu J J, Yang P F, Gong Y, Ji Q Q, Shi J P, Fang Q Y, Jiang S L, Li H, Zhou X B, Gu L, Wu X S, Zhang Y F 2017 Adv. Mater. 29 1702359Google Scholar

    [11]

    Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar

    [12]

    Fei Z, Huang B, Malinowski P, Wang W, Song T, Sanchez J, Yao W, Xiao D, Zhu X, May A F, Wu W, Cobden D H, Chu J H, Xu X D 2018 Nat. Mater. 17 778Google Scholar

    [13]

    May A F, Ovchinnikov D, Zheng Q, Hermann R, Calder S, Huang B, Fei Z, Liu Y, Xu X D, McGuire M A 2019 ACS Nano 13 4436Google Scholar

    [14]

    Zhang G J, Guo F, Wu H, Wen X K, Yang L, Jin W, Zhang W F, Chang H X 2022 Nat. Commun. 13 5067Google Scholar

    [15]

    Cai X, Song T, Wilson N P, Clark G, He M, Zhang X, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire M A, Cobden D H, Xu X D 2019 Nano Lett. 19 3993Google Scholar

    [16]

    Lee J U, Lee S, Ryoo J H, Kang S, Kim T Y, Kim P, Park C H, Park J G, Cheong H 2016 Nano Lett. 16 7433Google Scholar

    [17]

    Kim K, Lim S Y, Lee J U, Lee S, Kim T Y, Park K, Jeon G S, Park C H, Park J G, Cheong H 2019 Nat. Commun. 10 345Google Scholar

    [18]

    Kim K, Lim S Y, Kim J, Lee J-U, Lee S, Kim P, Park K, Son S, Park C-H, Park J-G, Cheong H 2019 2D Mater. 6 041001Google Scholar

    [19]

    Gong Y, Guo J W, Li J H, Zhu K J, Liao M H, Liu X Z, Zhang Q H, Gu L, Tang L, Feng X, Zhang D, Li W, Song C L, Wang L L, Yu P, Chen X, Wang Y Y, Yao H, Duan W H, Xu Y, Zhang S C, Ma X C, Xue Q K, He K 2019 Chin. Phys. Lett. 36 076801Google Scholar

    [20]

    Telford E J, Dismukes A H, Lee K, Cheng M, Wieteska A, Bartholomew A K, Chen Y S, Xu X D, Pasupathy A N, Zhu X, Dean C R, Roy X 2020 Adv. Mater. 32 2003240Google Scholar

    [21]

    Otrokov M M, Klimovskikh, II, Bentmann H, Estyunin D, Zeugner A, Aliev Z S, Gass S, Wolter A U B, Koroleva A V, Shikin A M, Blanco-Rey M, Hoffmann M, Rusinov I P, Vyazovskaya A Y, Eremeev S V, Koroteev Y M, Kuznetsov V M, Freyse F, Sanchez Barriga J, Amiraslanov I R, Babanly M B, Mamedov N T, Abdullayev N A, Zverev V N, Alfonsov A, Kataev V, Buchner B, Schwier E F, Kumar S, Kimura A, Petaccia L, Di Santo G, Vidal R C, Schatz S, Kissner K, Unzelmann M, Min C H, Moser S, Peixoto T R F, Reinert F, Ernst A, Echenique P M, Isaeva A, Chulkov E V 2019 Nature 576 416Google Scholar

    [22]

    Thiel L, Wang Z, Tschudin M A, Rohner D, Gutiérrez-Lezama I, Ubrig N, Gibertini M, Giannini E, Morpurgo A F, Maletinsky P 2019 Science 364 973Google Scholar

    [23]

    Li T X, Jiang S W, Sivadas N, Wang Z F, Xu Y, Weber D, Goldberger J E, Watanabe K, Taniguchi T, Fennie C J, Mak K F, Shan J 2019 Nat. Mater. 18 1303Google Scholar

    [24]

    Song T C, Fei Z Y, Yankowitz M, Lin Z, Jiang Q N, Hwangbo K, Zhang Q, Sun B S, Taniguchi T, Watanabe K, McGuire M A, Graf D, Cao T, Chu J H, Cobden D H, Dean C R, Xiao D, Xu X D 2019 Nat. Mater. 18 1298Google Scholar

    [25]

    Cai W P, Sun H L, Xia W, Wu C W, Liu Y, Liu H, Gong Y, Yao D X, Guo Y F, Wang M 2020 Phys. Rev. B 102 144525Google Scholar

    [26]

    Wang Y, Wang C, Liang S J, Ma Z, Xu K, Liu X, Zhang L, Admasu A S, Cheong S W, Wang L, Chen M, Liu Z, Cheng B, Ji W, Miao F 2020 Adv. Mater. 32 e2004533Google Scholar

    [27]

    Li X, Yang J 2014 J. Mater. Chem. C 2 7071Google Scholar

    [28]

    Cenker J, Sivakumar S, Xie K C, Miller A, Thijssen P, Liu Z Y, Dismukes A, Fonseca J, Anderson E, Zhu X Y, Roy X, Xiao D, Chu J H, Cao T, Xu X D 2022 Nat. Nanotechnol. 17 256Google Scholar

    [29]

    Ji Z Q, Huang T, Li Y, Liu X Y, Wei L J, Wu H, Jin J M, Pu Y, Li F 2023 Chin. Phys. Lett. 40 057701Google Scholar

    [30]

    Wang Z W, Liang J H, Yang H X 2023 Chin. Phys. Lett. 40 017501Google Scholar

    [31]

    刘南舒, 王聪, 季威 2022 物理学报 71 127504Google Scholar

    Liu N-S, Wang C, Ji W 2022 Acta Phys. Sin. 71 127504Google Scholar

    [32]

    Cao Y, Zhang X M, Zhang X P, Yan F G, Wang Z A, Zhu W K, Tan H, Golovach V N, Zheng H Z, Wang K Y 2022 Phys. Rev. Appl. 17 L051001Google Scholar

    [33]

    Wang H, Liu Y, Wu P, Hou W, Jiang Y, Li X, Pandey C, Chen D, Yang Q, Wang H, Wei D, Lei N, Kang W, Wen L, Nie T, Zhao W, Wang K L 2020 ACS Nano 14 10045Google Scholar

    [34]

    Jiang S, Shan J, Mak K F 2018 Nat. Mater. 17 406Google Scholar

    [35]

    Wang Z A, Xue W, Yan F, Zhu W K, Liu Y, Zhang X, Wei Z, Chang K, Yuan Z, Wang K 2023 Nano Lett. 23 710Google Scholar

    [36]

    肖寒, 弭孟娟, 王以林 2021 物理学报 70 127503Google Scholar

    Xiao H, Mi M J, Wang Y L 2021 Acta Phys. Sin. 70 127503Google Scholar

    [37]

    Jiang S, Li L, Wang Z, Mak K F, Shan J 2018 Nat. Nanotechnol. 13 549Google Scholar

    [38]

    Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P, Xu X D 2018 Nat. Nanotechnol. 13 544Google Scholar

    [39]

    Wang Z, Zhang T Y, Ding M, Dong B J, Li Y X, Chen M L, Li X X, Huang J Q, Wang H W, Zhao X T, Li Y, Li D, Jia C K, Sun L D, Guo H H, Ye Y, Sun D M, Chen Y S, Yang T, Zhang J, Ono S, Han Z, Zhang Z D 2018 Nat. Nanotechnol. 13 554Google Scholar

    [40]

    Verzhbitskiy I A, Kurebayashi H, Cheng H, Zhou J, Khan S, Feng Y P, Eda G 2020 Nat. Electron. 3 460Google Scholar

    [41]

    Wang N, Tang H, Shi M, Zhang H, Zhuo W, Liu D, Meng F, Ma L, Ying J, Zou L, Sun Z, Chen X 2019 J. Am. Chem. Soc. 141 17166Google Scholar

    [42]

    Mi M J, Zheng X W, Wang S L, Zhou Y, Yu L X, Xiao H, Song H N, Shen B, Li F, Bai L H, Chen Y X, Wang S P, Liu X H, Wang Y L 2022 Adv. Funct. Mater. 32 2112750Google Scholar

    [43]

    Tezze D, Pereira J M, Asensio Y, Ipatov M, Calavalle F, Casanova F, Bittner A M, Ormaza M, Martin-Garcia B, Hueso L E, Gobbi M 2022 Nanoscale 14 1165Google Scholar

    [44]

    Tang M, Huang J W, Qin F, Zhai K, Ideue T, Li Z Y, Meng F H, Nie A M, Wu L L, Bi X Y, Zhang C R, Zhou L, Chen P, Qiu C Y, Tang P Z, Zhang H J, Wan X G, Wang L, Liu Z Y, Tian Y J, Iwasa Y, Yuan H T 2023 Nat. Electron. 6 28Google Scholar

    [45]

    Peng Y X, Ding S L, Cheng M, Hu Q F, Yang J, Wang F G, Xue M Z, Liu Z, Lin Z C, Avdeev M, Hou Y L, Yang W Y, Zheng Y, Yang J B 2020 Adv. Mater. 32 2001200Google Scholar

    [46]

    Hu C W, Gordon K N, Liu P F, Liu J Y, Zhou X Q, Hao P P, Narayan D, Emmanouilidou E, Sun H Y, Liu Y T, Brawer H, Ramirez A P, Ding L, Cao H B, Liu Q H, Dessau D, Ni N 2020 Nat. Commun. 11 97Google Scholar

    [47]

    Gong C, Zhang X 2019 Science 363 eaav4450Google Scholar

    [48]

    Zhang Y, Xu H J, Yi C J, Wang X, Huang Y, Tang J, Jiang J L, He C L, Zhao M K, Ma T Y, Dong J, Guo C Y, Feng J F, Wan C H, Wei H X, Du H F, Shi Y G, Yu G Q, Zhang G Y, Han X F 2021 Appl. Phys. Lett. 118 262406Google Scholar

    [49]

    Alghamdi M, Lohmann M, Li J, Jothi P R, Shao Q, Aldosary M, Su T, Fokwa B P T, Shi J 2019 Nano Lett. 19 4400Google Scholar

    [50]

    Wang X, Tang J, Xia X, He C, Zhang J, Liu Y, Wan C, Fang C, Guo C, Yang W, Guang Y, Zhang X, Xu H, Wei J, Liao M, Lu X, Feng J, Li X, Peng Y, Wei H X, Yang R, Shi D, Zhang X, Han Z, Zhang Z, Zhang G, Yu G Q, Han X F 2019 Sci. Adv. 5 eaaw8904Google Scholar

    [51]

    Shin I, Cho W J, An E S, Park S, Jeong H W, Jang S, Baek W J, Park S Y, Yang D H, Seo J H, Kim G Y, Ali M N, Choi S Y, Lee H W, Kim J S, Kim S D, Lee G H 2022 Adv. Mater. 34 2101730Google Scholar

    [52]

    Ostwal V, Shen T, Appenzeller J 2020 Adv. Mater. 32 1906021Google Scholar

    [53]

    Gupta V, Cham T M, Stiehl G M, Bose A, Mittelstaedt J A, Kang K, Jiang S, Mak K F, Shan J, Buhrman R A, Ralph D C 2020 Nano Lett. 20 7482Google Scholar

    [54]

    Mogi M, Yasuda K, Fujimura R, Yoshimi R, Ogawa N, Tsukazaki A, Kawamura M, Takahashi K S, Kawasaki M, Tokura Y 2021 Nat. Commun. 12 1404Google Scholar

    [55]

    Li W H, Zhu W K, Zhang G J, Wu H, Zhu S G, Li R Z, Zhang E Z, Zhang X M, Deng Y C, Zhang J, Zhao L X, Chang H X, Wang K Y 2023 Adv. Mater. 35 2303688Google Scholar

    [56]

    Nguyen M H, Ralph D C, Buhrman R A 2016 Phys. Rev. Lett. 116 126601Google Scholar

    [57]

    Pai C F, Ou Y X, Vilela-Leao L H, Ralph D C, Buhrman R A 2015 Phys. Rev. B 92 064426Google Scholar

    [58]

    Kao I H, Muzzio R, Zhang H T, Zhu M L, Gobbo J, Yuan S, Weber D, Rao R, Li J H, Edgar J H, Goldberger J E, Yan J Q, Mandrus D G, Hwang J, Cheng R, Katoch J, Singh S 2022 Nat. Mater. 21 1029Google Scholar

    [59]

    Ye X G, Zhu P F, Xu W Z, Shang N Z, Liu K H, Liao Z M 2022 Chin. Phys. Lett. 39 037303Google Scholar

    [60]

    Pan Z C, Li D, Ye X G, Chen Z, Chen Z H, Wang A Q, Tian M, Yao G, Liu K, Liao Z M 2023 Sci. Bull. 68 2743Google Scholar

    [61]

    Song T, Cai X, Tu M W, Zhang X, Huang B, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, Xu X D 2018 Science 360 1214Google Scholar

    [62]

    Song T, Tu M W, Carnahan C, Cai X, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, Xu X D 2019 Nano Lett. 19 915Google Scholar

    [63]

    Lan G B, Xu H J, Zhang Y, Cheng C, He B, Li J H, He C L, Wan C H, Feng J F, Wei H X, Zhang J, Han X F, Yu G Q 2023 Chin. Phys. Lett. 40 058501Google Scholar

    [64]

    Wang Z, Sapkota D, Taniguchi T, Watanabe K, Mandrus D, Morpurgo A F 2018 Nano Lett. 18 4303Google Scholar

    [65]

    Min K-H, Lee D H, Choi S-J, Lee I-H, Seo J, Kim D W, Ko K-T, Watanabe K, Taniguchi T, Ha D H, Kim C, Shim J H, Eom J, Kim J S, Jung S 2022 Nat. Mater. 21 1144Google Scholar

    [66]

    Zhu W K, Lin H L, Yan F G, Hu C, Wang Z, Zhao L X, Deng Y C, Kudrynskyi Z R, Zhou T, Kovalyuk Z D, Zheng Y, Patanè A, Žutić I, Li S, Zheng H, Wang K Y 2021 Adv. Mater. 33 2104658Google Scholar

    [67]

    Zhu W K, Zhu Y M, Zhou T, Zhang X P, Lin H L, Cui Q R, Yan F G, Wang Z, Deng Y C, Yang H X, Zhao L X, Žutić I, Belashchenko K D, Wang K Y 2023 Nat. Commun. 14 5371Google Scholar

    [68]

    Lin H L, Yan F G, Hu C, Lv Q, Zhu W K, Wang Z, Wei Z, Chang K, Wang K Y 2020 ACS Appl. Mater. Interfaces 12 43921Google Scholar

    [69]

    Jin W, Zhang G J, Wu H, Yang L, Zhang W F, Chang H X 2023 Nanoscale 15 5371Google Scholar

    [70]

    Jin W, Zhang G J, Wu H, Yang L, Zhang W F, Chang H X 2023 ACS Appl. Mater. Interfaces 15 36519Google Scholar

    [71]

    Zhu W K, Xie S H, Lin H L, Zhang G J, Wu H, Hu T G, Wang Z A, Zhang X M, Xu J H, Wang Y J, Zheng Y H, Yan F G, Zhang J, Zhao L X, Patané A, Zhang J, Chang H X, Wang K Y 2022 Chin. Phys. Lett. 39 128501Google Scholar

    [72]

    Wiedenmann A, Rossat-Mignod J, Louisy A, Brec R, Rouxel J 1981 Solid State Commun. 40 1067Google Scholar

    [73]

    Coak M J, Jarvis D M, Hamidov H, Haines C R S, Alireza P L, Liu C, Son S, Hwang I, Lampronti G I, Daisenberger D, Nahai-Williamson P, Wildes A R, Saxena S S, Park J G 2020 J. Condens. Matter Phys. 32 124003Google Scholar

    [74]

    Joy P A, Vasudevan S 1992 Phys. Rev. B 46 5425Google Scholar

    [75]

    Bhutani A, Zuo J L, McAuliffe R D, dela Cruz C R, Shoemaker D P 2020 Phys. Rev. Mater. 4 034411Google Scholar

    [76]

    Wang C, He Q Y, Halim U, Liu Y Y, Zhu E B, Lin Z Y, Xiao H, Duan X D, Feng Z Y, Cheng R, Weiss N O, Ye G J, Huang Y C, Wu H, Cheng H C, Shakir I, Liao L, Chen X H, Goddard Iii W A, Huang Y, Duan X F 2018 Nature 555 231Google Scholar

    [77]

    Wang N Z, Shi M Z, Shang C, Meng F B, Ma L K, Luo X G, Chen X H 2018 New J. Phys. 20 023014Google Scholar

    [78]

    Meng F B, Liu Z, Yang L X, Shi M Z, Ge B H, Zhang H, Ying J J, Wang Z F, Wang Z Y, Wu T, Chen X H 2020 Phys. Rev. B 102 165410Google Scholar

    [79]

    Shi M Z, Wang N Z, Lei B, Shang C, Meng F B, Ma L K, Zhang F X, Kuang D Z, Chen X H 2018 Phys. Rev. Mater. 2 074801Google Scholar

    [80]

    Ma L K, Shi M Z, Kang B L, Peng K L, Meng F B, Zhu C S, Cui J H, Sun Z L, Ma D H, Wang H H, Lei B, Wu T, Chen X H 2020 Phys. Rev. Mater. 4 124803Google Scholar

    [81]

    He Q, Lin Z, Ding M, Yin A, Halim U, Wang C, Liu Y, Cheng H C, Huang Y, Duan X 2019 Nano Lett. 19 6819Google Scholar

    [82]

    Li X, Wu X, Yang J 2014 J. Am. Chem. Soc. 136 11065Google Scholar

    [83]

    Chittari B L, Park Y, Lee D, Han M, MacDonald A H, Hwang E, Jung J 2016 Phys. Rev. B 94 184428Google Scholar

    [84]

    Wildes A R, Simonet V, Ressouche E, McIntyre G J, Avdeev M, Suard E, Kimber S A J, Lançon D, Pepe G, Moubaraki B, Hicks T J 2015 Phys. Rev. B 92 224408Google Scholar

    [85]

    Wang F, Shifa T A, Yu P, He P, Liu Y, Wang F, Wang Z, Zhan X, Lou X, Xia F, He J 2018 Adv. Funct. Mater. 28 1802151Google Scholar

    [86]

    Mi M, Xiao H, Yu L, Zhang Y, Wang Y, Cao Q, Wang Y 2023 Materials Today Nano 24 100408Google Scholar

    [87]

    McCreary A, Simpson J R, Mai T T, McMichael R D, Douglas J E, Butch N, Dennis C, Aguilar R V, Walker A R H 2020 Phys. Rev. B 101 064416Google Scholar

    [88]

    Wang X, Du K, Fredrik Liu Y Y, Hu P, Zhang J, Zhang Q, Owen M H S, Lu X, Gan C K, Sengupta P, Kloc C, Xiong Q 2016 2D Mater. 3 031009Google Scholar

    [89]

    Mai T T, Garrity K F, McCreary A, Argo J, Simpson J R, Doan-Nguyen V, Aguilar R V, Walker A R H 2021 Sci. Adv. 7 eabj3106Google Scholar

    [90]

    Sun Y J, Tan Q H, Liu X L, Gao Y F, Zhang J 2019 J. Phys. Chem. Lett. 10 3087Google Scholar

    [91]

    Basnet R, Wegner A, Pandey K, Storment S, Hu J 2021 Phys. Rev. Mater. 5 064413Google Scholar

    [92]

    Han H, Lin H, Gan W, Xiao R C, Liu Y C, Ye J F, Chen L M, Wang W W, Zhang L, Zhang C J, Li H 2023 Phys. Rev. B 107 075423Google Scholar

    [93]

    Calder S, Haglund A V, Kolesnikov A I, Mandrus D 2021 Phys. Rev. B 103 024414Google Scholar

    [94]

    Le Flem G, Brec R, Ouvard G, Louisy A, Segransan P 1982 J. Phys. Chem. Solids 43 455Google Scholar

    [95]

    Jeevanandam P, Vasudevan S 1999 J. Condens. Matter Phys. 11 3563Google Scholar

    [96]

    Bao W Z, Wan J Y, Han X G, Cai X H, Zhu H L, Kim D K, Ma D K, Xu Y L, Munday J N, Drew H D, Fuhrer M S, Hu L B 2014 Nat. Commun. 5 4224Google Scholar

    [97]

    Wan C, Gu X, Dang F, Itoh T, Wang Y, Sasaki H, Kondo M, Koga K, Yabuki K, Snyder G J, Yang R, Koumoto K 2015 Nat. Mater. 14 622Google Scholar

    [98]

    Kang B L, Shi M Z, Li S J, Wang H H, Zhang Q, Zhao D, Li J, Song D W, Zheng L X, Nie L P, Wu T, Chen X H 2020 Phys. Rev. Lett. 125 097003Google Scholar

    [99]

    Zhao Y, Su Y, Guo Y, Peng J, Zhao J, Wang C, Wang L, Wu C, Xie Y 2021 ACS Mater. Lett. 3 210Google Scholar

  • 图 1  (a) 电化学有机阳离子插层示意图以及THA+插层NiPS3前后的结构示意图[42]; 剥离后得到的薄层NiPS3 (b) 和THA+插层NiPS3 (c) 的原子力显微镜图像[42]

    Fig. 1.  Schematic diagram of electrochemical organic cation intercalation and the structure of NiPS3 and THA-NiPS3[42]; atomic force microscope images of exfoliated NiPS3 (b) and exfoliated intercalated THA-NiPS3 (c)[42].

    图 2  有机阳离子插层NiPS3的实验结果[42] NiPS3 (a) 和THA-NiPS3 (b) 在H // abH // c* 磁场作用下的M-T曲线, 实线和虚线分别为零场降温、场降温数据, (a)内插图为MT的一阶微分 (dM/dT vs. T), c* 为垂直于ab平面的轴; (c) T = 5 K时, NiPS3和THA-NiPS3H // ab磁场作用下MH的依赖关系; (d) 矫顽场 (黑) 和剩余磁化强度 (红) 随温度的变化关系; (e) T = 10 K时, CTA-NiPS3H // ab磁场作用下MH的依赖关系; (f) Ni(1), Ni(2)的磁矩以及净磁矩 (Ni(1)+Ni(2)) 随掺杂浓度的依赖关系

    Fig. 2.  Experimental results of organic cations intercalated NiPS3[42]: Temperature dependence of magnetization (M-T) of NiPS3 (a) and THA-NiPS3 (b) under magnetic fields H // ab (red) and H // c* (black), the solid and dashed lines represent zero-field cooled (ZFC) and field cooled (FC) data, respectively, the inset in (a) shows the first-order derivative of magnetization with temperature (dM/dT vs. T), c* represents axis perpendicular to the ab plane; (c) field dependence of magnetization (M-H) of NiPS3 and THA-NiPS3 under magnetic field H // ab at T = 5 K; (d) extracted coercive field Hc (black) and remnant magnetization Mr (red) of intercalated THA-NiPS3 as a function of temperature; (e) field dependence of magnetization (M-H) of CTA-NiPS3 under magnetic field H // ab at T = 10 K; (f) magnetic moments and net magnetic moments of Ni(1) and Ni(2) as a function of doping concentrations.

    图 3  有机阳离子插层FePS3的实验结果 FePS3 (黑) 和THA-FePS3 (红) 在H // c* 磁场方向的M-T (a) 和M-H (b) 曲线, 实线和虚线分别为零场降温、场降温数据, (a)内插图为dM/dT vs T; THA-FePS3H // c* 磁场方向、不同温度下的M-H曲线 (c); CTA-FePS3H // c* 磁场下的M-T (d) 和M-H (e)曲线, (d)内插图为CTA-FePS3 的dM/dT vs. T; Fe(1), Fe(2)的磁矩以及净磁矩 (Fe(1)+Fe(2)) 随掺杂浓度的依赖关系 (f)

    Fig. 3.  Experimental results of organic cations intercalated FePS3: (a), (b) M-T (a) and M-H (b) curves of FePS3 (black) and THA-FePS3 (red) under magnetic fields H // c*, the solid and dashed lines represent ZFC and FC data, respectively, the inset in (a) shows the dM/dT vs. T of FePS3; M-H curves of THA-FePS3 under magnetic fields H // c* at different temperatures (c); M-T (d) and M-H (e) curves of intercalated CTA-FePS3 under magnetic fields H // c*, the inset in (d) shows the dM/dT vs. T of CTA-FePS3; magnetic moments and net magnetic moments of Fe(1) and Fe(2) as a function of doping concentrations (f).

    图 4  有机阳离子插层FePSe3的实验结果 FePSe3 (黑)、TDA-FePSe3 (蓝) 以及THA-FePSe3 (红) 在H // c* 磁场方向的M-T (a) 和M-H (b) 曲线

    Fig. 4.  Experimental results of organic cations intercalated FePSe3: The M-T (a) and M-H (b) curves of FePSe3 (black), TDA-FePSe3 (blue) and THA-FePSe3 (red).

    图 5  有机阳离子插层MnPS3的实验结果 MnPS3和THA-MnPS3H // c* 磁场下的M-T (a), M-H (b) 以及H // ab磁场下的M-H (c) 曲线; (d) CTA-MnPS3H // abH // c* 磁场下的M-H曲线. (b)—(d) 中的内插图分别为THA-MnPS3H // c* (b), H // ab (c) 以及CTA-MnPS3H // c*, H // ab (c) 小范围磁场下的M-H曲线

    Fig. 5.  Experimental results of organic cations intercalated MnPS3: M-T (a), M-H (b) curves under magnetic fields H // c* and M-H (c) curves under magnetic fields H // ab of MnPS3 and THA-MnPS3; (d) M-H curves of CTA-MnPS3 under magnetic fields H // ab and H // c*. The insets in (b)–(d) show the zoom-in images of M-H curves of THA-MnPS3 under H // c* (b), H // ab (c) and CTA-MnPS3 under magnetic fields H // ab (d) and H // c*, respectively.

    图 6  有机阳离子插层MnPSe3的实验结果 (a) MnPSe3和TBA-MnPSe3H // ab磁场方向的M-T 曲线; (b) T = 5 K时, TBA-MnPSe3H // abH // c*磁场方向下的M-H曲线; (c) T = 5 K时, THA-MnPSe3H // ab磁场下的M-H曲线; (d) Néel型AFM序与FM序的相对能量随掺杂浓度的变化

    Fig. 6.  Experimental results of organic cations intercalated MnPSe3: (a) M-T curves of MnPSe3 and TBA-MnPSe3 under magnetic fields H // ab; (b) M-H curves of TBA-MnPSe3 under magnetic fields H // ab and H // c* at T = 5 K; (c) M-H curve of THA-MnPSe3 under magnetic fields H // ab at T = 5 K; (d) the energy difference between the FM order and Néel AFM order as a function of doping concentration.

  • [1]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133Google Scholar

    [2]

    Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [3]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X D 2017 Nature 546 270Google Scholar

    [4]

    Zhang Z, Shang J, Jiang C, Rasmita A, Gao W, Yu T 2019 Nano Lett. 19 3138Google Scholar

    [5]

    Sun X D, Li W Y, Wang X, Sui Q, Zhang T Y, Wang Z, Liu L, Li D, Feng S, Zhong S Y, Wang H W, Bouchiat V, Nunez Regueiro M, Rougemaille N, Coraux J, Purbawati A, Hadj-Azzem A, Wang Z H, Dong B J, Wu X, Yang T, Yu G Q, Wang B W, Han Z, Han X F, Zhang Z D 2020 Nano Res. 13 3358Google Scholar

    [6]

    Meng L J, Zhou Z, Xu M Q, Yang S Q, Si K P, Liu L X, Wang X G, Jiang H N, Li B X, Qin P X, Zhang P, Wang J L, Liu Z X, Tang P Z, Ye Y, Zhou W, Bao L H, Gao H J, Gong Y J 2021 Nat. Commun. 12 809Google Scholar

    [7]

    Kang L X, Ye C, Zhao X X, Zhou X Y, Hu J X, Li Q, Liu D, Das C M, Yang J F, Hu D Y, Chen J Q, Cao X, Zhang Y, Xu M Z, Di J, Tian D, Song P, Kutty G, Zeng Q S, Fu Q D, Deng Y, Zhou J D, Ariando A, Miao F, Hong G, Huang Y Z, Pennycook S J, Yong K T, Ji W, Wang X R , Liu Z 2020 Nat. Commun. 11 3729Google Scholar

    [8]

    Zhang Y, Chu J W, Yin L, Shifa T A, Cheng Z Z, Cheng R Q, Wang F, Wen Y, Zhan X Y, Wang Z X, He J 2019 Adv. Mater. 31 1900056Google Scholar

    [9]

    Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnol. 13 289Google Scholar

    [10]

    Zhang Z P, Niu J J, Yang P F, Gong Y, Ji Q Q, Shi J P, Fang Q Y, Jiang S L, Li H, Zhou X B, Gu L, Wu X S, Zhang Y F 2017 Adv. Mater. 29 1702359Google Scholar

    [11]

    Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar

    [12]

    Fei Z, Huang B, Malinowski P, Wang W, Song T, Sanchez J, Yao W, Xiao D, Zhu X, May A F, Wu W, Cobden D H, Chu J H, Xu X D 2018 Nat. Mater. 17 778Google Scholar

    [13]

    May A F, Ovchinnikov D, Zheng Q, Hermann R, Calder S, Huang B, Fei Z, Liu Y, Xu X D, McGuire M A 2019 ACS Nano 13 4436Google Scholar

    [14]

    Zhang G J, Guo F, Wu H, Wen X K, Yang L, Jin W, Zhang W F, Chang H X 2022 Nat. Commun. 13 5067Google Scholar

    [15]

    Cai X, Song T, Wilson N P, Clark G, He M, Zhang X, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire M A, Cobden D H, Xu X D 2019 Nano Lett. 19 3993Google Scholar

    [16]

    Lee J U, Lee S, Ryoo J H, Kang S, Kim T Y, Kim P, Park C H, Park J G, Cheong H 2016 Nano Lett. 16 7433Google Scholar

    [17]

    Kim K, Lim S Y, Lee J U, Lee S, Kim T Y, Park K, Jeon G S, Park C H, Park J G, Cheong H 2019 Nat. Commun. 10 345Google Scholar

    [18]

    Kim K, Lim S Y, Kim J, Lee J-U, Lee S, Kim P, Park K, Son S, Park C-H, Park J-G, Cheong H 2019 2D Mater. 6 041001Google Scholar

    [19]

    Gong Y, Guo J W, Li J H, Zhu K J, Liao M H, Liu X Z, Zhang Q H, Gu L, Tang L, Feng X, Zhang D, Li W, Song C L, Wang L L, Yu P, Chen X, Wang Y Y, Yao H, Duan W H, Xu Y, Zhang S C, Ma X C, Xue Q K, He K 2019 Chin. Phys. Lett. 36 076801Google Scholar

    [20]

    Telford E J, Dismukes A H, Lee K, Cheng M, Wieteska A, Bartholomew A K, Chen Y S, Xu X D, Pasupathy A N, Zhu X, Dean C R, Roy X 2020 Adv. Mater. 32 2003240Google Scholar

    [21]

    Otrokov M M, Klimovskikh, II, Bentmann H, Estyunin D, Zeugner A, Aliev Z S, Gass S, Wolter A U B, Koroleva A V, Shikin A M, Blanco-Rey M, Hoffmann M, Rusinov I P, Vyazovskaya A Y, Eremeev S V, Koroteev Y M, Kuznetsov V M, Freyse F, Sanchez Barriga J, Amiraslanov I R, Babanly M B, Mamedov N T, Abdullayev N A, Zverev V N, Alfonsov A, Kataev V, Buchner B, Schwier E F, Kumar S, Kimura A, Petaccia L, Di Santo G, Vidal R C, Schatz S, Kissner K, Unzelmann M, Min C H, Moser S, Peixoto T R F, Reinert F, Ernst A, Echenique P M, Isaeva A, Chulkov E V 2019 Nature 576 416Google Scholar

    [22]

    Thiel L, Wang Z, Tschudin M A, Rohner D, Gutiérrez-Lezama I, Ubrig N, Gibertini M, Giannini E, Morpurgo A F, Maletinsky P 2019 Science 364 973Google Scholar

    [23]

    Li T X, Jiang S W, Sivadas N, Wang Z F, Xu Y, Weber D, Goldberger J E, Watanabe K, Taniguchi T, Fennie C J, Mak K F, Shan J 2019 Nat. Mater. 18 1303Google Scholar

    [24]

    Song T C, Fei Z Y, Yankowitz M, Lin Z, Jiang Q N, Hwangbo K, Zhang Q, Sun B S, Taniguchi T, Watanabe K, McGuire M A, Graf D, Cao T, Chu J H, Cobden D H, Dean C R, Xiao D, Xu X D 2019 Nat. Mater. 18 1298Google Scholar

    [25]

    Cai W P, Sun H L, Xia W, Wu C W, Liu Y, Liu H, Gong Y, Yao D X, Guo Y F, Wang M 2020 Phys. Rev. B 102 144525Google Scholar

    [26]

    Wang Y, Wang C, Liang S J, Ma Z, Xu K, Liu X, Zhang L, Admasu A S, Cheong S W, Wang L, Chen M, Liu Z, Cheng B, Ji W, Miao F 2020 Adv. Mater. 32 e2004533Google Scholar

    [27]

    Li X, Yang J 2014 J. Mater. Chem. C 2 7071Google Scholar

    [28]

    Cenker J, Sivakumar S, Xie K C, Miller A, Thijssen P, Liu Z Y, Dismukes A, Fonseca J, Anderson E, Zhu X Y, Roy X, Xiao D, Chu J H, Cao T, Xu X D 2022 Nat. Nanotechnol. 17 256Google Scholar

    [29]

    Ji Z Q, Huang T, Li Y, Liu X Y, Wei L J, Wu H, Jin J M, Pu Y, Li F 2023 Chin. Phys. Lett. 40 057701Google Scholar

    [30]

    Wang Z W, Liang J H, Yang H X 2023 Chin. Phys. Lett. 40 017501Google Scholar

    [31]

    刘南舒, 王聪, 季威 2022 物理学报 71 127504Google Scholar

    Liu N-S, Wang C, Ji W 2022 Acta Phys. Sin. 71 127504Google Scholar

    [32]

    Cao Y, Zhang X M, Zhang X P, Yan F G, Wang Z A, Zhu W K, Tan H, Golovach V N, Zheng H Z, Wang K Y 2022 Phys. Rev. Appl. 17 L051001Google Scholar

    [33]

    Wang H, Liu Y, Wu P, Hou W, Jiang Y, Li X, Pandey C, Chen D, Yang Q, Wang H, Wei D, Lei N, Kang W, Wen L, Nie T, Zhao W, Wang K L 2020 ACS Nano 14 10045Google Scholar

    [34]

    Jiang S, Shan J, Mak K F 2018 Nat. Mater. 17 406Google Scholar

    [35]

    Wang Z A, Xue W, Yan F, Zhu W K, Liu Y, Zhang X, Wei Z, Chang K, Yuan Z, Wang K 2023 Nano Lett. 23 710Google Scholar

    [36]

    肖寒, 弭孟娟, 王以林 2021 物理学报 70 127503Google Scholar

    Xiao H, Mi M J, Wang Y L 2021 Acta Phys. Sin. 70 127503Google Scholar

    [37]

    Jiang S, Li L, Wang Z, Mak K F, Shan J 2018 Nat. Nanotechnol. 13 549Google Scholar

    [38]

    Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P, Xu X D 2018 Nat. Nanotechnol. 13 544Google Scholar

    [39]

    Wang Z, Zhang T Y, Ding M, Dong B J, Li Y X, Chen M L, Li X X, Huang J Q, Wang H W, Zhao X T, Li Y, Li D, Jia C K, Sun L D, Guo H H, Ye Y, Sun D M, Chen Y S, Yang T, Zhang J, Ono S, Han Z, Zhang Z D 2018 Nat. Nanotechnol. 13 554Google Scholar

    [40]

    Verzhbitskiy I A, Kurebayashi H, Cheng H, Zhou J, Khan S, Feng Y P, Eda G 2020 Nat. Electron. 3 460Google Scholar

    [41]

    Wang N, Tang H, Shi M, Zhang H, Zhuo W, Liu D, Meng F, Ma L, Ying J, Zou L, Sun Z, Chen X 2019 J. Am. Chem. Soc. 141 17166Google Scholar

    [42]

    Mi M J, Zheng X W, Wang S L, Zhou Y, Yu L X, Xiao H, Song H N, Shen B, Li F, Bai L H, Chen Y X, Wang S P, Liu X H, Wang Y L 2022 Adv. Funct. Mater. 32 2112750Google Scholar

    [43]

    Tezze D, Pereira J M, Asensio Y, Ipatov M, Calavalle F, Casanova F, Bittner A M, Ormaza M, Martin-Garcia B, Hueso L E, Gobbi M 2022 Nanoscale 14 1165Google Scholar

    [44]

    Tang M, Huang J W, Qin F, Zhai K, Ideue T, Li Z Y, Meng F H, Nie A M, Wu L L, Bi X Y, Zhang C R, Zhou L, Chen P, Qiu C Y, Tang P Z, Zhang H J, Wan X G, Wang L, Liu Z Y, Tian Y J, Iwasa Y, Yuan H T 2023 Nat. Electron. 6 28Google Scholar

    [45]

    Peng Y X, Ding S L, Cheng M, Hu Q F, Yang J, Wang F G, Xue M Z, Liu Z, Lin Z C, Avdeev M, Hou Y L, Yang W Y, Zheng Y, Yang J B 2020 Adv. Mater. 32 2001200Google Scholar

    [46]

    Hu C W, Gordon K N, Liu P F, Liu J Y, Zhou X Q, Hao P P, Narayan D, Emmanouilidou E, Sun H Y, Liu Y T, Brawer H, Ramirez A P, Ding L, Cao H B, Liu Q H, Dessau D, Ni N 2020 Nat. Commun. 11 97Google Scholar

    [47]

    Gong C, Zhang X 2019 Science 363 eaav4450Google Scholar

    [48]

    Zhang Y, Xu H J, Yi C J, Wang X, Huang Y, Tang J, Jiang J L, He C L, Zhao M K, Ma T Y, Dong J, Guo C Y, Feng J F, Wan C H, Wei H X, Du H F, Shi Y G, Yu G Q, Zhang G Y, Han X F 2021 Appl. Phys. Lett. 118 262406Google Scholar

    [49]

    Alghamdi M, Lohmann M, Li J, Jothi P R, Shao Q, Aldosary M, Su T, Fokwa B P T, Shi J 2019 Nano Lett. 19 4400Google Scholar

    [50]

    Wang X, Tang J, Xia X, He C, Zhang J, Liu Y, Wan C, Fang C, Guo C, Yang W, Guang Y, Zhang X, Xu H, Wei J, Liao M, Lu X, Feng J, Li X, Peng Y, Wei H X, Yang R, Shi D, Zhang X, Han Z, Zhang Z, Zhang G, Yu G Q, Han X F 2019 Sci. Adv. 5 eaaw8904Google Scholar

    [51]

    Shin I, Cho W J, An E S, Park S, Jeong H W, Jang S, Baek W J, Park S Y, Yang D H, Seo J H, Kim G Y, Ali M N, Choi S Y, Lee H W, Kim J S, Kim S D, Lee G H 2022 Adv. Mater. 34 2101730Google Scholar

    [52]

    Ostwal V, Shen T, Appenzeller J 2020 Adv. Mater. 32 1906021Google Scholar

    [53]

    Gupta V, Cham T M, Stiehl G M, Bose A, Mittelstaedt J A, Kang K, Jiang S, Mak K F, Shan J, Buhrman R A, Ralph D C 2020 Nano Lett. 20 7482Google Scholar

    [54]

    Mogi M, Yasuda K, Fujimura R, Yoshimi R, Ogawa N, Tsukazaki A, Kawamura M, Takahashi K S, Kawasaki M, Tokura Y 2021 Nat. Commun. 12 1404Google Scholar

    [55]

    Li W H, Zhu W K, Zhang G J, Wu H, Zhu S G, Li R Z, Zhang E Z, Zhang X M, Deng Y C, Zhang J, Zhao L X, Chang H X, Wang K Y 2023 Adv. Mater. 35 2303688Google Scholar

    [56]

    Nguyen M H, Ralph D C, Buhrman R A 2016 Phys. Rev. Lett. 116 126601Google Scholar

    [57]

    Pai C F, Ou Y X, Vilela-Leao L H, Ralph D C, Buhrman R A 2015 Phys. Rev. B 92 064426Google Scholar

    [58]

    Kao I H, Muzzio R, Zhang H T, Zhu M L, Gobbo J, Yuan S, Weber D, Rao R, Li J H, Edgar J H, Goldberger J E, Yan J Q, Mandrus D G, Hwang J, Cheng R, Katoch J, Singh S 2022 Nat. Mater. 21 1029Google Scholar

    [59]

    Ye X G, Zhu P F, Xu W Z, Shang N Z, Liu K H, Liao Z M 2022 Chin. Phys. Lett. 39 037303Google Scholar

    [60]

    Pan Z C, Li D, Ye X G, Chen Z, Chen Z H, Wang A Q, Tian M, Yao G, Liu K, Liao Z M 2023 Sci. Bull. 68 2743Google Scholar

    [61]

    Song T, Cai X, Tu M W, Zhang X, Huang B, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, Xu X D 2018 Science 360 1214Google Scholar

    [62]

    Song T, Tu M W, Carnahan C, Cai X, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, Xu X D 2019 Nano Lett. 19 915Google Scholar

    [63]

    Lan G B, Xu H J, Zhang Y, Cheng C, He B, Li J H, He C L, Wan C H, Feng J F, Wei H X, Zhang J, Han X F, Yu G Q 2023 Chin. Phys. Lett. 40 058501Google Scholar

    [64]

    Wang Z, Sapkota D, Taniguchi T, Watanabe K, Mandrus D, Morpurgo A F 2018 Nano Lett. 18 4303Google Scholar

    [65]

    Min K-H, Lee D H, Choi S-J, Lee I-H, Seo J, Kim D W, Ko K-T, Watanabe K, Taniguchi T, Ha D H, Kim C, Shim J H, Eom J, Kim J S, Jung S 2022 Nat. Mater. 21 1144Google Scholar

    [66]

    Zhu W K, Lin H L, Yan F G, Hu C, Wang Z, Zhao L X, Deng Y C, Kudrynskyi Z R, Zhou T, Kovalyuk Z D, Zheng Y, Patanè A, Žutić I, Li S, Zheng H, Wang K Y 2021 Adv. Mater. 33 2104658Google Scholar

    [67]

    Zhu W K, Zhu Y M, Zhou T, Zhang X P, Lin H L, Cui Q R, Yan F G, Wang Z, Deng Y C, Yang H X, Zhao L X, Žutić I, Belashchenko K D, Wang K Y 2023 Nat. Commun. 14 5371Google Scholar

    [68]

    Lin H L, Yan F G, Hu C, Lv Q, Zhu W K, Wang Z, Wei Z, Chang K, Wang K Y 2020 ACS Appl. Mater. Interfaces 12 43921Google Scholar

    [69]

    Jin W, Zhang G J, Wu H, Yang L, Zhang W F, Chang H X 2023 Nanoscale 15 5371Google Scholar

    [70]

    Jin W, Zhang G J, Wu H, Yang L, Zhang W F, Chang H X 2023 ACS Appl. Mater. Interfaces 15 36519Google Scholar

    [71]

    Zhu W K, Xie S H, Lin H L, Zhang G J, Wu H, Hu T G, Wang Z A, Zhang X M, Xu J H, Wang Y J, Zheng Y H, Yan F G, Zhang J, Zhao L X, Patané A, Zhang J, Chang H X, Wang K Y 2022 Chin. Phys. Lett. 39 128501Google Scholar

    [72]

    Wiedenmann A, Rossat-Mignod J, Louisy A, Brec R, Rouxel J 1981 Solid State Commun. 40 1067Google Scholar

    [73]

    Coak M J, Jarvis D M, Hamidov H, Haines C R S, Alireza P L, Liu C, Son S, Hwang I, Lampronti G I, Daisenberger D, Nahai-Williamson P, Wildes A R, Saxena S S, Park J G 2020 J. Condens. Matter Phys. 32 124003Google Scholar

    [74]

    Joy P A, Vasudevan S 1992 Phys. Rev. B 46 5425Google Scholar

    [75]

    Bhutani A, Zuo J L, McAuliffe R D, dela Cruz C R, Shoemaker D P 2020 Phys. Rev. Mater. 4 034411Google Scholar

    [76]

    Wang C, He Q Y, Halim U, Liu Y Y, Zhu E B, Lin Z Y, Xiao H, Duan X D, Feng Z Y, Cheng R, Weiss N O, Ye G J, Huang Y C, Wu H, Cheng H C, Shakir I, Liao L, Chen X H, Goddard Iii W A, Huang Y, Duan X F 2018 Nature 555 231Google Scholar

    [77]

    Wang N Z, Shi M Z, Shang C, Meng F B, Ma L K, Luo X G, Chen X H 2018 New J. Phys. 20 023014Google Scholar

    [78]

    Meng F B, Liu Z, Yang L X, Shi M Z, Ge B H, Zhang H, Ying J J, Wang Z F, Wang Z Y, Wu T, Chen X H 2020 Phys. Rev. B 102 165410Google Scholar

    [79]

    Shi M Z, Wang N Z, Lei B, Shang C, Meng F B, Ma L K, Zhang F X, Kuang D Z, Chen X H 2018 Phys. Rev. Mater. 2 074801Google Scholar

    [80]

    Ma L K, Shi M Z, Kang B L, Peng K L, Meng F B, Zhu C S, Cui J H, Sun Z L, Ma D H, Wang H H, Lei B, Wu T, Chen X H 2020 Phys. Rev. Mater. 4 124803Google Scholar

    [81]

    He Q, Lin Z, Ding M, Yin A, Halim U, Wang C, Liu Y, Cheng H C, Huang Y, Duan X 2019 Nano Lett. 19 6819Google Scholar

    [82]

    Li X, Wu X, Yang J 2014 J. Am. Chem. Soc. 136 11065Google Scholar

    [83]

    Chittari B L, Park Y, Lee D, Han M, MacDonald A H, Hwang E, Jung J 2016 Phys. Rev. B 94 184428Google Scholar

    [84]

    Wildes A R, Simonet V, Ressouche E, McIntyre G J, Avdeev M, Suard E, Kimber S A J, Lançon D, Pepe G, Moubaraki B, Hicks T J 2015 Phys. Rev. B 92 224408Google Scholar

    [85]

    Wang F, Shifa T A, Yu P, He P, Liu Y, Wang F, Wang Z, Zhan X, Lou X, Xia F, He J 2018 Adv. Funct. Mater. 28 1802151Google Scholar

    [86]

    Mi M, Xiao H, Yu L, Zhang Y, Wang Y, Cao Q, Wang Y 2023 Materials Today Nano 24 100408Google Scholar

    [87]

    McCreary A, Simpson J R, Mai T T, McMichael R D, Douglas J E, Butch N, Dennis C, Aguilar R V, Walker A R H 2020 Phys. Rev. B 101 064416Google Scholar

    [88]

    Wang X, Du K, Fredrik Liu Y Y, Hu P, Zhang J, Zhang Q, Owen M H S, Lu X, Gan C K, Sengupta P, Kloc C, Xiong Q 2016 2D Mater. 3 031009Google Scholar

    [89]

    Mai T T, Garrity K F, McCreary A, Argo J, Simpson J R, Doan-Nguyen V, Aguilar R V, Walker A R H 2021 Sci. Adv. 7 eabj3106Google Scholar

    [90]

    Sun Y J, Tan Q H, Liu X L, Gao Y F, Zhang J 2019 J. Phys. Chem. Lett. 10 3087Google Scholar

    [91]

    Basnet R, Wegner A, Pandey K, Storment S, Hu J 2021 Phys. Rev. Mater. 5 064413Google Scholar

    [92]

    Han H, Lin H, Gan W, Xiao R C, Liu Y C, Ye J F, Chen L M, Wang W W, Zhang L, Zhang C J, Li H 2023 Phys. Rev. B 107 075423Google Scholar

    [93]

    Calder S, Haglund A V, Kolesnikov A I, Mandrus D 2021 Phys. Rev. B 103 024414Google Scholar

    [94]

    Le Flem G, Brec R, Ouvard G, Louisy A, Segransan P 1982 J. Phys. Chem. Solids 43 455Google Scholar

    [95]

    Jeevanandam P, Vasudevan S 1999 J. Condens. Matter Phys. 11 3563Google Scholar

    [96]

    Bao W Z, Wan J Y, Han X G, Cai X H, Zhu H L, Kim D K, Ma D K, Xu Y L, Munday J N, Drew H D, Fuhrer M S, Hu L B 2014 Nat. Commun. 5 4224Google Scholar

    [97]

    Wan C, Gu X, Dang F, Itoh T, Wang Y, Sasaki H, Kondo M, Koga K, Yabuki K, Snyder G J, Yang R, Koumoto K 2015 Nat. Mater. 14 622Google Scholar

    [98]

    Kang B L, Shi M Z, Li S J, Wang H H, Zhang Q, Zhao D, Li J, Song D W, Zheng L X, Nie L P, Wu T, Chen X H 2020 Phys. Rev. Lett. 125 097003Google Scholar

    [99]

    Zhao Y, Su Y, Guo Y, Peng J, Zhao J, Wang C, Wang L, Wu C, Xie Y 2021 ACS Mater. Lett. 3 210Google Scholar

  • [1] 杨瑞龙, 张钰樱, 杨柯, 姜琦涛, 杨晓婷, 郭金中, 许小红. 二维钒掺杂Cr2S3纳米片的生长与磁性研究. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231229
    [2] 熊宜浓, 吴闯文, 任传童, 孟德全, 陈是位, 梁世恒. 基于二维磁性材料的自旋轨道力矩研究进展. 物理学报, 2024, 73(1): 017502. doi: 10.7498/aps.73.20231244
    [3] 张颖, 李卓霖, 沈保根. 磁畴壁拓扑结构研究进展. 物理学报, 2024, 73(1): 017504. doi: 10.7498/aps.73.20231612
    [4] 谭碧, 高栋, 邓登福, 陈姝瑶, 毕磊, 刘冬华, 刘涛. Mn3Sn薄膜磁相变的输运表征. 物理学报, 2024, 73(6): 067501. doi: 10.7498/aps.73.20231766
    [5] 杨瑞龙, 张钰樱, 杨柯, 姜琦涛, 杨晓婷, 郭金中, 许小红. 二维钒掺杂Cr2S3纳米片的生长与磁性研究. 物理学报, 2023, 72(24): 247501. doi: 10.7498/aps.72.20231229
    [6] 石孟竹, 康宝蕾, 孟凡保, 吴涛, 陈仙辉. 有机分子插层调控二维关联电子系统的研究进展. 物理学报, 2022, 71(12): 127403. doi: 10.7498/aps.71.20220856
    [7] 刘南舒, 王聪, 季威. 磁性二维材料的近期研究进展. 物理学报, 2022, 71(12): 127504. doi: 10.7498/aps.71.20220301
    [8] 易恩魁, 王彬, 沈韩, 沈冰. 轴子拓扑绝缘体候选材料层状${\bf{Eu}}_{ 1- x}{\bf{Ca}}_{ x}{\bf{In}}_{\bf2}{\bf{As}}_{\bf2}$的物性研究. 物理学报, 2021, 70(12): 127502. doi: 10.7498/aps.70.20210042
    [9] 张颂歌, 陈雨彤, 王宁, 柴扬, 龙根, 张广宇. 二维CrI3晶体的磁性测量与调控. 物理学报, 2021, 70(12): 127504. doi: 10.7498/aps.70.20202197
    [10] 王海宇, 刘英杰, 寻璐璐, 李竞, 杨晴, 田祺云, 聂天晓, 赵巍胜. 大面积二维磁性材料的制备及居里温度调控. 物理学报, 2021, 70(12): 127301. doi: 10.7498/aps.70.20210223
    [11] 肖寒, 弭孟娟, 王以林. 二维磁性材料及多场调控研究进展. 物理学报, 2021, 70(12): 127503. doi: 10.7498/aps.70.20202204
    [12] 蒋小红, 秦泗晨, 幸子越, 邹星宇, 邓一帆, 王伟, 王琳. 二维磁性材料的物性研究及性能调控. 物理学报, 2021, 70(12): 127801. doi: 10.7498/aps.70.20202146
    [13] 郝志红, 王海英, 张荃, 莫兆军. Eu0.9M0.1TiO3(M=Ca,Sr,Ba,La,Ce,Sm)的磁性和磁热效应. 物理学报, 2018, 67(24): 247502. doi: 10.7498/aps.67.20181750
    [14] 杨静洁, 赵金良, 许磊, 张红国, 岳明, 刘丹敏, 蒋毅坚. 间隙原子H,B,C对LaFe11.5Al1.5化合物磁性和磁热效应的影响. 物理学报, 2018, 67(7): 077501. doi: 10.7498/aps.67.20172250
    [15] 齐伟华, 李壮志, 马丽, 唐贵德, 吴光恒, 胡凤霞. 磁性材料磁有序的分子场来源. 物理学报, 2017, 66(6): 067501. doi: 10.7498/aps.66.067501
    [16] 张志东. 磁性材料的磁结构、磁畴结构和拓扑磁结构. 物理学报, 2015, 64(6): 067503. doi: 10.7498/aps.64.067503
    [17] 丁磊, 王聪, 褚立华, 纳元元, 闫君. 反钙钛矿Mn3AX化合物的晶格、磁性和电输运性质的研究进展. 物理学报, 2011, 60(9): 097507. doi: 10.7498/aps.60.097507
    [18] 张立刚, 陈 静, 朱伯铨, 李亚伟, 汪汝武, 李云宝, 张国宏, 李 钰. NaZn13型结构LaFe13-xAlxCy化合物的磁熵变与磁相变的研究. 物理学报, 2006, 55(10): 5506-5510. doi: 10.7498/aps.55.5506
    [19] 金属间化合物DyMn2Ge2的自发磁相变和场诱导的磁相变. 物理学报, 2001, 50(2): 313-318. doi: 10.7498/aps.50.313
    [20] 郭光华, R.Z.LEVITIN. 金属间化合物RMn2Ge2(R=La,Pr,Nd,Sm,Gd,Tb和Y)中的自发磁相变 及相变时的磁弹性异常. 物理学报, 2000, 49(9): 1838-1845. doi: 10.7498/aps.49.1838
计量
  • 文章访问数:  1398
  • PDF下载量:  194
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-24
  • 修回日期:  2024-02-06
  • 上网日期:  2024-02-19
  • 刊出日期:  2024-03-05

/

返回文章
返回