-
信息技术的高速发展对信息处理与存储器件的性能提出了更高的要求. 同时, 随着器件尺寸不断减小, 传统基于电子电荷属性的半导体器件面临热耗散和量子尺寸效应的难题与挑战, 半导体技术也由此进入后摩尔时代. 区别于传统基于电荷的电子器件, 基于自旋属性的非易失性自旋电子器件不但具有较高的集成度、读写速度及读写次数, 而且可有效避免热耗散, 为信息存储、处理和通信等领域的发展构建了新的技术平台. 近年来, 二维材料凭借其独特的能带结构和丰富的物理性质而备受关注, 特别是二维磁性材料体系在自旋电子学领域展现出极大的研究潜力和应用价值. 本文首先介绍了二维材料常见制备方法, 聚焦概述了二维磁性材料在自旋轨道电子学领域中的研究进展, 最后对本领域研究进行了展望.The rapid development of information technology has put forward higher requirements for the performance of information processing and storage devices. At the same time, with the continuous reduction of device size, traditional semiconductor devices based on electron charge properties face the problems and challenges of thermal dissipation and quantum size effect, and semiconductor technology has entered the post-molar era. Unlike traditional charge-based electronic devices, spin-based non-volatile spintronic devices not only have high integrated density, read and write speed and read and write time, but also can effectively avoid heat dissipation, establishing a new technical platform for developing the information storage, processing and communication. In recent years, two-dimensional materials have attracted a lot of attention due to their unique band structures and rich physical properties. Two-dimensional magnetic materials have shown great research and application potential in the field of spintronics. Compared with traditional block materials, the two-dimensional materials can provide great opportunities for exploring novel physical effects and ultra-low-power devices due to their atomic thickness, ultra-clean interface and flexible stacking. At the same time, with the rise of topological materials (TMs), their topological protected band structures, diversified crystal structures and symmetries, strong spin-orbit coupling and adjustable electrical conductivity provide an ideal physical research platform for studying spintronics. In this paper, we first introduce the common methods of preparing two-dimensional materials, then focus on the research progress of two-dimensional magnetic materials in the field of spin-orbit electronics, and finally look forward to the research challenges in this field. In the future, with continuous in-depth research on the preparation, physical properties and device applications of two-dimensional magnetic materials, two-dimensional magnetic materials will show more extensive research prospects and application value in the field of spintronics. Two-dimensional magnetic materials will provide more material systems for spintronics development.
-
Keywords:
- spintronics /
- two-dimensional magnetic materials /
- spin orbit torque
[1] Hirsch J E 1999 Phys. Rev. Lett. 83 1834Google Scholar
[2] Bychkov Y A 1984 Jetp Lett. 39 78
[3] Edelstein V M 1990 Solid State Commun. 73 233Google Scholar
[4] Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189Google Scholar
[5] Liu L, Lee O J, Gudmundsen T J, Ralph D C, Buhrman R A 2012 Phys. Rev. Lett. 109 096602Google Scholar
[6] Cubukcu M, Boulle O, Mikuszeit N, Hamelin C, Bracher T, Lamard N, Cyrille M C, Buda-Prejbeanu L, Garello K, Miron I M, Klein O, de Loubens G, Naletov V V, Langer J, Ocker B, Gambardella P, Gaudin G 2018 IEEE T. Magn. 54 1Google Scholar
[7] Hsu W H, Bell R, Victora R H 2018 IEEE T. Magn. 54 1Google Scholar
[8] Shao Q, Li P, Liu L, Yang H, Fukami S, Razavi A, Wu H, Wang K, Freimuth F, Mokrousov Y, Stiles M D, Emori S, Hoffmann A, Akerman J, Roy K, Wang J P, Yang S H, Garello K, Zhang W 2021 IEEE T. Magn. 57 800439Google Scholar
[9] Han X, Wang X, Wan C, Yu G, Lü X 2021 Appl. Phys. Lett. 118 120502Google Scholar
[10] Miron I M 2014 Nat. Nanotechnol. 9 502Google Scholar
[11] Song C, Zhang R, Liao L, Zhou Y, Zhou X, Chen R, You Y, Chen X, Pan F 2021 Prog. Mater. Sci. 118 100761Google Scholar
[12] Liu L, Zhao T, Lin W, Shu X, Zhou J, Zheng Z, Chen H, Jia L, Chen J 2023 Appl. Phys. Rev. 10 021319Google Scholar
[13] Novoselov K S, Geim A K, Morozov S V, Jiang D E, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar
[14] Koppens F H, Mueller T, Avouris P, Ferrari A C, Vitiello M S, Polini M 2014 Nat. Nanotechnol. 9 780Google Scholar
[15] Chen W, Sun Z, Wang Z, Gu L, Xu X, Wu S, Gao C 2019 Science 366 983Google Scholar
[16] Yan B, Zhang S C 2012 Rep. Prog. Phys. 75 096501Google Scholar
[17] Jiang J, Tang F, Pan X C, Liu H M, Niu X H, Wang Y X, Xu D F, Yang H F, Xie B P, Song F Q, Dudin P, Kim T K, Hoesch M, Das P K, Vobornik I, Wan X G, Feng D L 2015 Phys. Rev. Lett. 115 166601Google Scholar
[18] Thoutam L R, Wang Y L, Xiao Z L, Das S, Luican-Mayer A, Divan R, Crabtree G W, Kwok W K 2015 Phys. Rev. Lett. 115 046602Google Scholar
[19] MacNeill D, Stiehl G M, Guimaraes M H D, Buhrman R A, Park J, Ralph D C 2016 Nat. Phys. 13 300Google Scholar
[20] Hashimoto A, Suenaga K, Gloter A, Urita K, Iijima S 2004 Nature 430 870Google Scholar
[21] Yi M, Shen Z 2015 J. Mater. Chem. A 3 11700Google Scholar
[22] Ruppert C, Aslan B, Heinz T F 2014 Nano lett. 14 6231Google Scholar
[23] Jiang C, Liu F, Cuadra J, Huang Z, Li K, Rasmita A, Srivastava A, Liu Z, Gao W B 2017 Nat. Commun. 8 802Google Scholar
[24] Wang J, Luo X, Li S, Verzhbitskiy I, Zhao W, Wang S, Quek S Y, Eda G 2017 Adv. Funct. Mater. 27 1604799Google Scholar
[25] Lee C H, Silva E C, Calderin L, Nguyen M A T, Hollander M J, Bersch B, Mallouk T E, Robinson J A 2015 Sci. Rep. 5 10013Google Scholar
[26] Woods J M, Shen J, Kumaravadivel P, Pang Y, Xie Y, Pan G A, Li M, Altman E I, Lu L, Cha J J 2017 ACS Appl. Mater. Interfaces 9 23175Google Scholar
[27] Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P 2014 Nature 514 205Google Scholar
[28] Cunningham G, Lotya M, Cucinotta C S, Sanvito S, Bergin S D, Menzel R, Shaffer M S, Coleman J N 2012 ACS Nano 6 3468Google Scholar
[29] Coleman J N, Lotya M, O’Neill A, Bergin S D, King P J, Khan U, Young K, Gaucher A, De S, Smith R J 2011 Science 331 568Google Scholar
[30] Mao D, Du B, Yang D, Zhang S, Wang Y, Zhang W, She X, Cheng H, Zeng H, Zhao J 2016 Small 12 1489Google Scholar
[31] Yu P, Fu W, Zeng Q, Lin J, Yan C, Lai Z, Tang B, Suenaga K, Zhang H, Liu Z 2017 Adv. Mater. 29 1701909Google Scholar
[32] Kang K, Xie S, Huang L, Han Y, Huang P Y, Mak K F, Kim C J, Muller D, Park J 2015 Nature 520 656Google Scholar
[33] Wu M, Zeng X C 2017 Nano Lett. 17 6309Google Scholar
[34] Hong Y L, Liu Z, Wang L, Zhou T, Ma W, Xu C, Feng S, Chen L, Chen M L, Sun D M 2020 Science 369 670Google Scholar
[35] Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutiérrez H R, Heinz T F, Hong S S, Huang J, Ismach A F 2013 ACS Nano 7 2898Google Scholar
[36] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar
[37] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H 2017 Nature 546 270Google Scholar
[38] Li W H, Zhu W K, Zhang G J, Wu H, Zhu S G, Li R Z, Zhang E Z, Zhang X M, Deng Y C, Zhang J, Zhao L X, Chang H X, Wang K Y 2023 arXiv: 2304.10718 [physics.app-ph
[39] Wang K Y, Hu T, Jia F H, Zhao G D, Liu Y Y, Solovyev I V, Pyatakov A P, Zvezdin A K, Ren W 2019 Appl. Phys. Lett. 114 092405Google Scholar
[40] Gupta V, Cham T M, Stiehl G M, Bose A, Mittelstaedt J A, Kang K, Jiang S, Mak K F, Shan J, Buhrman R A 2020 Nano Lett. 20 7482Google Scholar
[41] Chen B, Yang J, Wang H D, Imai M, Ohta H, Michioka C, Yoshimura K, Fang M H 2013 J. Phys. Soc. Jpn. 82 124711Google Scholar
[42] Zhang C, Fukami S, Sato H, Matsukura F, Ohno H 2015 Appl. Phys. Lett. 107 012401Google Scholar
[43] Emori S, Bauer U, Ahn S M, Martinez E, Beach G S 2013 Nat. Mater. 12 611Google Scholar
[44] Lohmann M, Su T, Niu B, Hou Y, Alghamdi M, Aldosary M, Xing W, Zhong J, Jia S, Han W 2019 Nano Lett. 19 2397Google Scholar
[45] Ostwal V, Shen T, Appenzeller J 2020 Adv. Mater. 32 1906021Google Scholar
[46] Hou Y, Wei Y, Yang D, Wang K, Ren K, Zhang G 2023 Molecules 28 3893Google Scholar
[47] Liu B, Zou Y, Zhou S, Zhang L, Wang Z, Li H, Qu Z, Zhang Y 2017 Sci. Rep. 7 6184Google Scholar
[48] Alghamdi M, Lohmann M, Li J, Jothi P R, Shao Q, Aldosary M, Su T, Fokwa B P, Shi J 2019 Nano Lett. 19 4400Google Scholar
[49] Shao Q, Yu G, Lan Y W, Shi Y, Li M Y, Zheng C, Zhu X, Li L J, Amiri P K, Wang K L 2016 Nano Lett. 16 7514Google Scholar
[50] Wang X, Tang J, Xia X, He C, Zhang J, Liu Y, Wan C, Fang C, Guo C, Yang W 2019 Sci. Adv. 5 eaaw8904Google Scholar
[51] Zhang K, Han S, Lee Y, Coak M J, Kim J, Hwang I, Son S, Shin J, Lim M, Jo D 2021 Adv. Mater. 33 2004110Google Scholar
[52] Miao Y, Huang Y, Fang Q, Yang Z, Xu K, Ma F, Chu P K 2016 J. Mater. Sci. 51 9514Google Scholar
[53] Kaloni T P 2014 J. Phys. Chem. C 118 25200Google Scholar
[54] Mao Y, Guo G, Yuan J, Zhong J 2019 Appl. Surface Sci. 464 236Google Scholar
[55] Ersan F, Arkin H, Aktürk E 2017 RSC Adv. 7 37815Google Scholar
-
图 3 (a)外加垂直于Cr2Ge2Te6层平面的电场与引起的磁各向异性能量的依赖关系[39]; (b)在面内和面外易轴条件下, 反铁磁和铁磁态之间的能量差异[40]
Fig. 3. (a) Dependence of the magnetic anisotropy energy on the externally applied electric field which is perpendicular to the CGT layer plane[39]; (b) energy difference of the AFM and FM configurations with the in-plane and out-of-plane easy axes[40].
图 4 (a)被制备成Hall bar形状的用于输运测量的CGT/Pt异质结构的光学图像[41]; (b) 由电流产生的类阻尼力矩(ΔBDL)和类场力矩(ΔBFL)作用于磁化矢量m而产生的有效场方向[41]; (c) 面内场Bx = ± 100 mT时, CGT (8.9 nm)/Ta (6 nm)样品中电流驱动磁矩翻转曲线[41]
Fig. 4. (a) Optical image of a CGT/Pt heterostructure patterned into a Hall bar geometry (4 μm ×11 μm) for transport measurements[41]; (b) orientation of effective fields due to current-induced damping-like torque (∆BDL) and field-like torque (∆BFL) acting on the magnetization vector m[41]; (c) spin-orbit-torque switching of the magnetization in a CGT(8.9 nm)/Ta(6 nm) sample in the presence of an in-plane field Bx = ± 100 mT[41].
图 5 (a)具有不同CGT厚度的CGT/Pt(10 nm) 异质结在5 K条件下测量的反常霍尔电阻; (b)在CGT(10.5 nm)/Ta(6 nm)样品中观察到的反常霍尔电阻; (c)不同温度下CGT(10.5 nm)/Ta(6 nm)异质结磁化强度的光学MCD测试结果[41]
Fig. 5. (a) Anomalous Hall resistance observed in CGT/Pt(10 nm) heterostructures at 5 K, for different CGT thicknesses; (b) anomalous Hall resistance observed in a CGT(10.5 nm)/Ta(6 nm) sample; (c) optical MCD detection of magnetization in the same CGT(10.5 nm)/Ta(6 nm) sample at different temperatures[41].
图 6 (a) FGT/Pt双层结构示意图, 其中Pt层(顶部)被溅射在剥离的FGT(底部)上. 绿色箭头表示在Pt层内的面内电流可产生沿z方向的自旋流, 底部(顶部)Pt表面积累的自旋由红色(蓝色)箭头表示, 自旋流会对FGT的磁矩施加力矩, 并在存在平面磁场的情况下将其翻转[50]. (b)用于输运测量的Hall bar器件的光学图像[50]
Fig. 6. (a) Schematic view of the FGT/Pt bilayer structure, Pt layer (top) is sputtered on top of the exfoliated FGT (bottom). The green arrow represents the in-plane current flowing in the Pt layer, which generates a spin current flowing in the z direction, the accumulated spins at the bottom (top) Pt surface are indicated by the red (blue) arrows, the spin current exerts torques on the magnetization of FGT and can switch it in the presence of an in-plane magnetic field[50]. (b) Optical image of the measured Hall bar device[50]
图 7 FGT/Pt双层薄膜的磁性性质 (a)不同温度下, 霍尔电阻随磁场的变化曲线; (b) FGT/Pt器件的阿罗特图, 其临界温度为158 K; (c) 90 K下, 反常霍尔电阻随面内(IP)和面外(OOP)磁场的变化曲线[50]
Fig. 7. Magnetic properties of FGT/Pt bilayer: (a) Hall resistance as a function of magnetic field at different temperatures; (b) arrott plots of the Hall resistance of the FGT/Pt device, and the determined TC is 158 K; (c) RAHE as a function of in-plane (IP) and out-of-plane (OOP) magnetic field at 90 K[50].
图 8 FGT/Pt双层膜器件中的自旋轨道力矩驱动的垂直磁矩翻转[50] (a), (b) 100 K温度下, 50 mT (a)和–50 mT (b)面内磁场辅助时实现的电流驱动的垂直磁矩翻转, 其翻转极性分别为逆时针和顺时针, 虚线对应饱和磁化状态下的RAHE; (c) 10 K温度下, 300 mT面内辅助磁场下实现的电流驱动的垂直磁矩翻转(红色曲线), 箭头表示扫描电流方向; (d)不同温度下, 面内磁场和临界翻转电流的相图
Fig. 8. SOT-driven perpendicular magnetization switching in the FGT/Pt bilayer device[50]: (a), (b) Current-driven perpendicular magnetization switching for in-plane magnetic fields of 50 mT (a) and –50 mT (b) at 100 K, the switching polarity is anticlockwise and clockwise, respectively, the dashed lines correspond to the RAHE at saturated magnetization states; (c) current-driven perpendicular magnetization switching with a 300 mT in-plane magnetic field at 10 K (red), the arrows indicate the current sweeping direction; (d) switching-phase diagram with respect to the in-plane magnetic fields and critical switching currents at different temperatures.
图 9 (a)基于二维Fe3GeTe2薄膜的Hall bar结构器件光学图像, 比例尺为10 μm[51]; (b)经原子力显微镜测试, 样品厚度为21.3 nm[51]; (c)纵向电阻Rxx随温度T的变化, 红色箭头表示由自旋翻转散射引起的磁性转变, 从中确定转变温度Tc = 185 K[51]; (d) 2 K下, 霍尔电阻Rxy随磁场H的变化[51]
Fig. 9. (a) Optical image of a typical Fe3GeTe2 nanoflake sample with a Hall-bar geometry electrode, and the white scale bar represents 10 μm[51]; (b) thickness of sample is 21.3 nm as measured by AFM[51]; (c) longitudinal resistance Rxx as a function of temperature T with current = 0.05 mA, the red arrow indicates the magnetic transition due to spin-flip scattering, from which Tc = 185 K is determined[51]; (d) Hall resistance Rxy as a function of magnetic field H at 2 K[51].
图 10 (a) 2 K温度下, 当施加电流从0.05变化到1.5 mA时S1样品的霍尔曲线[51]; (b) 2 K温度下, S1样品的矫顽场Hc和剩余霍尔电阻$ R_{xy}^{\text{r}} $随施加电流的变化曲线[51]; (c) 2 K温度下, 样品S1 (21.3 nm), S2 (16.7 nm), S3 (6 nm), S4 (42 nm)和S5 (17.5 nm)的Hc(I )/Hc (其中I为最小电流)随施加电流的变化曲线[51]; (d) 2 K温度下, 样品S1, S2, S3, S4和S5的Hc(j )/Hc (其中j ≈ l mA/m2)随电流密度j变化[51]
Fig. 10. (a) Rxy-H curves of sample S1 at 2 K with applied current varying I from 0.05 to 1.5 mA[51]; (b) extracted coercive field Hc and remnant Hall resistance $ R_{xy}^{\text{r}} $ of sample Sl as a function of applied current I at 2 K[51]; (c) Hc(I )/Hc (smallest I ) as a function of applied current for sample S1 (213 nm), S2 (167 nm), S3 (6 nm), S4 (42 nm), and S5 (17.5 nm) at 2 K[51]; (d) Hc(j )/Hc (j ≈ l mA/m2) as a function of current density j for sample S1, S2, S3, S4, and S5 at 2 K[51].
-
[1] Hirsch J E 1999 Phys. Rev. Lett. 83 1834Google Scholar
[2] Bychkov Y A 1984 Jetp Lett. 39 78
[3] Edelstein V M 1990 Solid State Commun. 73 233Google Scholar
[4] Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189Google Scholar
[5] Liu L, Lee O J, Gudmundsen T J, Ralph D C, Buhrman R A 2012 Phys. Rev. Lett. 109 096602Google Scholar
[6] Cubukcu M, Boulle O, Mikuszeit N, Hamelin C, Bracher T, Lamard N, Cyrille M C, Buda-Prejbeanu L, Garello K, Miron I M, Klein O, de Loubens G, Naletov V V, Langer J, Ocker B, Gambardella P, Gaudin G 2018 IEEE T. Magn. 54 1Google Scholar
[7] Hsu W H, Bell R, Victora R H 2018 IEEE T. Magn. 54 1Google Scholar
[8] Shao Q, Li P, Liu L, Yang H, Fukami S, Razavi A, Wu H, Wang K, Freimuth F, Mokrousov Y, Stiles M D, Emori S, Hoffmann A, Akerman J, Roy K, Wang J P, Yang S H, Garello K, Zhang W 2021 IEEE T. Magn. 57 800439Google Scholar
[9] Han X, Wang X, Wan C, Yu G, Lü X 2021 Appl. Phys. Lett. 118 120502Google Scholar
[10] Miron I M 2014 Nat. Nanotechnol. 9 502Google Scholar
[11] Song C, Zhang R, Liao L, Zhou Y, Zhou X, Chen R, You Y, Chen X, Pan F 2021 Prog. Mater. Sci. 118 100761Google Scholar
[12] Liu L, Zhao T, Lin W, Shu X, Zhou J, Zheng Z, Chen H, Jia L, Chen J 2023 Appl. Phys. Rev. 10 021319Google Scholar
[13] Novoselov K S, Geim A K, Morozov S V, Jiang D E, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar
[14] Koppens F H, Mueller T, Avouris P, Ferrari A C, Vitiello M S, Polini M 2014 Nat. Nanotechnol. 9 780Google Scholar
[15] Chen W, Sun Z, Wang Z, Gu L, Xu X, Wu S, Gao C 2019 Science 366 983Google Scholar
[16] Yan B, Zhang S C 2012 Rep. Prog. Phys. 75 096501Google Scholar
[17] Jiang J, Tang F, Pan X C, Liu H M, Niu X H, Wang Y X, Xu D F, Yang H F, Xie B P, Song F Q, Dudin P, Kim T K, Hoesch M, Das P K, Vobornik I, Wan X G, Feng D L 2015 Phys. Rev. Lett. 115 166601Google Scholar
[18] Thoutam L R, Wang Y L, Xiao Z L, Das S, Luican-Mayer A, Divan R, Crabtree G W, Kwok W K 2015 Phys. Rev. Lett. 115 046602Google Scholar
[19] MacNeill D, Stiehl G M, Guimaraes M H D, Buhrman R A, Park J, Ralph D C 2016 Nat. Phys. 13 300Google Scholar
[20] Hashimoto A, Suenaga K, Gloter A, Urita K, Iijima S 2004 Nature 430 870Google Scholar
[21] Yi M, Shen Z 2015 J. Mater. Chem. A 3 11700Google Scholar
[22] Ruppert C, Aslan B, Heinz T F 2014 Nano lett. 14 6231Google Scholar
[23] Jiang C, Liu F, Cuadra J, Huang Z, Li K, Rasmita A, Srivastava A, Liu Z, Gao W B 2017 Nat. Commun. 8 802Google Scholar
[24] Wang J, Luo X, Li S, Verzhbitskiy I, Zhao W, Wang S, Quek S Y, Eda G 2017 Adv. Funct. Mater. 27 1604799Google Scholar
[25] Lee C H, Silva E C, Calderin L, Nguyen M A T, Hollander M J, Bersch B, Mallouk T E, Robinson J A 2015 Sci. Rep. 5 10013Google Scholar
[26] Woods J M, Shen J, Kumaravadivel P, Pang Y, Xie Y, Pan G A, Li M, Altman E I, Lu L, Cha J J 2017 ACS Appl. Mater. Interfaces 9 23175Google Scholar
[27] Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P 2014 Nature 514 205Google Scholar
[28] Cunningham G, Lotya M, Cucinotta C S, Sanvito S, Bergin S D, Menzel R, Shaffer M S, Coleman J N 2012 ACS Nano 6 3468Google Scholar
[29] Coleman J N, Lotya M, O’Neill A, Bergin S D, King P J, Khan U, Young K, Gaucher A, De S, Smith R J 2011 Science 331 568Google Scholar
[30] Mao D, Du B, Yang D, Zhang S, Wang Y, Zhang W, She X, Cheng H, Zeng H, Zhao J 2016 Small 12 1489Google Scholar
[31] Yu P, Fu W, Zeng Q, Lin J, Yan C, Lai Z, Tang B, Suenaga K, Zhang H, Liu Z 2017 Adv. Mater. 29 1701909Google Scholar
[32] Kang K, Xie S, Huang L, Han Y, Huang P Y, Mak K F, Kim C J, Muller D, Park J 2015 Nature 520 656Google Scholar
[33] Wu M, Zeng X C 2017 Nano Lett. 17 6309Google Scholar
[34] Hong Y L, Liu Z, Wang L, Zhou T, Ma W, Xu C, Feng S, Chen L, Chen M L, Sun D M 2020 Science 369 670Google Scholar
[35] Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutiérrez H R, Heinz T F, Hong S S, Huang J, Ismach A F 2013 ACS Nano 7 2898Google Scholar
[36] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar
[37] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H 2017 Nature 546 270Google Scholar
[38] Li W H, Zhu W K, Zhang G J, Wu H, Zhu S G, Li R Z, Zhang E Z, Zhang X M, Deng Y C, Zhang J, Zhao L X, Chang H X, Wang K Y 2023 arXiv: 2304.10718 [physics.app-ph
[39] Wang K Y, Hu T, Jia F H, Zhao G D, Liu Y Y, Solovyev I V, Pyatakov A P, Zvezdin A K, Ren W 2019 Appl. Phys. Lett. 114 092405Google Scholar
[40] Gupta V, Cham T M, Stiehl G M, Bose A, Mittelstaedt J A, Kang K, Jiang S, Mak K F, Shan J, Buhrman R A 2020 Nano Lett. 20 7482Google Scholar
[41] Chen B, Yang J, Wang H D, Imai M, Ohta H, Michioka C, Yoshimura K, Fang M H 2013 J. Phys. Soc. Jpn. 82 124711Google Scholar
[42] Zhang C, Fukami S, Sato H, Matsukura F, Ohno H 2015 Appl. Phys. Lett. 107 012401Google Scholar
[43] Emori S, Bauer U, Ahn S M, Martinez E, Beach G S 2013 Nat. Mater. 12 611Google Scholar
[44] Lohmann M, Su T, Niu B, Hou Y, Alghamdi M, Aldosary M, Xing W, Zhong J, Jia S, Han W 2019 Nano Lett. 19 2397Google Scholar
[45] Ostwal V, Shen T, Appenzeller J 2020 Adv. Mater. 32 1906021Google Scholar
[46] Hou Y, Wei Y, Yang D, Wang K, Ren K, Zhang G 2023 Molecules 28 3893Google Scholar
[47] Liu B, Zou Y, Zhou S, Zhang L, Wang Z, Li H, Qu Z, Zhang Y 2017 Sci. Rep. 7 6184Google Scholar
[48] Alghamdi M, Lohmann M, Li J, Jothi P R, Shao Q, Aldosary M, Su T, Fokwa B P, Shi J 2019 Nano Lett. 19 4400Google Scholar
[49] Shao Q, Yu G, Lan Y W, Shi Y, Li M Y, Zheng C, Zhu X, Li L J, Amiri P K, Wang K L 2016 Nano Lett. 16 7514Google Scholar
[50] Wang X, Tang J, Xia X, He C, Zhang J, Liu Y, Wan C, Fang C, Guo C, Yang W 2019 Sci. Adv. 5 eaaw8904Google Scholar
[51] Zhang K, Han S, Lee Y, Coak M J, Kim J, Hwang I, Son S, Shin J, Lim M, Jo D 2021 Adv. Mater. 33 2004110Google Scholar
[52] Miao Y, Huang Y, Fang Q, Yang Z, Xu K, Ma F, Chu P K 2016 J. Mater. Sci. 51 9514Google Scholar
[53] Kaloni T P 2014 J. Phys. Chem. C 118 25200Google Scholar
[54] Mao Y, Guo G, Yuan J, Zhong J 2019 Appl. Surface Sci. 464 236Google Scholar
[55] Ersan F, Arkin H, Aktürk E 2017 RSC Adv. 7 37815Google Scholar
计量
- 文章访问数: 3414
- PDF下载量: 256
- 被引次数: 0