-
超快退磁的发现提供了一种使用超短激光产生超快自旋流的新手段,从而可能更快地操纵材料磁性。然而,这一过程仍未被理解,尤其是超快自旋流在层间转移中的影响因素尚不明晰。本文利用超扩散自旋输运模型对Ni/Ru/Fe自旋阀结构体系的超快自旋输运机制进行了深入研究,尤其关注层间自旋转移效率对铁磁层超快磁动力学的影响。本研究计算出铁磁层在不同磁化排列下的退磁差异,并通过调节间隔层厚度,揭示出超快自旋输运在磁动力学中的关键作用。此外,还确定了热电子自旋流在间隔层中的自旋衰减长度。通过控制激光的薄膜吸收,进一步发现了能够引起铁磁层瞬态磁化增强的条件。这些结果对于理解热电子自旋流的输运机制具有重要意义,为未来控制超快自旋流提供了理论基础。The discovery of ultrafast demagnetization has introduced a new approach for generating ultrafast spin currents using an ultrashort laser, potentially enabling faster manipulation of material magnetism. This has sparked research into the transport mechanisms of ultrafast spin currents. However, the underlying processes remain poorly understood, particularly the factors influencing interlayer spin transfer. This study employs a superdiffusive spin transport model to investigate the ultrafast spin transport mechanisms in the Ni/Ru/Fe spin valve system, with a particular focus on how interlayer spin transfer affects the ultrafast magnetization dynamics of the ferromagnetic layer. First, by calculating the laser-induced magnetization dynamics of the Ni/Ru/Fe system under different magnetization alignments, the study validates recent experimental findings. Further analysis reveals that reducing the thickness of the Ru spacer layer significantly enhances the spin current intensity and increases the demagnetization difference in the Fe layer, confirming the key role of the hot electron spin current generated by the Ni layer in interlayer spin transport. Additionally, the spin decay length of hot electron spin currents in the spacer Ru layer is determined to be approximately 0.5 nm. This study also shows that laser-induced transient magnetization enhancement can be achieved by adjusting the relative laser absorption in the films. These results provide theoretical support for the future ultrafast magnetic control of spin valve structures and contribute to the advancement of spintronics in high-speed information processing and storage applications.
-
Keywords:
- Spintronics /
- Ultrafast magnetic dynamics /
- Spin-polarized transport
-
[1] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár V S, Roukes M L, Chtchelkanova A Y, Treger D M 2001Science 294 1488
[2] Žutić I, Fabian J, Sarma S D 2004Rev. Mod. Phys. 76 323
[3] Bader S D, Parkin S S P 2010Annu. Rev. Condens. Matter Phys. 1 71
[4] Xu Y, Zhang F, Zhang X Q, Du Y C, Zhao H H, Nie T X, Wu X J, Zhao W S 2022Acta Phys. Sin. 69 200703(in Chinese) [许涌, 张帆, 张晓强, 杜寅昌, 赵海慧, 聂天晓, 吴晓君, 赵巍胜2020物理学报69 200703]
[5] Seifert T S, Cheng L, Wei Z X, Kampfrath T, Qi J B 2022Appl. Phys. Lett. 120 180401
[6] Lu W T, Yuan Z 2022Sci. Sin.-Phys. Mech. Astron. 52 270007(in Chinese) [芦闻天, 袁喆2022中国科学: 物理学力学天文学52 270007]
[7] Yang X, Feng H M, Liu J N, Zhang X Q, He W, Cheng Z H 2024Acta Phys. Sin. 73 157501(in Chinese) [杨旭, 冯红梅, 刘佳南, 张向群, 何为, 成昭华2024物理学报73 157501]
[8] Kirilyuk A, Kimel A V, Rasing T 2010Rev. Mod. Phys. 82 2731
[9] Li H, Zhang X H 2015Acta Phys. Sin. 64 177503(in Chinese) [李杭, 张新惠2015物理学报64 177503]
[10] Liu B, Xiao H J, Weinelt M 2023Sci. Adv. 9 eade0286
[11] Jin Z M, Guo Y Y, Peng Y, Zhang Z Y, Pang J Y, Zhang Z Z, Liu F, Ye B, Jiang Y X, Ma G H, Zhang C, Balakin A V, Shkurinov A P, Zhu Y M, Zhuang S L 2023Adv. Phys. Res. 2 2200049
[12] Wang C T, Liu Y M 2020Nano Converg. 7 35
[13] Wu N, Zhang S J, Wang Y X, Meng S 2023Prog. Surf. Sci. 98 100709
[14] Wu X Q, Meng H, Zhang H Y, Xu N 2021New J. Phys. 23 103007
[15] Ghising P, Biswas C, Lee Y H 2023Adv. Mater. 35 2209137
[16] Gusev N A, Dgheparov D I, Pugach N G, Belotelov V I 2021Appl. Phys. Lett. 118 232601
[17] Beaurepaire E, Merle J C, Daunois A, Bigot J Y 1996Phys. Rev. Lett. 76 4250
[18] Stanciu C D, Hansteen F, Kimel A V, Kirilyuk A, Tsukamoto A, Itoh A, Rasing T 2007Phys. Rev. Lett. 99 047601
[19] Malinowski G, Dalla Longa F, Rietjens J H H, Paluskar P V, Huijink R, Swagten H J M, Koopmans B 2008Nat. Phys. 4 855
[20] Rudolf D, La-O-Vorakiat C, Battiato M, Adam R, Shaw J M, Turgut E, Maldonado P, Mathias S, Grychtol P, Nembach H T, Silva T J, Aeschlimann M, Kapteyn H C, Murnane M M, Schneider C M, Oppeneer, P. M. 2012Nat. Commun. 3 1037
[21] Turgut E, La-o-Vorakiat C, Shaw J M, Grychtol P, Nembach H T, Rudolf D, Adam R, Aeschlimann M, Schneider C M, Silva T J, Murnane M M, Kapteyn H C, Mathias S 2013Phys. Rev. Lett. 110 197201
[22] He W, Zhu T, Zhang X Q, Yang H T, Cheng Z H 2013Sci. Rep. 3 2883
[23] Ji B Y, Jin Z M, Wu G J, Li J G, Wan C H, Han X F, Zhang Z Z, Ma G H, Peng Y, Zhu Y M 2023Appl. Phys. Lett. 122 111104
[24] Igarashi J, Zhang W, Remy Q, Díaz E, Lin J X, Hohlfeld J, Hehn M, Mangin S, Gorchon J, Malinowski G 2023Nat. Mater. 22 725
[25] Schellekens A J, De Vries N, Lucassen J, Koopmans B 2014Phys. Rev. B 90 104429
[26] Eschenlohr A, Persichetti L, Kachel T, Gabureac M, Gambardella P, Stamm C 2017J. Phys.: Condens. Mat. 29 384002
[27] Stamm C, Murer C, Wörnle M S, Reid A H, Higley D J, Wandel S F, Schlotter W F, Gambardella P 2020 J. Appl. Phys. 127 223902
[28] Battiato M, Carva K, Oppeneer P M 2010Phys. Rev. Lett. 105 027203
[29] Zhukov V P, Chulkov E V, Echenique P M 2005Phys. Rev. B 72 155109
[30] Zhukov V P, Chulkov E V, Echenique P M 2006Phys. Rev. B 73 125105
[31] Battiato M, Maldonado P, Oppeneer P M 2014J. Appl. Phys. 115 172611
[32] Battiato M, Carva K, Oppeneer P M 2012Phys. Rev. B 86 024404
[33] Lu W T, Yuan Z, Xu X H 2023Sci. China Phys. Mech. Astron. 66 127511
[34] Gorchon J, Mangin S, Hehn M, Malinowski G 2022Appl. Phys. Lett. 121 012402<
计量
- 文章访问数: 23
- PDF下载量: 2
- 被引次数: 0