搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

扰动对有机磁体器件自旋极化输运特性的影响

王辉 胡贵超 任俊峰

引用本文:
Citation:

扰动对有机磁体器件自旋极化输运特性的影响

王辉, 胡贵超, 任俊峰

Effect of disturbance on spin polarized transport through an organic ferromagnetic device

Wang Hui, Hu Gui-Chao, Ren Jun-Feng
PDF
导出引用
  • 基于紧束缚模型和格林函数方法,研究了有机磁体晶格扰动和侧基自旋取向扰动对金属/有机磁体/金属三明治结构有机自旋器件自旋极化输运特性的影响.计算结果表明:晶格扰动的存在降低了器件的起始偏压,减小了导通电流,并使得电流-电压曲线的量子台阶效应不再显著,扰动不太强时电流仍呈现较高的自旋极化率;而侧基自旋取向扰动减小了体系的自旋劈裂,增加了器件的起始偏压,低偏压下随着扰动的增强器件电流及其自旋极化率明显降低.进一步模拟了温度对器件自旋极化输运的影响.
    Based on the tight-binding model and the Greens function method, the effects of atomic disorder of lattice configuration and the orientation disorder of side radical spins on the spin polarized transport through a metal/organic-ferromagnet/metal structure are investigated. The results show that the atomic disorder reduces the threshold voltage of the device and suppresses the conducting current. The staircase structure of the current-voltage curve for a molecular device is eliminated when the disorder is enhanced. The current keeps a high spin polarization if the atomic disorder is not strong. The orientation disorder of side radical spins reduces the spin splitting of molecular energy levels, which increases the threshold voltage of the device. The current and its spin polarization are reduced apparently at a low bias when the strength of disorder is enhanced. We further simulate the effect of temperature on the spin polarized transport through the device by taking into account two kinds of disorders.
    • 基金项目: 国家自然科学基金(批准号:10904084, 10904083)、山东省优秀中青年科学家科研奖励基金(批准号:2009BS01009)和山东省高等学校科技奖励计划(批准号:J09LA03)资助的课题.
    [1]

    Dediu V, Murgia M, Matacotta F C, Taliani C, Barbanera S 2002 Solid State Commun. 122 181

    [2]

    Xiong Z H, Wu D, Vardeny Z V, Shi J 2004 Nature 427 821

    [3]
    [4]
    [5]

    Xie S J, Ahn K H, Smith D L, Bishop A R, Saxena A 2003 Phys. Rev. B 67 125202

    [6]

    Inoue K, Hayanizu T, Iwamura H, Hashizume D, Ohashi Y 1996 J. Am. Chem. Soc. 118 1803

    [7]
    [8]

    Epstein A J, Miller J S 1996 Synth. Met. 80 231

    [9]
    [10]
    [11]

    Korshak Y V, Medvedeva T V, Ovchinnikov A A, Spector V N 1987 Nature 326 370

    [12]

    Cao Y, Wang P, Hu Z Y, Li S Z, Zhang L Y, Zhao J G 1988 Synth. Met. 27 B625

    [13]
    [14]
    [15]

    Iwamura H, Sugawara T, Itoh K, Takui T 1985 Mol. Cryst. Liq. Cryst. 125 379

    [16]

    Katuluvskii Y A, Magrupov M A, Muminov A A 1991 Phys. Stat. Sol. A 127 223

    [17]
    [18]

    Ovchinnikov A A, Spector V N 1988 Synth. Met. 27 B615

    [19]
    [20]

    Fang Z, Liu Z L, Yao K L 1994 Phys. Rev. B 49 3916

    [21]
    [22]
    [23]

    Fang Z, Liu Z L, Yao K L, Li Z G 1995 Phys. Rev. B 51 1304

    [24]

    Fang Z, Liu Z L, Yao K L, Li Z G 1994 Acta Phys. Sin. 43 1866 (in Chinese)[方 忠、刘祖黎、姚凯伦、李再光 1994 物理学报 43 1866]

    [25]
    [26]

    Xie S J, Zhao J Q, Wei J H, Wang S G, Mei L M, Han S H 2000 Europhys. Lett. 50 635

    [27]
    [28]

    Zhao J Q, Wei J H, Wang S G, Xie S J, Mei L M 1999 Acta Phys. Sin. 48 1163 (in Chinese)[赵俊卿、魏建华、王守国、解士杰、梅良模 1999 物理学报 48 1163]

    [29]
    [30]
    [31]

    Yoo J W, Edelstein R S, Lincoln D M 2006 Phys. Rev. Lett. 97 247205

    [32]

    Sugawara T, Matsushita M M 2009 J. Mater. Chem. 19 1738

    [33]
    [34]

    Wang W Z 2006 Phys. Rev. B 73 235325

    [35]
    [36]

    Zhu L, Yao K L, Liu Z L 2010 Appl. Phys. Lett. 96 082115

    [37]
    [38]

    Hu G C, Guo Y, Wei J H, Xie S J 2007 Phys. Rev. B 75 165321

    [39]
    [40]
    [41]

    Hu G C, He K L, Xie S J, Saxena A 2008 J. Chem. Phys. 129 234708

    [42]
    [43]

    Datta S 1995 Electronic Transport in Mesoscopic Systems (New York: Oxford University Press) p148

    [44]
    [45]

    Ferry D, Goodnick S M 1997 Transport in Nanostructures (Cambridge: Cambridge University Press) p169

    [46]

    Wang L X, Liu D S, Wei J H, Xie S J, Han S H, Mei L M 2002 J. Chem. Phys. 116 9606

    [47]
    [48]
    [49]

    Gao X T, Fu X, Song J, Liu D S, Xie S J 2006 Acta Phys. Sin. 55 952 (in Chinese)[高绪团、傅 雪、宋 骏、刘德胜、解士杰 2006 物理学报 55 952]

  • [1]

    Dediu V, Murgia M, Matacotta F C, Taliani C, Barbanera S 2002 Solid State Commun. 122 181

    [2]

    Xiong Z H, Wu D, Vardeny Z V, Shi J 2004 Nature 427 821

    [3]
    [4]
    [5]

    Xie S J, Ahn K H, Smith D L, Bishop A R, Saxena A 2003 Phys. Rev. B 67 125202

    [6]

    Inoue K, Hayanizu T, Iwamura H, Hashizume D, Ohashi Y 1996 J. Am. Chem. Soc. 118 1803

    [7]
    [8]

    Epstein A J, Miller J S 1996 Synth. Met. 80 231

    [9]
    [10]
    [11]

    Korshak Y V, Medvedeva T V, Ovchinnikov A A, Spector V N 1987 Nature 326 370

    [12]

    Cao Y, Wang P, Hu Z Y, Li S Z, Zhang L Y, Zhao J G 1988 Synth. Met. 27 B625

    [13]
    [14]
    [15]

    Iwamura H, Sugawara T, Itoh K, Takui T 1985 Mol. Cryst. Liq. Cryst. 125 379

    [16]

    Katuluvskii Y A, Magrupov M A, Muminov A A 1991 Phys. Stat. Sol. A 127 223

    [17]
    [18]

    Ovchinnikov A A, Spector V N 1988 Synth. Met. 27 B615

    [19]
    [20]

    Fang Z, Liu Z L, Yao K L 1994 Phys. Rev. B 49 3916

    [21]
    [22]
    [23]

    Fang Z, Liu Z L, Yao K L, Li Z G 1995 Phys. Rev. B 51 1304

    [24]

    Fang Z, Liu Z L, Yao K L, Li Z G 1994 Acta Phys. Sin. 43 1866 (in Chinese)[方 忠、刘祖黎、姚凯伦、李再光 1994 物理学报 43 1866]

    [25]
    [26]

    Xie S J, Zhao J Q, Wei J H, Wang S G, Mei L M, Han S H 2000 Europhys. Lett. 50 635

    [27]
    [28]

    Zhao J Q, Wei J H, Wang S G, Xie S J, Mei L M 1999 Acta Phys. Sin. 48 1163 (in Chinese)[赵俊卿、魏建华、王守国、解士杰、梅良模 1999 物理学报 48 1163]

    [29]
    [30]
    [31]

    Yoo J W, Edelstein R S, Lincoln D M 2006 Phys. Rev. Lett. 97 247205

    [32]

    Sugawara T, Matsushita M M 2009 J. Mater. Chem. 19 1738

    [33]
    [34]

    Wang W Z 2006 Phys. Rev. B 73 235325

    [35]
    [36]

    Zhu L, Yao K L, Liu Z L 2010 Appl. Phys. Lett. 96 082115

    [37]
    [38]

    Hu G C, Guo Y, Wei J H, Xie S J 2007 Phys. Rev. B 75 165321

    [39]
    [40]
    [41]

    Hu G C, He K L, Xie S J, Saxena A 2008 J. Chem. Phys. 129 234708

    [42]
    [43]

    Datta S 1995 Electronic Transport in Mesoscopic Systems (New York: Oxford University Press) p148

    [44]
    [45]

    Ferry D, Goodnick S M 1997 Transport in Nanostructures (Cambridge: Cambridge University Press) p169

    [46]

    Wang L X, Liu D S, Wei J H, Xie S J, Han S H, Mei L M 2002 J. Chem. Phys. 116 9606

    [47]
    [48]
    [49]

    Gao X T, Fu X, Song J, Liu D S, Xie S J 2006 Acta Phys. Sin. 55 952 (in Chinese)[高绪团、傅 雪、宋 骏、刘德胜、解士杰 2006 物理学报 55 952]

  • [1] 李春雷, 郑军, 王小明, 徐燕. 光场辐照下稀磁半导体/半导体超晶格中自旋电子输运特性研究. 物理学报, 2023, 72(22): 227201. doi: 10.7498/aps.72.20230935
    [2] 李佳锦, 刘乾, 伍丹, 邓小清, 张振华, 范志强. 蒽二噻吩分子连接铁磁锯齿边碳化硅纳米带的巨幅度自旋整流. 物理学报, 2022, 71(7): 078501. doi: 10.7498/aps.71.20212193
    [3] 李婧, 丁帅帅, 胡文平. 有机自旋电子器件中的自旋界面研究进展. 物理学报, 2022, 71(6): 067201. doi: 10.7498/aps.71.20211786
    [4] 崔兴倩, 刘乾, 范志强, 张振华. 氧气分子吸附对单蒽分子器件自旋输运性质调控. 物理学报, 2020, 69(24): 248501. doi: 10.7498/aps.69.20201028
    [5] 李春雷, 徐燕, 郑军, 王小明, 袁瑞旸, 郭永. 磁电势垒结构中光场辅助电子自旋输运特性. 物理学报, 2020, 69(10): 107201. doi: 10.7498/aps.69.20200237
    [6] 姜丽娜, 张玉滨, 董顺乐. 有机自旋器件磁性渗透层中双极化子对自旋极化输运的影响. 物理学报, 2015, 64(14): 147104. doi: 10.7498/aps.64.147104
    [7] 黄耀清, 郝成红, 郑继明, 任兆玉. 硅团簇自旋电子器件的理论研究. 物理学报, 2013, 62(8): 083601. doi: 10.7498/aps.62.083601
    [8] 王瑞琴, 宫箭, 武建英, 陈军. 对称双势垒量子阱中自旋极化输运的时间特性. 物理学报, 2013, 62(8): 087303. doi: 10.7498/aps.62.087303
    [9] 安兴涛, 穆惠英, 咸立芬, 刘建军. 量子点双链中电子自旋极化输运性质. 物理学报, 2012, 61(15): 157201. doi: 10.7498/aps.61.157201
    [10] 窦兆涛, 任俊峰, 王玉梅, 原晓波, 胡贵超. 有机器件电流自旋极化放大性质研究. 物理学报, 2012, 61(8): 088503. doi: 10.7498/aps.61.088503
    [11] 秦伟, 张玉滨, 解士杰. 有机Co/Alq3/La1-xSrxMnO3(LSMO)器件磁电阻的温度效应研究. 物理学报, 2010, 59(5): 3494-3498. doi: 10.7498/aps.59.3494
    [12] 任俊峰, 王玉梅, 原晓波, 胡贵超. 有机自旋阀的磁电阻性质研究. 物理学报, 2010, 59(9): 6580-6584. doi: 10.7498/aps.59.6580
    [13] 肖贤波, 李小毛, 陈宇光. 含stubs量子波导系统的电子自旋极化输运性质. 物理学报, 2009, 58(11): 7909-7913. doi: 10.7498/aps.58.7909
    [14] 姚建明, 杨翀. AB效应对自旋多端输运的影响. 物理学报, 2009, 58(5): 3390-3396. doi: 10.7498/aps.58.3390
    [15] 郑小宏, 戴振翔, 王贤龙, 曾雉. B与N掺杂对单层石墨纳米带自旋极化输运的影响. 物理学报, 2009, 58(13): 259-S265. doi: 10.7498/aps.58.259
    [16] 唐振坤, 王玲玲, 唐黎明, 游开明, 邹炳锁. 磁台阶势垒结构中二维电子气的自旋极化输运. 物理学报, 2008, 57(9): 5899-5905. doi: 10.7498/aps.57.5899
    [17] 董正超. 磁性半导体/磁性d波超导结中的自旋极化输运. 物理学报, 2008, 57(9): 5937-5943. doi: 10.7498/aps.57.5937
    [18] 肖贤波, 李小毛, 周光辉. 电磁波辐照下量子线的电子自旋极化输运性质. 物理学报, 2007, 56(3): 1649-1654. doi: 10.7498/aps.56.1649
    [19] 任俊峰, 付吉永, 刘德胜, 解士杰. 自旋注入有机物的扩散理论. 物理学报, 2004, 53(11): 3814-3817. doi: 10.7498/aps.53.3814
    [20] 秦建华, 郭 永, 陈信义, 顾秉林. 磁电垒结构中自旋极化输运性质的研究. 物理学报, 2003, 52(10): 2569-2575. doi: 10.7498/aps.52.2569
计量
  • 文章访问数:  6457
  • PDF下载量:  602
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-26
  • 修回日期:  2011-08-02
  • 刊出日期:  2011-06-05

/

返回文章
返回