搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有机自旋器件磁性渗透层中双极化子对自旋极化输运的影响

姜丽娜 张玉滨 董顺乐

引用本文:
Citation:

有机自旋器件磁性渗透层中双极化子对自旋极化输运的影响

姜丽娜, 张玉滨, 董顺乐

Effect of bipolarons on spin polarized transport in magnetic permeated sublayer of organic spin device

Jiang Li-Na, Zhang Yu-Bin, Dong Shun-Le
PDF
导出引用
  • 根据实验发现的有机器件如Co/有机半导体/La0.7Sr0.3MnO3中磁性原子渗透现象, 利用自旋漂移-扩散方程, 理论研究了磁性渗透层中极化子-双极化子的转化对自旋极化输运的影响. 研究发现: 磁性渗透层具有不同于纯净有机层的迁移率和自旋反转时间, 都将影响极化子-双极化子的转化, 进而影响自旋极化的输运; 在磁性渗透层中极化子自旋反转时间的劈裂是引起自旋弛豫的主要因素, 而极化子和双极化子之间的转化是重要因素.
    According to the permeation phenomenon of magnetic atoms in organic device, such as Co/organic semiconductor (OSC)/La0.7Sr0.3MnO3, the evolution of spin polarons and spinless bipolarons are calculated with the drift-diffusion equations to investigate the effect of polaron-bipolaron interaction on spin polarized transport in a magnetic permeated sublayer (MPS). It is found that the MPS has different spin-flip time and mobility from those in pure organic semiconductor. The splitting of spin-flip time will be adjusted by the effect of the magnetization of the impurity atoms. Mobilities of spin carriers in the MPS will be reduced due to the scattering of the Co atoms. Both the spin-flip time and the mobility will affect the polaron-bipolaron interaction and further influence the spin polarized transport. It is found that the splitting of spin-flip time is the main factor responsible for the spin relaxation, while the polaron-bipolaron interaction is the secondary factor.
    • 基金项目: 国家自然科学基金(批准号: 11475160)和山东省自然科学基金(批准号: ZR2014AM023)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11475160) and the Natural Science Foundation of Shandong Province, China(Grant No. ZR2014AM023).
    [1]

    Baibich M N, Broto J M, Fert A, Nguyen F D V, Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J 1988 Phys. Rev. Lett. 61 2472

    [2]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnár S V, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488

    [3]

    Žutić I, Fabian J, Sarma S D 2004 Rev. Mod. Phys. 76 323

    [4]

    Dou Z T, Ren J F, Wang Y M, Yuan X B, Hu G C 2012 Acta Phys. Sin. 61 088503 (in Chinese) [窦兆涛, 任俊峰, 王玉梅, 原晓波, 胡贵超 2012 物理学报 61 088503]

    [5]

    Koopmans B 2014 Nature Phys. 10 249

    [6]

    Li W F, Liang Y X, Jin Y, Wei J H 2010 Acta Phys. Sin. 59 8850 (in Chinese) [李维峰, 梁迎新, 金勇, 魏建华 2010 物理学报 59 8850]

    [7]

    Sanvito S 2011 Chem. Soc. Rev. 40 3336

    [8]

    Zhang X, Mizukami S, Kubota T, Ma Q, Oogane M, Naganuma H, Ando Y, Miyazaki T 2013 Nature Commun. 4 1392

    [9]

    Heeger A J, Kivelson S, Schrieffer J R, Su W P 1988 Rev. Mod. Phys. 60 781

    [10]

    Xie S J, Ahn K H, Smith D L, Bishop A R, Saxena A 2003 Phys. Rev. B 67 125202

    [11]

    Fu J Y, Ren J F, Liu X J, Liu D S, Xie S J

    [12]

    Scott J C, Pfluger P, Krounbi M T, Street G B 1983 Phys. Rev. B 28 2140

    [13]

    Genoud F, Guglielmi M, Nechtschein M, Genies E, Salmon M 1985 Phys. Rev. Lett. 55 118

    [14]

    Dediu V, Murgia M, Matacotta F C, Taliani C, Barbanera S 2002 Solid State Commun. 122 181

    [15]

    Ozbay A, Nowak E R, Yu Z G, Chu W, Shi Y, Krishnamurthy S, Tang Z, Newman N 2009 Appl. Phys. Lett. 95 232507

    [16]

    Yu Z G, Berding M A, Krishnamurthy S 2005 Phys. Rev. B 71 060408R

    [17]

    Gao K, Xie S J, Li Y, Yin S, Liu D S, Zhao X 2009 Chin. Phys. B 18 2961

    [18]

    Smith D L, Silver R N 2001 Phys. Rev. B 64 045323

    [19]

    Ren J F, Fu J Y, Liu D S, Mei L M, Xie S J 2005 J. Appl. Phys. 98 074503

    [20]

    Ren J F, Fu J Y, Liu D S, Mei L M, Xie S J 2005 J. Phys.: Condens. Matter 17 2341

    [21]

    Ren J F, Zhang Y B, Xie S J 2007 Acta Phys. Sin. 56 4785 (in Chinese) [任俊峰, 张玉滨, 解士杰 2007 物理学报 56 4785]

    [22]

    Harmon N J, Flatté M E 2012 Phys. Rev. Lett. 108 186602

    [23]

    Lee S T, Gao Z Q, Hung L S 1999 Appl. Phys. Lett. 75 1404

    [24]

    Zhao J Q, Xie S J, Han S H, Yang Z W, Ye L N, Yang T L 2000 Synth. Met. 114 251

    [25]

    Xiong Z H, Wu D, Vardeny Z V, Shi J 2004 Nature 427 821

    [26]

    Wang F J, Yang C G, Vardeny Z V, Li X G 2007 Phys. Rev. B 75 245324

    [27]

    Pramanik S, Stefanita C G, Patibandla S, Bandyopadhyay S, Garre K, Harth N, Cahay M 2007 Nature Nanotech. 2 216

    [28]

    Zhang Y B, Ren J F, Lei J, Xie S J 2009 Org. Electron. 10 568

    [29]

    Zhang Y B, Ren J F, Hu G C, Xie S J 2008 Org. Electron. 9 687

    [30]

    Pershin Y V, Privman V 2003 Phys. Rev. Lett. 90 256602

    [31]

    Yu Z G, Flatté M E 2002 Phys. Rev. B 66 235302

    [32]

    Prince M B 1953 Phys. Rev. 92 681

    [33]

    Cinchetti M, Heimer K, Wüstenberg J P, Andreyev O, Bauer M, Lach S, Ziegler C, Gao Y, Aeschlimann M 2009 Nature Mater. 8 115

  • [1]

    Baibich M N, Broto J M, Fert A, Nguyen F D V, Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J 1988 Phys. Rev. Lett. 61 2472

    [2]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnár S V, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488

    [3]

    Žutić I, Fabian J, Sarma S D 2004 Rev. Mod. Phys. 76 323

    [4]

    Dou Z T, Ren J F, Wang Y M, Yuan X B, Hu G C 2012 Acta Phys. Sin. 61 088503 (in Chinese) [窦兆涛, 任俊峰, 王玉梅, 原晓波, 胡贵超 2012 物理学报 61 088503]

    [5]

    Koopmans B 2014 Nature Phys. 10 249

    [6]

    Li W F, Liang Y X, Jin Y, Wei J H 2010 Acta Phys. Sin. 59 8850 (in Chinese) [李维峰, 梁迎新, 金勇, 魏建华 2010 物理学报 59 8850]

    [7]

    Sanvito S 2011 Chem. Soc. Rev. 40 3336

    [8]

    Zhang X, Mizukami S, Kubota T, Ma Q, Oogane M, Naganuma H, Ando Y, Miyazaki T 2013 Nature Commun. 4 1392

    [9]

    Heeger A J, Kivelson S, Schrieffer J R, Su W P 1988 Rev. Mod. Phys. 60 781

    [10]

    Xie S J, Ahn K H, Smith D L, Bishop A R, Saxena A 2003 Phys. Rev. B 67 125202

    [11]

    Fu J Y, Ren J F, Liu X J, Liu D S, Xie S J

    [12]

    Scott J C, Pfluger P, Krounbi M T, Street G B 1983 Phys. Rev. B 28 2140

    [13]

    Genoud F, Guglielmi M, Nechtschein M, Genies E, Salmon M 1985 Phys. Rev. Lett. 55 118

    [14]

    Dediu V, Murgia M, Matacotta F C, Taliani C, Barbanera S 2002 Solid State Commun. 122 181

    [15]

    Ozbay A, Nowak E R, Yu Z G, Chu W, Shi Y, Krishnamurthy S, Tang Z, Newman N 2009 Appl. Phys. Lett. 95 232507

    [16]

    Yu Z G, Berding M A, Krishnamurthy S 2005 Phys. Rev. B 71 060408R

    [17]

    Gao K, Xie S J, Li Y, Yin S, Liu D S, Zhao X 2009 Chin. Phys. B 18 2961

    [18]

    Smith D L, Silver R N 2001 Phys. Rev. B 64 045323

    [19]

    Ren J F, Fu J Y, Liu D S, Mei L M, Xie S J 2005 J. Appl. Phys. 98 074503

    [20]

    Ren J F, Fu J Y, Liu D S, Mei L M, Xie S J 2005 J. Phys.: Condens. Matter 17 2341

    [21]

    Ren J F, Zhang Y B, Xie S J 2007 Acta Phys. Sin. 56 4785 (in Chinese) [任俊峰, 张玉滨, 解士杰 2007 物理学报 56 4785]

    [22]

    Harmon N J, Flatté M E 2012 Phys. Rev. Lett. 108 186602

    [23]

    Lee S T, Gao Z Q, Hung L S 1999 Appl. Phys. Lett. 75 1404

    [24]

    Zhao J Q, Xie S J, Han S H, Yang Z W, Ye L N, Yang T L 2000 Synth. Met. 114 251

    [25]

    Xiong Z H, Wu D, Vardeny Z V, Shi J 2004 Nature 427 821

    [26]

    Wang F J, Yang C G, Vardeny Z V, Li X G 2007 Phys. Rev. B 75 245324

    [27]

    Pramanik S, Stefanita C G, Patibandla S, Bandyopadhyay S, Garre K, Harth N, Cahay M 2007 Nature Nanotech. 2 216

    [28]

    Zhang Y B, Ren J F, Lei J, Xie S J 2009 Org. Electron. 10 568

    [29]

    Zhang Y B, Ren J F, Hu G C, Xie S J 2008 Org. Electron. 9 687

    [30]

    Pershin Y V, Privman V 2003 Phys. Rev. Lett. 90 256602

    [31]

    Yu Z G, Flatté M E 2002 Phys. Rev. B 66 235302

    [32]

    Prince M B 1953 Phys. Rev. 92 681

    [33]

    Cinchetti M, Heimer K, Wüstenberg J P, Andreyev O, Bauer M, Lach S, Ziegler C, Gao Y, Aeschlimann M 2009 Nature Mater. 8 115

  • [1] 李婧, 丁帅帅, 胡文平. 有机自旋电子器件中的自旋界面研究进展. 物理学报, 2022, 71(6): 067201. doi: 10.7498/aps.71.20211786
    [2] 王宗, 侯兴元, 潘伯津, 谷亚东, 张孟迪, 张凡, 陈根富, 任治安, 单磊. Re3W的点接触安德烈夫反射谱研究. 物理学报, 2019, 68(1): 017402. doi: 10.7498/aps.68.20181996
    [3] 于晓洋, 冯红磊, 辜刚旭, 刘永河, 李治林, 徐同帅, 李永庆. 层状铁磁体Fe0.26TaS2的Andreev反射谱. 物理学报, 2019, 68(24): 247201. doi: 10.7498/aps.68.20191221
    [4] 乌云其木格, 辛伟, 额尔敦朝鲁. Rashba自旋-轨道耦合下二维双极化子的基态性质. 物理学报, 2016, 65(17): 177801. doi: 10.7498/aps.65.177801
    [5] 伊丁, 武镇, 杨柳, 戴瑛, 解士杰. 有机分子在铁磁界面处的自旋极化研究. 物理学报, 2015, 64(18): 187305. doi: 10.7498/aps.64.187305
    [6] 王瑞琴, 宫箭, 武建英, 陈军. 对称双势垒量子阱中自旋极化输运的时间特性. 物理学报, 2013, 62(8): 087303. doi: 10.7498/aps.62.087303
    [7] 张勇, 刘亚莉, 焦威, 陈林, 熊祖洪. 有机发光器件的磁电导效应. 物理学报, 2012, 61(11): 117106. doi: 10.7498/aps.61.117106
    [8] 窦兆涛, 任俊峰, 王玉梅, 原晓波, 胡贵超. 有机器件电流自旋极化放大性质研究. 物理学报, 2012, 61(8): 088503. doi: 10.7498/aps.61.088503
    [9] 王辉, 胡贵超, 任俊峰. 扰动对有机磁体器件自旋极化输运特性的影响. 物理学报, 2011, 60(12): 127201. doi: 10.7498/aps.60.127201
    [10] 秦伟, 张玉滨, 解士杰. 有机Co/Alq3/La1-xSrxMnO3(LSMO)器件磁电阻的温度效应研究. 物理学报, 2010, 59(5): 3494-3498. doi: 10.7498/aps.59.3494
    [11] 张勇, 刘荣, 雷衍连, 陈平, 张巧明, 熊祖洪. 基于Alq3的有机发光二极管的磁电导效应. 物理学报, 2010, 59(8): 5817-5822. doi: 10.7498/aps.59.5817
    [12] 任俊峰, 王玉梅, 原晓波, 胡贵超. 有机自旋阀的磁电阻性质研究. 物理学报, 2010, 59(9): 6580-6584. doi: 10.7498/aps.59.6580
    [13] 李维峰, 梁迎新, 金勇, 魏建华. AlxGa1-xAs:Si 中DX中心的双极化子机制及统计分析. 物理学报, 2010, 59(12): 8850-8855. doi: 10.7498/aps.59.8850
    [14] 何志刚, 程兴华, 龚敏, 蔡娟露, 石瑞英. 影响磁性pn结自旋极化输运特性的因素. 物理学报, 2010, 59(9): 6521-6526. doi: 10.7498/aps.59.6521
    [15] 任俊峰, 张玉滨, 解士杰. 铁磁/有机半导体/铁磁系统的电流自旋极化性质研究. 物理学报, 2007, 56(8): 4785-4790. doi: 10.7498/aps.56.4785
    [16] 付吉永, 任俊峰, 刘德胜, 解士杰. 一维铁磁/有机共轭聚合物的自旋极化研究. 物理学报, 2004, 53(6): 1989-1993. doi: 10.7498/aps.53.1989
    [17] 王鹿霞, 张大成, 刘德胜, 韩圣浩, 解士杰. 基态非简并聚合物中的极化子和双极化子动力学. 物理学报, 2003, 52(10): 2547-2552. doi: 10.7498/aps.52.2547
    [18] 谢 尊, 安 忠, 李有成. 聚噻吩中双电子极化子附近的二维局域振动模. 物理学报, 1999, 48(10): 1938-1943. doi: 10.7498/aps.48.1938
    [19] 李占杰, 姚凯伦. 电子关联对顺式聚乙炔中双极化子附近局域振动模的影响. 物理学报, 1995, 44(9): 1498-1503. doi: 10.7498/aps.44.1498
    [20] 解士杰;梅良模;孙鑫. 顺式聚乙炔中双极化子的新电子定域态. 物理学报, 1989, 38(8): 1339-1343. doi: 10.7498/aps.38.1339
计量
  • 文章访问数:  2881
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-29
  • 修回日期:  2015-03-04
  • 刊出日期:  2015-07-05

有机自旋器件磁性渗透层中双极化子对自旋极化输运的影响

  • 1. 中国海洋大学信息科学与工程学院, 青岛 266100
    基金项目: 国家自然科学基金(批准号: 11475160)和山东省自然科学基金(批准号: ZR2014AM023)资助的课题.

摘要: 根据实验发现的有机器件如Co/有机半导体/La0.7Sr0.3MnO3中磁性原子渗透现象, 利用自旋漂移-扩散方程, 理论研究了磁性渗透层中极化子-双极化子的转化对自旋极化输运的影响. 研究发现: 磁性渗透层具有不同于纯净有机层的迁移率和自旋反转时间, 都将影响极化子-双极化子的转化, 进而影响自旋极化的输运; 在磁性渗透层中极化子自旋反转时间的劈裂是引起自旋弛豫的主要因素, 而极化子和双极化子之间的转化是重要因素.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回