搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自旋轨道矩调控的垂直磁各向异性四态存储器结构

盛宇 张楠 王开友 马星桥

引用本文:
Citation:

自旋轨道矩调控的垂直磁各向异性四态存储器结构

盛宇, 张楠, 王开友, 马星桥

Demonstration of four-state memory structure with perpendicular magnetic anisotropy by spin-orbit torque

Sheng Yu, Zhang Nan, Wang Kai-You, Ma Xing-Qiao
PDF
导出引用
  • 利用氧化钽缓冲层对垂直各向异性钴铂多层膜磁性的影响,构想并验证了一种四态存储器单元.存储器器件包含两个区域,其中一区域的钴铂多层膜[Pt(3 nm)/Co(0.47 nm)/Pt(1.5 nm)]直接生长在热氧化硅衬底上,另一个区域在磁性膜和衬底之间沉积了一层氧化钽作为缓冲层[TaOx(0.3 nm)/Pt(3 nm)/Co(0.47 nm)/Pt(1.5 nm)],缓冲层导致两个区域的垂直磁各向异性不同.在固定的水平磁场下对器件施加与磁场同向的电流,由于电流引起的自旋轨道耦合力矩,两个区域的磁化取向均会发生翻转,且拥有不同的临界翻转电流.改变通过器件导电通道的电流脉冲形式,器件的磁化状态可以在4个态之间切换.本文器件的结构为设计自旋轨道矩存储器件提供了新的思路.
    Current, instead of magnetic field, induced magnetization switching is very important for future spintronics in information storage or/and information processing. As one of the effective current-induced magnetization methods, spin-orbit torque (SOT) has aroused considerable interest because it has low-power consumption and can improve the device endurance. Normal metal (NM)/ferromagnetic metal (FM) are the common materials used for SOTs, where the NM denotes the materials with strong spin-orbit coupling such as Pt, Ta, W, etc. Owing to the spin Hall effect, the in-plane current in NM layer can be converted into a vertical spin current that exerts torques on the adjacent FM layers. Spin current can also come from the NM/FM interface charge-spin conversion due to interfacial asymmetry, exerting torques on the adjacent FM layers. Materials with in-plane and perpendicular magnetic anisotropy are used to study the SOT-induced magnetization switching. Compared with the memories using the in-plane ferromagnetic films, the magnetic memories using NM/FM multilayers with perpendicular magnetic anisotropy can have much high integration density. Currently the used information storage was based on the two-state memory cell. Owing to more than two states contained in one memory cell, multiple states memory manipulated by electric current could further benefit the higher-density memory. In this paper, a four-state memory unit is demonstrated by the influence of TaOx buffer layer on the magnetic anisotropy of Pt/Co/Pt multilayers. The memory unit consists of two regions. One is directly deposited on thermal oxide Si substrate[Pt(3 nm)/Co(0.47 nm)/Pt(1.5 nm)] and the other has a buffer layer of TaOx[TaOx(0.3 nm)/Pt(3 nm)/Co(0.47 nm)/Pt(1.5 nm)], thus leading to the difference in magnetic property between these two regions. According to the Z axis magnetic hysteresis loops of two regions, measured by polar magneto-optical Kerr effect, the coercivity of the region with TaOx is obtained to be 23 Oe and that without TaOx is 11 Oe. At the junction between two regions, the magnetic hysteresis loop shows the superposition of hysteresis loops of two regions, resulting in switching four times as the magnetic field changes. Under a fixed magnetic field along the current direction, the magnetization orientation of region with TaOx and that of region without TaOx are switched by spin-orbit torques with threshold currents of 5 mA and 1.5 mA respectively. The switching direction can be changed as the in-plane magnetic field changes to the opposite direction, which is one of the typical features of SOTs-induced magnetization switching. At the junction between two regions, through applying different-form current pulses to one conductive channel of the device, the magnetic state of the memory cell can be switched between four clear states. This kind of structure provides a new idea to design SOT multi-state memory devices.
      通信作者: 马星桥, xqma@sas.ustb.edu.cn
    • 基金项目: 国家科技支撑计划(批准号:2017YFA0303400)、国家自然科学基金(批准号:11174030,11474272,61774144)、中国科学院基金(批准号:QYZDY-SSW-JSC020,XDPB0603)和香港王宽诚教育基金资助的课题.
      Corresponding author: Ma Xing-Qiao, xqma@sas.ustb.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0303400), the National Natural Science Foundation of China (Grant Nos. 11174030, 11474272, 61774144), the Foundation of Chinese Academy of Sciences (Grant Nos. QYZDY-SSW-JSC020, XDPB0603), and the K. C. Wong Education Foundation, China.
    [1]

    Wang P, Jiang S W, Luan Z Z, Zhou L F, Ding H F, Zhou Y, Tao X D, Wu D 2016 Appl. Phys. Lett. 109 112406

    [2]

    Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189

    [3]

    Cai K, Yang M, Ju H, Wang S, Ji Y, Li B, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H, Wang K 2017 Nat. Mater. 16 712

    [4]

    Wu D, Yu G, Shao Q, Li X, Wu H, Wong K L, Zhang Z, Han X, Khalili Amiri P, Wang K L 2016 Appl. Phys. Lett. 108 202406

    [5]

    Yang M, Cai K, Ju H, Edmonds K W, Yang G, Liu S, Li B, Zhang B, Sheng Y, Wang S, Ji Y, Wang K 2016 Sci. Rep. 6 20778

    [6]

    Yang S, Peng R, Jiang T, Liu Y, Feng L, Wang J, Chen L, Li X, Nan C 2014 Adv. Mater. 26 7091

    [7]

    Zhang B, Meng K K, Yang M Y, Edmonds K W, Zhang H, Cai K M, Sheng Y, Zhang N, Ji Y, Zhao J H, Zheng H Z, Wang K Y 2016 Sci. Rep. 6 28458

    [8]

    Yan Y, Wan C, Zhou X, Shi G, Cui B, Han J, Fan Y, Han X, Wang K L, Pan F, Song C 2016 Adv. Electron. Mater. 2 1600219

    [9]

    Liu L, Lee O J, Gudmundsen T J, Ralph D C, Buhrman R 2012 Phys. Rev. Lett. 109 96602

    [10]

    Zhang N, Zhang B, Yang M, Cai K, Sheng Y, Li Y, Deng Y, Wang K 2017 Acta Phys. Sin. 66 27501

    [11]

    Avci C O, Mann M, Tan A J, Gambardella P, Beach G S D 2017 Appl. Phys. Lett. 110 203506

    [12]

    Yang Y, Xu Y, Zhang X, Wang Y, Zhang S, Li R W, Mirshekarloo M S, Yao K, Wu Y 2016 Phys. Rev. B 93 94402

    [13]

    Yu J, Qiu X, Wu Y, Yoon J, Deorani P 2016 Sci. Rep. 6 32629

    [14]

    Wang K Y, Edmonds K W, Irvine A C, Tatara G, Ranieri E D, Wunderlich J, Olejnik K, Rushforth A W, Campion R P, Williams D A, Foxon C T, Gallagher B L 2010 Appl. Phys. Lett. 97 262102

    [15]

    Chernyshov A, Overby M, Liu X, Furdyna J K, Lyanda G Y, Rokhinson L P 2009 Nat. Phys. 5 656

    [16]

    Li Y, Cao Y F, Wei G N, Li Y, Ji Y, Wang K Y, Edmonds K W, Campion R P, Rushforth A W, Foxon C T, Gallagher B L 2013 Appl. Phys. Lett. 103 22401

    [17]

    Li Y, Luo W, Zhu L, Zhao J, Wang K 2015 J. Magn. Magn. Mater. 375 148

    [18]

    Zhou H, Fan X, Ma L, Zhang Q, Cui L, Zhou S, Gui Y S, Hu C M, Xue D 2016 Phys. Rev. B 94 134421

    [19]

    Wang H L, Du C H, Pu Y, Adur R, Hammel P C, Yang F Y 2014 Phys. Rev. Lett. 112 197201

    [20]

    Emori S, Bauer U, Woo S, Beach G S D 2014 Appl. Phys. Lett. 105 2012

    [21]

    Yu G, Upadhyaya P, Fan Y, Alzate J G, Jiang W, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y, Lang M, Tang J, Wang Y, Tserkovnyak Y, Amiri P K, Wang K L 2014 Nat. Nanotechnol. 9 548

    [22]

    Brataas A, Kent A D, Ohno H 2012 Nat. Mater. 11 372

    [23]

    Petrie J R, Wieland K A, Timmerwilke J M, Barron S C, Burke R A, Newburgh G A, Burnette J E, Fischer G A, Edelstein A S 2015 Appl. Phys. Lett. 106 142403

    [24]

    Diller E, Miyashita S, Sitti M 2012 IEEE Int. Conf. Intell. Robot. Syst. 2325

    [25]

    Emori S, Beach G S D 2011 J. Appl. Phys. 110 33919

    [26]

    Taniguchi T, Mitani S, Hayashi M 2015 Phys. Rev. B 92 24428

  • [1]

    Wang P, Jiang S W, Luan Z Z, Zhou L F, Ding H F, Zhou Y, Tao X D, Wu D 2016 Appl. Phys. Lett. 109 112406

    [2]

    Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189

    [3]

    Cai K, Yang M, Ju H, Wang S, Ji Y, Li B, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H, Wang K 2017 Nat. Mater. 16 712

    [4]

    Wu D, Yu G, Shao Q, Li X, Wu H, Wong K L, Zhang Z, Han X, Khalili Amiri P, Wang K L 2016 Appl. Phys. Lett. 108 202406

    [5]

    Yang M, Cai K, Ju H, Edmonds K W, Yang G, Liu S, Li B, Zhang B, Sheng Y, Wang S, Ji Y, Wang K 2016 Sci. Rep. 6 20778

    [6]

    Yang S, Peng R, Jiang T, Liu Y, Feng L, Wang J, Chen L, Li X, Nan C 2014 Adv. Mater. 26 7091

    [7]

    Zhang B, Meng K K, Yang M Y, Edmonds K W, Zhang H, Cai K M, Sheng Y, Zhang N, Ji Y, Zhao J H, Zheng H Z, Wang K Y 2016 Sci. Rep. 6 28458

    [8]

    Yan Y, Wan C, Zhou X, Shi G, Cui B, Han J, Fan Y, Han X, Wang K L, Pan F, Song C 2016 Adv. Electron. Mater. 2 1600219

    [9]

    Liu L, Lee O J, Gudmundsen T J, Ralph D C, Buhrman R 2012 Phys. Rev. Lett. 109 96602

    [10]

    Zhang N, Zhang B, Yang M, Cai K, Sheng Y, Li Y, Deng Y, Wang K 2017 Acta Phys. Sin. 66 27501

    [11]

    Avci C O, Mann M, Tan A J, Gambardella P, Beach G S D 2017 Appl. Phys. Lett. 110 203506

    [12]

    Yang Y, Xu Y, Zhang X, Wang Y, Zhang S, Li R W, Mirshekarloo M S, Yao K, Wu Y 2016 Phys. Rev. B 93 94402

    [13]

    Yu J, Qiu X, Wu Y, Yoon J, Deorani P 2016 Sci. Rep. 6 32629

    [14]

    Wang K Y, Edmonds K W, Irvine A C, Tatara G, Ranieri E D, Wunderlich J, Olejnik K, Rushforth A W, Campion R P, Williams D A, Foxon C T, Gallagher B L 2010 Appl. Phys. Lett. 97 262102

    [15]

    Chernyshov A, Overby M, Liu X, Furdyna J K, Lyanda G Y, Rokhinson L P 2009 Nat. Phys. 5 656

    [16]

    Li Y, Cao Y F, Wei G N, Li Y, Ji Y, Wang K Y, Edmonds K W, Campion R P, Rushforth A W, Foxon C T, Gallagher B L 2013 Appl. Phys. Lett. 103 22401

    [17]

    Li Y, Luo W, Zhu L, Zhao J, Wang K 2015 J. Magn. Magn. Mater. 375 148

    [18]

    Zhou H, Fan X, Ma L, Zhang Q, Cui L, Zhou S, Gui Y S, Hu C M, Xue D 2016 Phys. Rev. B 94 134421

    [19]

    Wang H L, Du C H, Pu Y, Adur R, Hammel P C, Yang F Y 2014 Phys. Rev. Lett. 112 197201

    [20]

    Emori S, Bauer U, Woo S, Beach G S D 2014 Appl. Phys. Lett. 105 2012

    [21]

    Yu G, Upadhyaya P, Fan Y, Alzate J G, Jiang W, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y, Lang M, Tang J, Wang Y, Tserkovnyak Y, Amiri P K, Wang K L 2014 Nat. Nanotechnol. 9 548

    [22]

    Brataas A, Kent A D, Ohno H 2012 Nat. Mater. 11 372

    [23]

    Petrie J R, Wieland K A, Timmerwilke J M, Barron S C, Burke R A, Newburgh G A, Burnette J E, Fischer G A, Edelstein A S 2015 Appl. Phys. Lett. 106 142403

    [24]

    Diller E, Miyashita S, Sitti M 2012 IEEE Int. Conf. Intell. Robot. Syst. 2325

    [25]

    Emori S, Beach G S D 2011 J. Appl. Phys. 110 33919

    [26]

    Taniguchi T, Mitani S, Hayashi M 2015 Phys. Rev. B 92 24428

  • [1] 赵晨蕊, 杨倩倩, 焦距, 唐政华, 秦明辉. 振荡磁场驱动亚铁磁畴壁动力学研究. 物理学报, 2025, 74(3): 038502. doi: 10.7498/aps.74.20241033
    [2] 芦闻天, 姚春伟, 严志, 袁喆. 激光诱导自旋阀结构的超快自旋动力学研究. 物理学报, 2025, 74(6): . doi: 10.7498/aps.74.20241744
    [3] 金哲珺雨, 曾钊卓, 曹云姗, 严鹏. 磁子霍尔效应. 物理学报, 2024, 73(1): 017501. doi: 10.7498/aps.73.20231589
    [4] 夏永顺, 杨晓阔, 豆树清, 崔焕卿, 危波, 梁卜嘉, 闫旭. 基于磁性隧道结和双组分多铁纳磁体的超低功耗磁弹模数转换器. 物理学报, 2024, 73(13): 137502. doi: 10.7498/aps.73.20240129
    [5] 熊宜浓, 吴闯文, 任传童, 孟德全, 陈是位, 梁世恒. 基于二维磁性材料的自旋轨道力矩研究进展. 物理学报, 2024, 73(1): 017502. doi: 10.7498/aps.73.20231244
    [6] 赵晨蕊, 魏云昕, 刘婷婷, 秦明辉. 正弦微波磁场驱动亚铁磁畴壁动力学. 物理学报, 2023, 72(20): 208502. doi: 10.7498/aps.72.20230913
    [7] 刘南舒, 王聪, 季威. 磁性二维材料的近期研究进展. 物理学报, 2022, 71(12): 127504. doi: 10.7498/aps.71.20220301
    [8] 蒋小红, 秦泗晨, 幸子越, 邹星宇, 邓一帆, 王伟, 王琳. 二维磁性材料的物性研究及性能调控. 物理学报, 2021, 70(12): 127801. doi: 10.7498/aps.70.20202146
    [9] 牛鹏斌, 罗洪刚. 马约拉纳费米子与杂质自旋相互作用的热偏压输运. 物理学报, 2021, 70(11): 117401. doi: 10.7498/aps.70.20202241
    [10] 王鹏程, 曹亦, 谢红光, 殷垚, 王伟, 王泽蓥, 马欣辰, 王琳, 黄维. 层状手性拓扑磁材料Cr1/3NbS2的磁学特性. 物理学报, 2020, 69(11): 117501. doi: 10.7498/aps.69.20200007
    [11] 夏静, 韩宗益, 宋怡凡, 江文婧, 林柳蓉, 张溪超, 刘小晰, 周艳. 磁斯格明子器件及其应用进展. 物理学报, 2018, 67(13): 137505. doi: 10.7498/aps.67.20180894
    [12] 赵巍胜, 黄阳棋, 张学莹, 康旺, 雷娜, 张有光. 斯格明子电子学的研究进展. 物理学报, 2018, 67(13): 131205. doi: 10.7498/aps.67.20180554
    [13] 张楠, 张保, 杨美音, 蔡凯明, 盛宇, 李予才, 邓永城, 王开友. 电学方法调控磁化翻转和磁畴壁运动的研究进展. 物理学报, 2017, 66(2): 027501. doi: 10.7498/aps.66.027501
    [14] 肖嘉星, 鲁军, 朱礼军, 赵建华. 垂直磁各向异性L10-Mn1.67Ga超薄膜分子束外延生长与磁性研究. 物理学报, 2016, 65(11): 118105. doi: 10.7498/aps.65.118105
    [15] 谷晓芳, 钱轩, 姬扬, 陈林, 赵建华. (Ga,Mn)As中电流诱导自旋极化的磁光Kerr测量. 物理学报, 2012, 61(3): 037801. doi: 10.7498/aps.61.037801
    [16] 胥建卫, 王顺金. 电子的相对论平均场理论与一阶、二阶Rashba效应. 物理学报, 2009, 58(7): 4878-4882. doi: 10.7498/aps.58.4878
    [17] 任俊峰, 张玉滨, 解士杰. 铁磁/有机半导体/铁磁系统的电流自旋极化性质研究. 物理学报, 2007, 56(8): 4785-4790. doi: 10.7498/aps.56.4785
    [18] 任俊峰, 付吉永, 刘德胜, 解士杰. 自旋注入有机物的扩散理论. 物理学报, 2004, 53(11): 3814-3817. doi: 10.7498/aps.53.3814
    [19] 孙丰伟, 邓 莉, 寿 倩, 刘鲁宁, 文锦辉, 赖天树, 林位株. 量子阱中电子自旋注入及弛豫的飞秒光谱研究. 物理学报, 2004, 53(9): 3196-3199. doi: 10.7498/aps.53.3196
    [20] 秦建华, 郭 永, 陈信义, 顾秉林. 磁电垒结构中自旋极化输运性质的研究. 物理学报, 2003, 52(10): 2569-2575. doi: 10.7498/aps.52.2569
计量
  • 文章访问数:  7080
  • PDF下载量:  235
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-29
  • 修回日期:  2018-03-05
  • 刊出日期:  2018-06-05

/

返回文章
返回