搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

振荡磁场驱动亚铁磁畴壁动力学研究

赵晨蕊 杨倩倩 焦距 唐政华 秦明辉

引用本文:
Citation:

振荡磁场驱动亚铁磁畴壁动力学研究

赵晨蕊, 杨倩倩, 焦距, 唐政华, 秦明辉

Dynamics of ferrimagnetic domain wall driven by oscillating magnetic field

Zhao Chen-Rui, Yang Qian-Qian, Jiao Ju, Tang Zheng-Hua, Qin Ming-Hui
PDF
导出引用
  • 亚铁磁材料在角动量补偿点附近具有类比于反铁磁的超快动力学,且存在非零净自旋密度,其磁结构可以被传统磁性手段探测和调控,有望应用于新一代高性能自旋电子器件。有效调控亚铁磁畴壁动力学是当前自旋电子学领域的重要课题。在本工作中,我们使用微磁学模拟研究了正弦波和方波振荡磁场驱动亚铁磁畴壁,从理论上揭示不同的振荡磁场会诱导出不同方式的畴壁运动。研究表明:具有非零净自旋角动量的畴壁面随振荡磁场振荡,正弦波磁场驱动亚铁磁畴壁的位移随时间单调增加,而方波磁场驱动畴壁位移随时间曲折增加。本工作系统探讨了亚铁磁畴壁速度与外部磁场和材料内部参数的关联,表明了同强度下的正弦波磁场具有更高的驱动效率,并揭示了相关物理机制,可以为未来的实验和自旋器件设计提供参考。
    Ferrimagnetic materials exhibit ultrafast dynamics similar to those of antiferromagnetic materials near the angular momentum compensation point, where a non-zero net spin density is maintained. This unique feature allows their magnetic structures to be detected and manipulated using traditional magnetic techniques, positioning ferrimagnetic materials as promising candidates for next-generation high-performance spintronic devices. However, effectively controlling the dynamics of ferrimagnetic domain walls remains a significant challenge in current spintronics research.
    In this work, based on the classic Heisenberg spin model, we employ Landau-Lifshitz-Gilbert (LLG) simulations to investigate the dynamic behavior of ferrimagnetic domain walls driven by sinusoidal and square wave periodic magnetic fields. The results reveal that these two types of oscillating magnetic fields induce distinct domain wall motion modes. Specifically, the domain wall surface, which has non-zero net spin angular momentum, oscillates in response to the external magnetic field. We find that the domain wall velocity decreases as the net spin angular momentum increases. Moreover, the displacement of the ferrimagnetic domain wall driven by a sinusoidal magnetic field increases monotonically with time, while the displacement driven by a square wave magnetic field follows a more tortuous trajectory over time. Under high-frequency field conditions, the domain wall displacement shows more pronounced linear growth, and the domain wall surface rotates linearly with time.This study also explores how material parameters, such as net spin angular momentum, anisotropy, and the damping coefficient, influence domain wall dynamics. Specifically, increasing the anisotropy parameter (dz) or the damping coefficient (α) results in a reduction of domain wall velocity. Furthermore, the study demonstrates that, compared to square wave magnetic fields, sinusoidal magnetic fields drive the domain wall more efficiently, leading to faster domain wall motion. By adjusting the frequency and waveform of the periodic magnetic field, the movement of ferrimagnetic domain walls can be precisely controlled, enabling fine-tuned regulation of both domain wall velocity and position.
    Our findings show that sinusoidal magnetic fields, even at the same intensity, offer higher driving efficiency. The underlying physical mechanisms are discussed in detail, providing valuable insights that can guide the design and experimental development of domain wall-based spintronic devices.
  • [1]

    . Hirohata A, Yamada K, Nakatani Y, Prejbeanu I, Diény B, Pirro P, Hillebrands B 2020 J. Magn. Magn. Mater. 509 166711

    [2]

    . Zhang Y, Feng X Q, Zheng Z Y, Zhang Z Z, Lin K L, Sun X H, Wang G D, Wang J K, Wei J Q, Vallobra P, He Y, Wang Z X, Chen L, Zhang K, Xu Y, Zhao W S 2023 Appl. Phys. Rev. 10 011301

    [3]

    . Li W H, Jin Z, Wen D L, Zhang X M, Qin M H, Liu J M 2020 Phys. Rev. B 101 024414

    [4]

    . Kim K J, Kim S K, Hirata Y, Oh S H, Tono T, Kim D H, Okuno T, Ham W S, Kim S, Go G, Tserkovnyak Y, Tsukamoto A, Moriyama T, Lee K J, Ono T 2017 Nat. Mater. 16 1187

    [5]

    . Oh S H, Kim S K, Xiao J, Lee K J 2019 Phys. Rev. B 100 174403

    [6]

    . Caretta L, Mann M, Büttner F, Ueda K, Pfau B, Günther C M, Hessing P, Churikova A, Klose C, Schneider M, Engel D, Marcus C, Bono D, Bagschik K, Eisebitt S, Beach G S D 2018 Nat. Nanotechnol. 13 1154

    [7]

    . Caretta L, Oh S H, Fakhrul T, Lee D K, Lee B H, Kim S K, Ross C A, Lee K J, Beach G S D 2020 Science. 370 1438

    [8]

    . Sun C, Yang H, Jalil M 2020 Phys. Rev. B 102 134420

    [9]

    . Zhang Y J, Li G J, Liu E K, Chen J L, Wang W H, Wu G H, Hu J X 2013 Acta Phys. Sin. 62 037501(in Chinese)[张玉洁, 李贵江, 刘恩克, 陈京兰, 王文洪, 吴光恒, 胡俊雄 2013 物理学报 62 037501]

    [10]

    . Zhang Y, Feng X Q, Zheng Z Y, Zhang Z Z, Lin K L, Sun X H,Wang G D, Wang J K, Wei J Q, Vallobra P, He Y, Wang Z X, Chen L, Zhang K, Xu Y, Zhao W S 2023 Appl. Phys. Rev. 10 011301

    [11]

    . Yu H, Xiao J, Schultheiss H 2021 Phys. Rep. 905 1

    [12]

    . Jin M S, Hong I S, Kim D H, Lee K J, Kim S K 2021 Phys. Rev. B 104 184431

    [13]

    . Jing K Y, Gong X, Wang X R 2022 Phys. Rev. B 106 174429

    [14]

    . Haltz E, Krishnia S, Berges L, Mougin A, Sampaio J 2021 Phys. Rev. B 103 014444

    [15]

    . Tono T, Taniguchi T, Kim K J, Moriyama T, Tsukamoto A, Ono T 2015 Appl. Phys. Express 8 073001

    [16]

    . Luo C, Chen K, Ukleev V, Wintz S, Weigand M, Abrudan R M, Prokeš K, Radu F 2023 Comm. Phys. 6 218

    [17]

    . Nishimura T, Kim D H, Hirata Y,Okuno T, Futakawa Y, Yoshikawa H, Tsukamoto A, Shiota Y, Moriyama T, Ono T 2018 Appl. Phys. Lett. 112 172403

    [18]

    . Chen J, Dong S 2021 Phys. Rev. Lett. 126 117603

    [19]

    . Oh S H, Kim S K, Lee D K, Go G, Kim K J, Ono T, Tserkovnyak Y, Lee K J 2017 Phys. Rev. B 96 100407(R)

    [20]

    . Ghosh S, Komori T, Hallal A, Garcia J P, Gushi T, Hirose T, Mitarai H, Okuno H, Vogel J, Chshiev M, Attané J P, Vila L, Suemasu T, Pizzini S 2021 Nano Lett. 21 2580

    [21]

    . Caretta L, Avc C O 2024 APL Mater. 12 011106

    [22]

    . Gushi T, Klug M J, Garcia J P, Ghosh S, Attané J P, Okuno H, Fruchart O, Vogel J, Suemasu T, Pizzini S, Vila L 2019 Nano Lett. 19 8716

    [23]

    . Vélez S, Ruiz-Gómez S, Schaab J, Gradauskaite E, Wörnle M S, Welter P, Jacot B J, Degen C L, Trassin M, Fiebig M, Gambardella P 2022 Nat. Nanotechnol. 17 834

    [24]

    . Haltz E, Sampaio J, Krishnia S and Berges L, Weil R, Mougin A 2020 Sci. Rep. 10 16292

    [25]

    . Kim D H, Kim D H, Kim K J, Moon K W, Yang S M, Lee K J, Kim S K 2020 J. Magn. Magn. Mater. 514 167237

    [26]

    . Sala G, Gambardella P 2022 Adv. Mater. Interfaces 9 2201622

    [27]

    . Li Z L, Su J, Lin S Z, Liu D, Gao Y, Wang S G, Wei H X, Zhao T Y, Zhang Y, Cai J W, Shen B G 2021 Nat. Commun. 12 5604

    [28]

    . Donges A, Grimm N, Jakobs F, Selzer S, Ritzmann U, Atxitia U, Nowak U 2020 Phys. Rev. Res. 2 013293

    [29]

    . Yan Z R, Chen Z Y, Qin M H, Lu X B, Gao X S, Liu J M, 2018 Phys. Rev. B 97 054308

    [30]

    . Yurlov V V, Zvezdin K A, Skirdkov P N, Zvezdin A K 2021 Phys. Rev. B 103 134442

    [31]

    . Lepadatu S, Saarikoski H, Beacham R, Benitez M J, Moore T A, Burnell G, Sugimoto S, Yesudas, Wheeler M C, Miguel J, Dhesi S S, McGrouther D, McVitie S, Tatara G, Marrows C H 2017 Sci. Rep. 7 1640

    [32]

    . Balan C, Garcia J P, Fassatoui A, Vogel J, Chaves D D S, Bonfim M, Rueff J P, Ranno L, Pizzini S 2022 Phys. Rev. Applied 18 034065

    [33]

    . Wen D L, Chen Z Y, Li W H, Qin M H, Chen D Y, Fan Z, Zeng M, Lu X B, Gao X S, Liu J M, 2020 Phys. Rev. Res. 2 013166

    [34]

    . Liu T T, Liu Y, Liu, Y H, Tian G, Qin M H 2024 J. Phys. D Appl. Phys. 57 335002

    [35]

    . Liu T T, Hu Y F, Liu Y, Jin Z J Y, Tang Z H, Qin M H 2022 Rare Metals 41 3815

    [36]

    . Zhao C R, Wei Y X, Liu T T, Qin M H 2023 Acta Phys. Sin. 72 208502 (in Chinese)[赵晨蕊, 魏云昕, 刘婷婷, 秦明辉 2023 物理学报72 208502]

    [37]

    . Chen Z Y, Yan Z R, Zhang Y L, Qin M H, Fan Z, Lu X B, Gao X S, Liu J M, 2018 New J. Phys. 20 063003

    [38]

    . Bassirian P, Hesjedal T, Parkin S S P, Litzius K 2022 APL Materials 10 101107

    [39]

    . Zhang X C, Xia J, Tretiakov O A, Zhao G P, Zhou Y, Mochizuki M, Liu X X, Ezawa M 2023 Phys. Rev. B 108 064410

    [40]

    . Consolo G, Lopez-Diaz L, Torres L, Azzerboni B 2007 IEEE T. Magn. 43 2974

  • [1] 金哲珺雨, 曾钊卓, 曹云姗, 严鹏. 磁子霍尔效应. 物理学报, doi: 10.7498/aps.73.20231589
    [2] 熊宜浓, 吴闯文, 任传童, 孟德全, 陈是位, 梁世恒. 基于二维磁性材料的自旋轨道力矩研究进展. 物理学报, doi: 10.7498/aps.73.20231244
    [3] 夏永顺, 杨晓阔, 豆树清, 崔焕卿, 危波, 梁卜嘉, 闫旭. 基于磁性隧道结和双组分多铁纳磁体的超低功耗磁弹模数转换器. 物理学报, doi: 10.7498/aps.73.20240129
    [4] 赵晨蕊, 魏云昕, 刘婷婷, 秦明辉. 正弦微波磁场驱动亚铁磁畴壁动力学. 物理学报, doi: 10.7498/aps.72.20230913
    [5] 刘南舒, 王聪, 季威. 磁性二维材料的近期研究进展. 物理学报, doi: 10.7498/aps.71.20220301
    [6] 蒋小红, 秦泗晨, 幸子越, 邹星宇, 邓一帆, 王伟, 王琳. 二维磁性材料的物性研究及性能调控. 物理学报, doi: 10.7498/aps.70.20202146
    [7] 牛鹏斌, 罗洪刚. 马约拉纳费米子与杂质自旋相互作用的热偏压输运. 物理学报, doi: 10.7498/aps.70.20202241
    [8] 王鹏程, 曹亦, 谢红光, 殷垚, 王伟, 王泽蓥, 马欣辰, 王琳, 黄维. 层状手性拓扑磁材料Cr1/3NbS2的磁学特性. 物理学报, doi: 10.7498/aps.69.20200007
    [9] 夏静, 韩宗益, 宋怡凡, 江文婧, 林柳蓉, 张溪超, 刘小晰, 周艳. 磁斯格明子器件及其应用进展. 物理学报, doi: 10.7498/aps.67.20180894
    [10] 盛宇, 张楠, 王开友, 马星桥. 自旋轨道矩调控的垂直磁各向异性四态存储器结构. 物理学报, doi: 10.7498/aps.67.20180216
    [11] 赵巍胜, 黄阳棋, 张学莹, 康旺, 雷娜, 张有光. 斯格明子电子学的研究进展. 物理学报, doi: 10.7498/aps.67.20180554
    [12] 张楠, 张保, 杨美音, 蔡凯明, 盛宇, 李予才, 邓永城, 王开友. 电学方法调控磁化翻转和磁畴壁运动的研究进展. 物理学报, doi: 10.7498/aps.66.027501
    [13] 肖嘉星, 鲁军, 朱礼军, 赵建华. 垂直磁各向异性L10-Mn1.67Ga超薄膜分子束外延生长与磁性研究. 物理学报, doi: 10.7498/aps.65.118105
    [14] 谷晓芳, 钱轩, 姬扬, 陈林, 赵建华. (Ga,Mn)As中电流诱导自旋极化的磁光Kerr测量. 物理学报, doi: 10.7498/aps.61.037801
    [15] 胥建卫, 王顺金. 电子的相对论平均场理论与一阶、二阶Rashba效应. 物理学报, doi: 10.7498/aps.58.4878
    [16] 任俊峰, 张玉滨, 解士杰. 铁磁/有机半导体/铁磁系统的电流自旋极化性质研究. 物理学报, doi: 10.7498/aps.56.4785
    [17] 任 敏, 张 磊, 胡九宁, 邓 宁, 陈培毅. 基于磁动力学方程的电流感应磁化翻转效应的宏观模型. 物理学报, doi: 10.7498/aps.56.2863
    [18] 任俊峰, 付吉永, 刘德胜, 解士杰. 自旋注入有机物的扩散理论. 物理学报, doi: 10.7498/aps.53.3814
    [19] 孙丰伟, 邓 莉, 寿 倩, 刘鲁宁, 文锦辉, 赖天树, 林位株. 量子阱中电子自旋注入及弛豫的飞秒光谱研究. 物理学报, doi: 10.7498/aps.53.3196
    [20] 秦建华, 郭 永, 陈信义, 顾秉林. 磁电垒结构中自旋极化输运性质的研究. 物理学报, doi: 10.7498/aps.52.2569
计量
  • 文章访问数:  41
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2024-12-23

/

返回文章
返回