-
亚铁磁材料在角动量补偿点附近具有类比于反铁磁的超快动力学,且存在非零净自旋密度,其磁结构可以被传统磁性手段探测和调控,有望应用于新一代高性能自旋电子器件。有效调控亚铁磁畴壁动力学是当前自旋电子学领域的重要课题。在本工作中,我们使用微磁学模拟研究了正弦波和方波振荡磁场驱动亚铁磁畴壁,从理论上揭示不同的振荡磁场会诱导出不同方式的畴壁运动。研究表明:具有非零净自旋角动量的畴壁面随振荡磁场振荡,正弦波磁场驱动亚铁磁畴壁的位移随时间单调增加,而方波磁场驱动畴壁位移随时间曲折增加。本工作系统探讨了亚铁磁畴壁速度与外部磁场和材料内部参数的关联,表明了同强度下的正弦波磁场具有更高的驱动效率,并揭示了相关物理机制,可以为未来的实验和自旋器件设计提供参考。Ferrimagnetic materials exhibit ultrafast dynamics similar to those of antiferromagnetic materials near the angular momentum compensation point, where a non-zero net spin density is maintained. This unique feature allows their magnetic structures to be detected and manipulated using traditional magnetic techniques, positioning ferrimagnetic materials as promising candidates for next-generation high-performance spintronic devices. However, effectively controlling the dynamics of ferrimagnetic domain walls remains a significant challenge in current spintronics research.
In this work, based on the classic Heisenberg spin model, we employ Landau-Lifshitz-Gilbert (LLG) simulations to investigate the dynamic behavior of ferrimagnetic domain walls driven by sinusoidal and square wave periodic magnetic fields. The results reveal that these two types of oscillating magnetic fields induce distinct domain wall motion modes. Specifically, the domain wall surface, which has non-zero net spin angular momentum, oscillates in response to the external magnetic field. We find that the domain wall velocity decreases as the net spin angular momentum increases. Moreover, the displacement of the ferrimagnetic domain wall driven by a sinusoidal magnetic field increases monotonically with time, while the displacement driven by a square wave magnetic field follows a more tortuous trajectory over time. Under high-frequency field conditions, the domain wall displacement shows more pronounced linear growth, and the domain wall surface rotates linearly with time.This study also explores how material parameters, such as net spin angular momentum, anisotropy, and the damping coefficient, influence domain wall dynamics. Specifically, increasing the anisotropy parameter (dz) or the damping coefficient (α) results in a reduction of domain wall velocity. Furthermore, the study demonstrates that, compared to square wave magnetic fields, sinusoidal magnetic fields drive the domain wall more efficiently, leading to faster domain wall motion. By adjusting the frequency and waveform of the periodic magnetic field, the movement of ferrimagnetic domain walls can be precisely controlled, enabling fine-tuned regulation of both domain wall velocity and position.
Our findings show that sinusoidal magnetic fields, even at the same intensity, offer higher driving efficiency. The underlying physical mechanisms are discussed in detail, providing valuable insights that can guide the design and experimental development of domain wall-based spintronic devices.-
Keywords:
- Domain wall dynamics /
- spintronics /
- oscillating magnetic field
-
[1] . Hirohata A, Yamada K, Nakatani Y, Prejbeanu I, Diény B, Pirro P, Hillebrands B 2020 J. Magn. Magn. Mater. 509 166711
[2] . Zhang Y, Feng X Q, Zheng Z Y, Zhang Z Z, Lin K L, Sun X H, Wang G D, Wang J K, Wei J Q, Vallobra P, He Y, Wang Z X, Chen L, Zhang K, Xu Y, Zhao W S 2023 Appl. Phys. Rev. 10 011301
[3] . Li W H, Jin Z, Wen D L, Zhang X M, Qin M H, Liu J M 2020 Phys. Rev. B 101 024414
[4] . Kim K J, Kim S K, Hirata Y, Oh S H, Tono T, Kim D H, Okuno T, Ham W S, Kim S, Go G, Tserkovnyak Y, Tsukamoto A, Moriyama T, Lee K J, Ono T 2017 Nat. Mater. 16 1187
[5] . Oh S H, Kim S K, Xiao J, Lee K J 2019 Phys. Rev. B 100 174403
[6] . Caretta L, Mann M, Büttner F, Ueda K, Pfau B, Günther C M, Hessing P, Churikova A, Klose C, Schneider M, Engel D, Marcus C, Bono D, Bagschik K, Eisebitt S, Beach G S D 2018 Nat. Nanotechnol. 13 1154
[7] . Caretta L, Oh S H, Fakhrul T, Lee D K, Lee B H, Kim S K, Ross C A, Lee K J, Beach G S D 2020 Science. 370 1438
[8] . Sun C, Yang H, Jalil M 2020 Phys. Rev. B 102 134420
[9] . Zhang Y J, Li G J, Liu E K, Chen J L, Wang W H, Wu G H, Hu J X 2013 Acta Phys. Sin. 62 037501(in Chinese)[张玉洁, 李贵江, 刘恩克, 陈京兰, 王文洪, 吴光恒, 胡俊雄 2013 物理学报 62 037501]
[10] . Zhang Y, Feng X Q, Zheng Z Y, Zhang Z Z, Lin K L, Sun X H,Wang G D, Wang J K, Wei J Q, Vallobra P, He Y, Wang Z X, Chen L, Zhang K, Xu Y, Zhao W S 2023 Appl. Phys. Rev. 10 011301
[11] . Yu H, Xiao J, Schultheiss H 2021 Phys. Rep. 905 1
[12] . Jin M S, Hong I S, Kim D H, Lee K J, Kim S K 2021 Phys. Rev. B 104 184431
[13] . Jing K Y, Gong X, Wang X R 2022 Phys. Rev. B 106 174429
[14] . Haltz E, Krishnia S, Berges L, Mougin A, Sampaio J 2021 Phys. Rev. B 103 014444
[15] . Tono T, Taniguchi T, Kim K J, Moriyama T, Tsukamoto A, Ono T 2015 Appl. Phys. Express 8 073001
[16] . Luo C, Chen K, Ukleev V, Wintz S, Weigand M, Abrudan R M, Prokeš K, Radu F 2023 Comm. Phys. 6 218
[17] . Nishimura T, Kim D H, Hirata Y,Okuno T, Futakawa Y, Yoshikawa H, Tsukamoto A, Shiota Y, Moriyama T, Ono T 2018 Appl. Phys. Lett. 112 172403
[18] . Chen J, Dong S 2021 Phys. Rev. Lett. 126 117603
[19] . Oh S H, Kim S K, Lee D K, Go G, Kim K J, Ono T, Tserkovnyak Y, Lee K J 2017 Phys. Rev. B 96 100407(R)
[20] . Ghosh S, Komori T, Hallal A, Garcia J P, Gushi T, Hirose T, Mitarai H, Okuno H, Vogel J, Chshiev M, Attané J P, Vila L, Suemasu T, Pizzini S 2021 Nano Lett. 21 2580
[21] . Caretta L, Avc C O 2024 APL Mater. 12 011106
[22] . Gushi T, Klug M J, Garcia J P, Ghosh S, Attané J P, Okuno H, Fruchart O, Vogel J, Suemasu T, Pizzini S, Vila L 2019 Nano Lett. 19 8716
[23] . Vélez S, Ruiz-Gómez S, Schaab J, Gradauskaite E, Wörnle M S, Welter P, Jacot B J, Degen C L, Trassin M, Fiebig M, Gambardella P 2022 Nat. Nanotechnol. 17 834
[24] . Haltz E, Sampaio J, Krishnia S and Berges L, Weil R, Mougin A 2020 Sci. Rep. 10 16292
[25] . Kim D H, Kim D H, Kim K J, Moon K W, Yang S M, Lee K J, Kim S K 2020 J. Magn. Magn. Mater. 514 167237
[26] . Sala G, Gambardella P 2022 Adv. Mater. Interfaces 9 2201622
[27] . Li Z L, Su J, Lin S Z, Liu D, Gao Y, Wang S G, Wei H X, Zhao T Y, Zhang Y, Cai J W, Shen B G 2021 Nat. Commun. 12 5604
[28] . Donges A, Grimm N, Jakobs F, Selzer S, Ritzmann U, Atxitia U, Nowak U 2020 Phys. Rev. Res. 2 013293
[29] . Yan Z R, Chen Z Y, Qin M H, Lu X B, Gao X S, Liu J M, 2018 Phys. Rev. B 97 054308
[30] . Yurlov V V, Zvezdin K A, Skirdkov P N, Zvezdin A K 2021 Phys. Rev. B 103 134442
[31] . Lepadatu S, Saarikoski H, Beacham R, Benitez M J, Moore T A, Burnell G, Sugimoto S, Yesudas, Wheeler M C, Miguel J, Dhesi S S, McGrouther D, McVitie S, Tatara G, Marrows C H 2017 Sci. Rep. 7 1640
[32] . Balan C, Garcia J P, Fassatoui A, Vogel J, Chaves D D S, Bonfim M, Rueff J P, Ranno L, Pizzini S 2022 Phys. Rev. Applied 18 034065
[33] . Wen D L, Chen Z Y, Li W H, Qin M H, Chen D Y, Fan Z, Zeng M, Lu X B, Gao X S, Liu J M, 2020 Phys. Rev. Res. 2 013166
[34] . Liu T T, Liu Y, Liu, Y H, Tian G, Qin M H 2024 J. Phys. D Appl. Phys. 57 335002
[35] . Liu T T, Hu Y F, Liu Y, Jin Z J Y, Tang Z H, Qin M H 2022 Rare Metals 41 3815
[36] . Zhao C R, Wei Y X, Liu T T, Qin M H 2023 Acta Phys. Sin. 72 208502 (in Chinese)[赵晨蕊, 魏云昕, 刘婷婷, 秦明辉 2023 物理学报72 208502]
[37] . Chen Z Y, Yan Z R, Zhang Y L, Qin M H, Fan Z, Lu X B, Gao X S, Liu J M, 2018 New J. Phys. 20 063003
[38] . Bassirian P, Hesjedal T, Parkin S S P, Litzius K 2022 APL Materials 10 101107
[39] . Zhang X C, Xia J, Tretiakov O A, Zhao G P, Zhou Y, Mochizuki M, Liu X X, Ezawa M 2023 Phys. Rev. B 108 064410
[40] . Consolo G, Lopez-Diaz L, Torres L, Azzerboni B 2007 IEEE T. Magn. 43 2974
计量
- 文章访问数: 41
- PDF下载量: 3
- 被引次数: 0