-
Shockley-Queisser(S-Q)模型定义的理想太阳能电池是光伏器件分析的一个重要里程碑。异质结太阳电池是光伏热门研究领域之一。本文基于光伏电池S-Q模型基础,针对异质结太阳电池空间势垒区能带不连续对光生载流子的输运存在的阻碍作用,修订S-Q模型中的假设,引入空间势垒区有限迁移率假设,推导异质结太阳电池光电转换方程,计算光电转换效率。5780K黑体辐射、电池温度300K条件下计算结果表明最高转换效率约为31%;异质结太阳能电池的开路电压可以超过窄带隙半导体的带隙限制;高迁移率、低串阻条件下,降低宽带隙半导体的光子吸收数目、增加窄带隙半导体光子吸收数目,异质结太阳电池存在效率损失。
-
关键词:
- Shockley-Queisser模型 /
- 异质结太阳电池 /
- 迁移率 /
- 吸收率
The ideal solar cell defined by the Shockley-Queisser (S-Q) theory is an important milestone in the analysis of photovoltaic devices based on some assumptions. One or more of the above assumptions are gradually evaded and even exceed or close to S-Q efficiency limit, so the development and improvement of S-Q theory is necessary. Heterojunction solar cells are one of the hot research fields in photovoltaics. In order to address the hindering effect of energy band discontinuity in the spatial barrier region of heterojunction solar cells on the transport of photogenerated carriers, this paper revised the assumptions of S-Q theory based on the original S-Q theory of photovoltaic cells. It is assumed that the carrier mobility in the barrier region is finite and the infinite mobility in the S-Q model is abandoned. But the mobility in the N-type and P-type neutral region is still infinite. The lumped relationship between carrier mobility and resistance in the barrier region is derived. Thus the physical process of charge transport is described in detail in this paper based on the continuity equation for semiconductors considering the effect of absorption coefficients to prevent the quasi-Fermi level from crossing the conduction or valence band. Thus, the revised S-Q theoretical limit model of heterojunction solar cell was constructed. The diode equivalent circuit diagram is deduced and the photovoltaic conversion efficiency is evaluated eventually. The loss effects of charge transmission and band gap mismatch on the performance of heterojunction solar cells are analyzed in detail in this paper. The calculation results under the condition of 5780K blackbody radiation and 300K cell temperature with N-type wide bandgap(EH) and P-type narrow bandgap(EL) materials show that the highest conversion efficiency is about 31% with hole resistance of 0.01 Ω·cm^2 and electronic resistance of 0.01 Ω·cm^2. The electronic resistance has more negative and complicated effects on solar cell performance than hole resistance based on the results of the calculation. When Re and Rh are small, the best conversion efficiency is achieved between 1.22 and 1.32 of the narrow bandgap. Increasing Re can increase the open circuit voltage of solar cells, but there are losses in efficiency and fill factor of solar cells. When Re is large enough, for example, Re=1000, the open circuit voltage of solar cells is not limited by EL and can exceed the bandgap limit of the narrow bandgap material. Increasing Rh also reduces efficiency and fill factor but has less effects than Re. The change of absorption coefficient makes the photogenerated current of L and H branches change, and the radiation recombination loss of both branches can be regulated.-
Keywords:
- Shockley-Queisser model /
- heterojunction solar cell /
- carrier mobility /
- absorptivity
-
[1] Shen W Z, Li Z P 2014Physics and devices of silicon heterojunction solar cells(Beijing: Science Press) P28(in Chinese) [沈文忠,李正平2014硅基异质结太阳电池物理与器件(北京:科学出版社)第28页]
[2] Li Y, Ru X N, Yang M, Zheng Y H, Yin S, Hong C J, Peng F G, Qu M H, Xue C W, Lu J Q, Fang L, Su C, Chen D F, Xu J H, Yan C, Li Z G, Xu X X, Shao Z P 2024Nature 626 105
[3] Wang M H, Shi Y 2024Sci. China:Chem. 67 1117
[4] Wang T Y, Deng W Q, Cao J P, Yan F 2023Adv. Energy Mater. 13 2201436
[5] Zhang M R, Zhu Z W, Yang X Q, Yu T X, Yu X Q, Lu D, Li S F, Zhou D Y, Yang H 2023Acta Phys. Sin. 72 058801(in Chinese) [张美荣, 祝曾伟, 杨晓琴, 于同旭, 郁骁琦, 卢荻, 李顺峰, 周大勇, 杨辉2023物理学报72 058801]
[6] Wang A 2021Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese) [王傲2021博士学位论文(南京:南京理工大学)]
[7] Li T H, Wang C, Hu C Z, Zhang N, Xiong Q, Zhang Z L, Li F, Zhang Y Y, Wu J H, Gao P 2024 Small Sci. 4 2300218
[8] Zhao Y F, Procel P, Han C, Cao L Q, Yang G T, Özkol E, Alcañiz A, Kovačević K, Limodio G, Santbergen R, Smets A, Weeber A b, Zeman M, Mazzarella L, Isabella O 2023Sol. Energy Mater. Sol. Cells 258 112413
[9] Long W, Yin S, Peng F G, Yang M, Fang L, Ru X N, Qu M H, Lin H F, Xu X X 2021Sol. Energy Mater. Sol. Cells 231 111291
[10] Jiang K, Zhang H H, Zhang L P, Meng F Y, Gao Y F, Yu X R, Zhao D M, Li R, Huang H W, Hao Z D, Liu Z X, Liu W Z 2023Sci. China Mater.66 4891
[11] Shockley W, Queisser H J 1961J. Appl. Phys. 32 510
[12] Faiz Ahmad, Akhlesh Lakhtakia, Peter B. Monk 2020Appl. Phys. Lett. 117 033901
[13] Guillemoles J F, Kirchartz T, Cahen D, Rau U 2019Nat. Photonics 13 501
[14] Guillemoles J F, Kirchartz T, Cahen D, Rau U 2021Nat. Photonics 15 165
[15] Markvart T 2021Nat. Photonics 15 163
[16] Marti A 2019 IEEE J. Photovolt. 9 1590
[17] Xiong C, Chen L, Yuan H C, Yao R H 2013Acta Energ. Sol. Sin. 34746(in Chinese) [熊超, 陈磊, 袁洪春, 姚若河2013太阳能学报34 746]
[18] Anderson R L 1962Solid-State Electron. 5 341
[19] Qian C, Bai Y, Ye H R, Chen Y, Ye L, Zhang C, Ma Z, Chen T, Fan H L, Huang Y L, Liu W Z, Yu J S, Yu J 2024Sol. Energy 274 112585
[20] Long W, Yin S, Peng F G, Yang M, Fang L, Ru X N, Qu M H, Lin H F, Xu X X 2021Sol. Energy Mater. Sol. Cells 231 111291
[21] Liu E K, Zhu B S, Luo J S 2008The Physics of Semiconductors(7th Edition)(Beijing: Publishing House of Electronics Industry) P148(in Chinese) [刘恩科,朱秉升,罗晋生2008半导体物理学(第7版) (北京:电子工业出版社)第148页]
计量
- 文章访问数: 57
- PDF下载量: 2
- 被引次数: 0