搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cs2AgBiI6双空穴传输层太阳能电池的分析与优化

王纪伟 田汉民 王月荣 曹蕊 许武

引用本文:
Citation:

Cs2AgBiI6双空穴传输层太阳能电池的分析与优化

王纪伟, 田汉民, 王月荣, 曹蕊, 许武

Theoretical Analysis and Performance Optimization of Cs2AgBiI6 Solar Cells with Dual Hole Transport Layers

Wang Ji-wei, Tian Han-min, Wang Yue-rong, Cao Rui, Xu Wu
PDF
导出引用
  • 双钙钛矿材料以其低成本、环境友好等优势在太阳能电池领域引起广泛关注。本研究在已报道的ITO/ZnO/Cs2AgBiI6/HTL/Au单空穴传输层太阳能电池结构基础上,提出了ITO/ZnO/Cs2AgBiI6/HTL1/HTL2/Au的双空穴传输层结构,并使用Silvaco TCAD进一步分析了基于Cs2AgBiI6的双空穴传输层太阳能电池的内部物理机制。结果表明,与各单空穴传输层钙钛矿太阳能电池相比,使用Cu2O/NiO和NiO/Si作为双空穴传输层的太阳能电池效率有所提高。与Spiro-OMeTAD/CZTS双空穴传输层太阳能电池相比,使用Cu2O/CZTS和MoO3/CZTS作为双空穴传输层的效率也有所提高。其中,性能最好的Cu2O/CZTS双空穴传输层太阳能电池效率为22.85%。经过钙钛矿层和传输层的厚度优化后,光电转换效率提升至25.62%。此外,模拟结果还揭示了温度和掺杂浓度对太阳能电池特性的影响。这将有利于在无铅、无毒、环保的基础上,为提高双钙钛矿太阳能电池的能效提供了理论指导。
    Double perovskite materials have garnered significant attention in the photovoltaic field due to their low cost, environmental friendliness, and lead-free composition, making them ideal candidates for next-generation solar cell applications. In this work, the photovoltaic performance of solar cells using Cs2AgBiI6 as the light-absorbing layer was systematically investigated through simulations conducted with Silvaco ATLAS software. Building upon the previously reported single hole transport layer device architecture, ITO/ZnO/Cs2AgBiI6/HTL/Au, a new dual hole transport layer structure, ITO/ZnO/Cs2AgBiI6/HTL1/HTL2/Au, was proposed. Different dual hole transport layer combinations were explored, and their influence on the internal physical mechanisms and device performance was analyzed and optimized in detail. The simulation results demonstrated that devices employing Cu₂O/NiO and NiO/Si as dual hole transport layer, significantly improved charge extraction and generates a negative electric field at the interface, thereby reducing recombination losses and accelerating the transport of hole carriers. These configurations exhibited substantially higher efficiencies compared to those with a single hole transport layer, confirming the advantages of the dual hole transport layer structure. Additionally, devices using Cu₂O/CZTS and MoO₃/CZTS as dual hole transport layer showed better performance than the reference structure employing Spiro-OMeTAD/CZTS, indicating the potential for further improvement by optimizing material selection and layer properties. Among the various dual hole transport layer combinations tested, the structure utilizing Cu₂O/CZTS achieved the highest simulated power conversion efficiency (PCE) of 22.85%. By optimizing the thickness of each functional layer, the efficiency was further increased to 25.62%, with the optimal layer thicknesses determined to be 40 nm for ZnO, 850 nm for Cs₂AgBiI₆, 140 nm for Cu₂O, and 150 nm for CZTS. Furthermore, the effects of environmental and material parameters, such as temperature and hole transport layer doping concentration, on device performance were investigated. This study establishes a theoretical foundation for the design and enhancement of double perovskite solar cells. By demonstrating the potential of dual hole transport layer structures to significantly improve device efficiency, it underscores their value in advancing environmentally friendly and lead-free photovoltaic technologies. The insights gained from this research pave the way for developing high-performance double perovskite solar cells with optimized architectures and material properties.
  • [1]

    Hasan S A U, Zahid M A, Park S,Yi J 2024 Sol. RRL. 8 2300967

    [2]

    Cheng M, Jiang J, Yan C, Lin Y, Mortazavi M, Kaul A B, Jiang Q 2024 Nanomater. 14 391

    [3]

    Liu H R, Zhang Z H, Yang F, Yang J E, Grace A N, Li J M, Tripathi S, Jain S M 2021 Coat. 11 1045

    [4]

    Machin A, Marquez F 2024 Mater. 17 1165

    [5]

    Wan T, Zhu A, Guo Y, Wang C 2017 Mater. Rev. 31 16

    [6]

    Zhai M, Chen C, Cheng M 2023 Sol. Energy. 253 563

    [7]

    Meyer E, Mutukwa D, Zingwe N, Taziwa R 2018 Met. 8 667

    [8]

    Yuan Y, Yan G, Hong R, Liang Z, Kirchartz T 2022 Adv. Mater. 34 2108132

    [9]

    Zhao X G, Yang J H, Fu Y, Yang D, Xu Q, Yu L, Wei S H, Zhang L 2017 J. Am. Chem. Soc. 139 2630

    [10]

    Ji F, Boschloo G, Wang F, Gao F 2023 Sol. RRL. 7 2201112

    [11]

    chrafih Y, Al Hattab M, Rahmani K 2023 J. Alloys Compd. 960 170650

    [12]

    Amraoui S, Feraoun A, Kerouad M 2022 Inorg. Chem. Commun. 140 109395

    [13]

    Slavney A H, Hu T, Lindenberg A M, Karunadasa H I 2016 J. Am. Chem. Soc. 138 2138

    [14]

    Huang Q, Liu J, Qi F, Pu Y, Zhang N, Yang J, Liang Z, Tian C 2023 J. Environ. Chem. Eng. 11 109960

    [15]

    Creutz S E, Crites E N, De Siena M C, Gamelin D R 2018 Nano Lett. 18 1118

    [16]

    Rehman M A, Rehman J u, Tahir M B 2023 J. Phys. Chem. Solids. 181 111443

    [17]

    Chand Yadav S, Srivastava A, Manjunath V, Kanwade A, Devan R S, Shirage P M 2022 Mater. Today Phys. 26 100731

    [18]

    Volonakis G, Filip M R, Haghighirad A A, Sakai N, Wenger B, Snaith H J, Giustino F 2016 J. Phys. Chem. Lett. 7 1254

    [19]

    Igbari F, Wang R, Wang Z K, Ma X J, Wang Q, Wang K L, Zhang Y, Liao L S,Yang Y 2019 Nano Lett. 19 2066

    [20]

    Hossain M K, Samajdar D P, Das R C, Arnab A A, Rahman M F, Rubel M H K, Islam M R, Bencherif H, Pandey R, Madan J,Mohammed M K A 2023 Energy Fuels. 37 3957

    [21]

    Alla M, Manjunath V, Choudhary E, Samtham M, Sharma S, Shaikh P A, Rouchdi M, Fares B 2022 phys. status solidi A. 220 2200642

    [22]

    Zarabinia N, Rasuli R 2021 Energy Sources Part A. 43 2443

    [23]

    Chen Q M, Ni Y, Dou X M, Yoshinori Y 2022 Cryst. 12 68

    [24]

    Azadinia M, Ameri M, Ghahrizjani R T, Fathollahi M 2021 Mater. Today Energy. 20 100647

    [25]

    Yoon S, Kim H, Shin E Y, Bae I G, Park B, Noh Y Y, Hwang I 2016 Org. Electron. 32 200

    [26]

    Chen G S, Chen Y C, Lee C T, Lee H Y 2018 Sol. Energy 174 897

    [27]

    Dahal B, Rezaee M D, Gotame R C, Li W 2023 Mater. Today Commun. 36 106846

    [28]

    Kim D I, Lee J W, Jeong R H, Nam S H, Hwang K H, Boo J H 2019 Surf. and Coat. Technol. 357 189

    [29]

    Chen Y, Zhang M, Li F,Yang Z 2023 Coat. 13 644

    [30]

    Islam T, Jani R, Amin S M A, Shorowordi K M, Nishat S S, Kabir A, Taufique M F N, Chowdhury S, Banerjee S, Ahmed S 2020 Comput. Mater. Sci. 184 109865

    [31]

    Anoop K M, Ahipa T N 2023 Sol. Energy. 263 111937

    [32]

    Kumar A 2021 Superlattices Microstructures. 153 106872

    [33]

    Hossain M K, Arnab A A, Das R C, Hossain K M, Rubel M H K, Rahman M F, Bencherif H, Emetere M E, Mohammed M K A, Pandey R 2022 RSC Adv. 12 34850

    [34]

    Bhattarai S, Hossain M K, Pandey R, Madan J, Samajdar D P, Rahman M F, Ansari M Z, Amami M 2023 Energy Fuels. 37 10631

  • [1] 熊祥杰, 钟防, 张资文, 陈芳, 罗婧澜, 赵宇清, 朱慧平, 蒋绍龙. 二维范德瓦耳斯异质结Cs3X2I9/InSe (X = Bi, Sb)的光电性能. 物理学报, doi: 10.7498/aps.73.20240434
    [2] 王月荣, 田汉民, 张登琪, 刘维龙, 马旭蕾. Cs2AgBi0.75Sb0.25Br6钙钛矿太阳能电池的优化设计. 物理学报, doi: 10.7498/aps.73.20231299
    [3] 李学锐, 林俊辉, 唐戎, 郑壮豪, 苏正华, 陈烁, 范平, 梁广兴. 新型硒化锑薄膜太阳电池背接触优化. 物理学报, doi: 10.7498/aps.72.20221929
    [4] 王兰, 程思远, 曾航航, 谢聪伟, 龚元昊, 郑植, 范晓丽. CuBiI三元化合物晶体结构预测及光电性能第一性原理研究. 物理学报, doi: 10.7498/aps.70.20210145
    [5] 陈卓, 方磊, 陈远富. 三维多孔复合碳层对电极的制备及其光伏性能研究. 物理学报, doi: 10.7498/aps.68.20181833
    [6] 吴彤, 孙帅帅, 王绪晖, 王吉明, 赫崇君, 顾晓蓉, 刘友文. 基于最优化线性波数光谱仪的谱域光学相干层析成像系统. 物理学报, doi: 10.7498/aps.67.20172606
    [7] 韩定定, 姚清清, 陈趣, 钱江海. 基于时变小世界模型的航空网优化评估. 物理学报, doi: 10.7498/aps.66.248901
    [8] 袁怀亮, 李俊鹏, 王鸣魁. 有机无机杂化固态太阳能电池的研究进展. 物理学报, doi: 10.7498/aps.64.038405
    [9] 王云峰, 顾成明, 张晓辉, 王雨顺, 韩月琪, 王耘锋. 优化模式物理参数的扩展四维变分同化方法. 物理学报, doi: 10.7498/aps.63.240202
    [10] 刘乐柱, 张季谦, 许贵霞, 梁立嗣, 黄守芳. 一个修改的混沌蚁群优化算法. 物理学报, doi: 10.7498/aps.62.170501
    [11] 姜冰一, 郑建邦, 王春锋, 郝娟, 曹崇德. 基于GaAs/InAs-GaAs/ZnSe量子点太阳电池结构的优化. 物理学报, doi: 10.7498/aps.61.138801
    [12] 耿俊杰, 张军, 张俊, 张义, 丁建军, 孙松, 罗震林, 鲍骏, 高琛. 叠层荧光集光太阳能光伏器件的性能模拟和优化. 物理学报, doi: 10.7498/aps.61.034201
    [13] 汪剑波, 卢俊. 双屏频率选择表面结构的遗传算法优化. 物理学报, doi: 10.7498/aps.60.057304
    [14] 张春涛, 马千里, 彭宏. 基于信息熵优化相空间重构参数的混沌时间序列预测. 物理学报, doi: 10.7498/aps.59.7623
    [15] 黄阳, 戴松元, 陈双宏, 胡林华, 孔凡太, 寇东星, 姜年权. 大面积染料敏化太阳电池的串联阻抗特性研究. 物理学报, doi: 10.7498/aps.59.643
    [16] 戴存礼, 刘曙娥, 田 亮, 施大宁. 推广的失活网络动力学同步优化. 物理学报, doi: 10.7498/aps.57.4800
    [17] 戴松元, 孔凡太, 胡林华, 史成武, 方霞琴, 潘 旭, 王孔嘉. 染料敏化纳米薄膜太阳电池实验研究. 物理学报, doi: 10.7498/aps.54.1919
    [18] 颜森林, 迟泽英, 陈文建, 王泽农. 激光混沌同步和解码以及优化. 物理学报, doi: 10.7498/aps.53.1704
    [19] 陆明珠, 万明习, 施雨. 相控阵超声热疗场共轭直接合成的模式优化研究. 物理学报, doi: 10.7498/aps.50.347
    [20] 程 成, 何赛灵. 大口径铜蒸气激光“黑心”的优化消除. 物理学报, doi: 10.7498/aps.49.1267
计量
  • 文章访问数:  71
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2024-12-12

/

返回文章
返回