-
由两种或多种不同的二维材料组合而产生的层状范德华异质结构具有不同寻常的物理特性,可用于设计高效光电器件.本文使用基于密度泛函理论的第一性原理方法统地研究了由二维砷化硼(BAs)和蓝磷砷(I-AsP)单层形成的异质结的几何结构和光电性能.研究表明,四种垂直堆叠的BAs/I-AsP异质结构在基态下具有稳定的结构,且带隙在0.63~0.86 eV之间.相较于其组份的单层结构,该异质结构的光学吸收系数得到了提升,并且具备I型能带排列结构.另外,通过施加双轴应变和电场可显著地改变异质结构的带隙和能带类型.在双轴施加-10%~8%的拉伸或压缩应变下,带隙也随之增加,在拉伸大于8%时,带隙开始减小.电场在-0.5至0.5 V/Å范围内线性地影响带隙,随着电场增加带隙逐渐减小.双轴应变和电场都可使材料能带排列在I型和II型之间转变.同时,BAs/I-AsP异质结具有~13%的理论光电转换效率.可见,该二维异质结在光伏和光电领域具有广阔的应用前景.In recent years, two-dimensional (2D) materials have attracted considerable attention due to their outstanding optical and electronic properties and have shown great potential for applications in next-generation solar cells and other optoelectronic devices. In this paper, density functional theory (DFT) is applied to systematically study the electronic and optoelectronic properties of the heterojunction formed by 2D BAs and I-AsP monolayers, as well as the response of this heterojunction under biaxial strain and electric field. The calculation results show that, in the ground state, the four vertically stacked BAs/I-AsP heterostructures all have stable geometric structures, and their band gaps range from 0.63 to 0.86 eV. Compared with their constituent monolayers, the optical absorption coefficients of these heterostructures are increased (the absorption coefficient in the x-direction reaches 106 cm-1), and they can effectively separate the photogenerated electron-hole pairs. Among the four structures, the A1 structure exhibits the smallest interlayer spacing, the smallest binding energy, and the highest stability. It has a type-I band alignment, and this structure is a direct-band gap semiconductor with a band gap of 0.86 eV (PBE) and 1.26 eV (HSE06), which can be applied in the field of light-emitting diodes. The band gap and band type of the heterostructure can be effectively changed by applying biaxial strain and electric field. Under the application of biaxial tensile or compressive strain in the range of -10% to 8%, the band gap increases accordingly. When the tensile strain is greater than 8%, the band gap starts to decrease. When the biaxial strain ε ≤ -3% and ε > 8%, the heterojunction transitions from a type-I band alignment to a type-II band alignment. Under tensile strain, the absorption spectrum undergoes a red shift, while compressive strain leads to a blue shift of the absorption spectrum. Similarly, the externally applied electric field linearly affects the band gap of the BAs/I-AsP heterojunction in the range of -0.5 to 0.5 V/Å, and the band gap decreases as the electric field increases. When a positive electric field with E≥0.2 V/Å is applied, the band alignment of the heterojunction can also transition from type-I to type-II. The BAs/I-AsP heterojunction has strong absorption properties in the ultraviolet and visible light ranges. Based on the Scharber model, the theoretical power conversion efficiency (PCE) η of the BAs/I-AsP heterojunction is found to be greater than 13%, which is higher than that of 2D heterojunction materials such as Cs3Sb2I9/InSe (η=3.3%), SiPGaS/As (η=7.3%) and SnSe/SnS (η=9.1%). This further broadens the application scope of the BAs/I-AsP heterojunction, making it promising to play an important role in the field of photodetectors and solar cells.
-
Keywords:
- 2D heterojunction /
- DFT /
- power conversion efficiency /
- modulate
-
[1] Kazem H A, Chaichan M T, Al-Waeli A H A, Sopian K 2024Sol. Energy 282 112946.
[2] Qu W, Han D, Zhang J, Peng K, Gao Y, Huang S 2025Energy 316 134562.
[3] Richter A, Hermle M, Glunz S W 2013IEEE J. Photovolt. 31184.
[4] An J, Zhao X, Zhang Y, Liu M, Yuan J, Sun X, Zhang Z, Wang B, Li S, Li D 2022Adv. Funct. Mater. 322110119.
[5] Zhang J, Zhang H, Du Q, Xie X, Fang Y, Tang C, Chen G 2024Part. Part. Syst. Charact. 41 2300062.
[6] Ullah S, Thonhauser T, Menezes M G 2024Appl. Mater. Today 41 102495.
[7] Hao J, Zhang D L, Chen S, Xu J, Wang Z, Wang Y 2025Surf. Interfaces 58 105837.
[8] Mao Y, Wu R, Ding D, He F 2022Computat. Mater. Sci. 202 110957.
[9] Lv B, Lan Y, Wang X, Zhang Q, Hu Y, Jacobson A J, Broido D, Chen G, Ren Z, Chu C W 2015Appl. Phys. Lett. 106 074105.
[10] Broido D A, Lindsay L, Reinecke T L 2013Phys. Rev. B 88214303.
[11] Xie M Q, Zhang S L, Cai B, Zhu Z, Zou Y S, Zeng H B 2016Nanoscale 8 13407.
[12] Xie M, Cai B, Meng Z, Gu Y, Zhang S, Liu X, Gong L, Li X, Zeng H 2020ACS Appl. Mater. Interfaces 126074.
[13] Mak K F, Shan J 2016Nat. Photonics 10 216.
[14] Deng X Q, Sheng R Q, Jing Q 2021RSC Adv. 11 21824.
[15] Li L, Yu Y, Ye G, Ge Q, Ou X, Wu H, Feng D, Chen X, Zhang Y 2014Nat. Nanotechnol. 9 372.
[16] Zhu Z, Tománek D 2014Phys. Rev. Lett. 112176802.
[17] Song Y H, Muzaffar M U, Wang Q, Wang Y, Jia Y, Cui P, Zhang W, Wang X S, Zhang Z 2024 Nat. Commun. 15 1157.
[18] Zhou D, Meng Q, Si N, Zhou X, Zhai S, Tang Q, Ji Q, Zhou M, Niu T, Fuchs H 2020ACS Nano 14 2385.
[19] Cheng W, Yao X, Zhao L, Li C, Zheng Q, Han J, Wang S, Liu Y, Zhu J 2024Phys. Rev. B 109 064507.
[20] Antonatos N, Mazánek V, Lazar P, Sturala J, Sofer Z 2020Nanoscale Adv. 2 1282.
[21] Jamdagni P, Thakur A, Kumar A, Ahluwalia P K, Pandey R 2018Phys. Chem. Chem. Phys. 20 29939.
[22] Zhang S, Yan Z, Li Y, Chen Z, Zeng H 2015Angew. Chem., Int. Ed. Engl. 54 3112.
[23] Zhong M, He J 2020J. Semicond. 41080402.
[24] Yuan S, Shen C, Deng B, Chen X, Guo Q, Ma Y, Abbas A, Liu B, Haiges R, Ott C, Nilges T, Watanabe K, Taniguchi T, Sinai O, Naveh D, Zhou C, Xia F 2018 Nano Lett. 18 3172.
[25] Cai X, Chen Y, Sun B, Chen J, Wang H, Ni Y, Tao L, Wang H, Zhu S, Li X, Wang Y, Lv J, Feng X, Redfern S A T, Chen Z 2019 Nanoscale 11 8260.
[26] Blöchl P E 1994Phys. Rev. B 50 17953.
[27] Kresse G, Joubert D 1999Phys. Rev. B 59 1758.
[28] Perdew J P, Burke K, Ernzerhof M 1996Phys. Rev. Lett. 77 3865.
[29] Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104.
[30] Hao J, Zhang D L, Wang Z, Chen S, Xu J, Wang Y 2024Mater. Today Commun. 38 108423.
[31] Monkhorst H J, Pack J D 1976Phys. Rev. B 13 5188.
[32] Nose S 1984J. Chem. Phys. 81 511.
[33] Tang W, Sanville E, Henkelman G 2009 J. Phys. Condens. Mater. 21084204.
[34] Bai H, Qian G, Liang Q, Feng Y, An M, Xie Q 2024Comput. Mater. Sci. 238 112948.
[35] Cheng K, Xu J, Guo X, Guo S, Su Y 2023Phys. Chem. Chem. Phys. 25 17360.
[36] Wu H Y, Yang K, Si Y, Huang W Q, Hu W, Huang G F 2019Phys. Status Solidi RRL 131800565.
[37] Sun T Y, Wu L, He X J, Jiang N, Zhou W Z, Ouyang F P 2023Acta Phys. Sin. 72 334(in Chinese) [孙婷钰,吴量,何贤娟,姜楠,周文哲,欧阳方平2023物理学报72 334]
[38] Bernardi M, Palummo M, Grossman J C 2012 ACS Nano 6 10082.
[39] Wu M, Meng D 2024 Phys. B 680415847.
[40] Behzad S, Chegel R 2023 Sci. Rep. 13 21339.
[41] Lin L, Lou M, Li S, Cai X, Zhang Z, Tao H 2022Appl. Surf. Sci. 572 151209.
[42] Liu C X, Pang G W, Pan D Q, Shi L Q, Zhang L L, Lei B C, Zhao X C, Huang Y N 2022Acta Phys. Sin. 71 288(in Chinese) [刘晨曦, 庞国旺, 潘多桥, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能2022物理学报71288]
[43] Xu Y H, Fan Z Q, Zhang Z H, Zhao T 2021 Appl. Surf. Sci. 547 149174.
[44] Xiong X J, Zhong F, Zhang Z W, Chen F, Luo J L, Zhao Y Q, Zhu H P, Jiang S L 2024Acta Phys. Sin. 73137101(in Chinese) [熊祥杰,钟防,张资文,陈芳,罗婧澜,赵宇清,朱慧平,蒋绍龙2024物理学报73137101]
[45] Shahid I, Hu X, Ahmad I, Ali A, Shehzad N, Ahmad S, Zhou Z 2023Nanoscale 15 7302.
[46] Zhang R, Zhou Z, Yao Q, Qi N, Chen Z 2021Phys. Chem. Chem. Phys. 233794.
计量
- 文章访问数: 73
- PDF下载量: 5
- 被引次数: 0