搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CuBiI三元化合物晶体结构预测及光电性能第一性原理研究

王兰 程思远 曾航航 谢聪伟 龚元昊 郑植 范晓丽

引用本文:
Citation:

CuBiI三元化合物晶体结构预测及光电性能第一性原理研究

王兰, 程思远, 曾航航, 谢聪伟, 龚元昊, 郑植, 范晓丽

Structure prediction of CuBiI ternary compound and first-principles study of photoelectric properties

Wang Lan, Cheng Si-Yuan, Zeng Hang-Hang, Xie Cong-Wei, Gong Yuan-Hao, Zheng Zhi, Fan Xiao-Li
PDF
HTML
导出引用
  • 作为潜在的新型光电材料, 三元金属卤化物一直以来广受关注. 本文通过基于遗传算法的晶体结构预测软件USPEX, 对三元CuBiI化合物(CuBi2I7, Cu2BiI5, Cu2BiI7, Cu3BiI6, Cu3Bi2I9, CuBi3I10, Cu4BiI7)在常压、绝对零度下的稳定晶体结构进行了全局搜索. 采用基于密度泛函理论的第一性原理计算方法, 计算了所发现结构的形成能、弹性系数和声子色散谱, 确定了12个具有良好的热力学、弹性力学及晶格动力学稳定性的CuBiI化合物结构. 这12个潜在稳定结构的理论带隙为1.13—3.09 eV, 其中CuBi2I7, Cu2BiI5, Cu2BiI7和Cu4BiI7在可见光区域表现出极强的光吸收能力(光吸收系数高于4 × 105 cm–1), 光电转换效率最高可达31.63%. 计算结果表明三元金属卤化物CuBiI具有成为高性能太阳能电池吸收层材料的潜力.
    Ternary metal halides have attracted much attention as a new potential photoelectric material due to their ultra-high photoelectric conversion efficiencies. In this paper, USPEX, a crystal structure prediction software based on genetic algorithm, is used to investigate the potential crystal structures of ternary CuBiI compounds (CuBi2I7, Cu2BiI5, Cu2BiI7,Cu3BiI6, Cu3Bi2I9, CuBi3I10, and Cu4BiI7) at atmospheric pressure and absolute zero temperature. Based on the density functional theory, the formation energies, elastic coefficients, and phonon dispersion curves of the predicted structures are calculated. The twelve stable CuBiI compounds with good thermodynamic, dynamical and mechanical stabilities are identified. The twelve crystal structures of CuBiI compound feature mainly the co-existence of Cu—I and Bi—I bonds and coordination polyhedrons of I atoms. The band gaps of twelve structures, calculated by HSE06 method, are 1.13–3.09 eV, indicating that the stoichiometric ratio affects the band gap obviously. Among them, the band gaps of Cu2BiI5-P1, Cu2BiI7-P1 and Cu2BiI7-P1-II are relatively small, close to the optimal band gap value for light absorption (1.40 eV), demonstrating that these compounds are suitable for serving as light absorbing materials in solar cells. The distribution of density of state (DOS) indicates that the top of the valence band of CuBiI compound is attributed to the hybridized Cu-3d and I-5p orbitals; the bottom of the conduction band of Cu3BiI6-R3 comes mainly from the Bi-6p and I-5p orbitals, and Cu-3d contributes little; the conduction band bottom of Cu2BiI7 is mainly from the I-5p orbital, and the Cu-3d has little contribution. The bottoms of the conduction band of other structures originate mainly from the hybridized Bi-6p and I-5p orbitals. Electronic localization function and Bader charge analysis show that the Cu—I and Bi—I bonds have more ionic features and less covalent natures. The DOS distribution also confirms the covalent interaction of Cu/Bi-I. In addition, the CuBiI ternary compounds have extremely strong light absorption capacities (light absorption coefficient higher than 4 × 105 cm–1) in the high-energy region of visible light and high power conversion efficiency (31.63%), indicating that the CuBiI ternary compounds have the potential to be an excellent photoelectric absorption material. Our investigation suggests the further study and potential applications of CuBiI ternary compound as absorber materials in solar cell.
      通信作者: 范晓丽, xlfan@nwpu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFB0703800)、陕西省杰出青年自然科学基金(批准号: 2019JC-10)和西北工业大学研究生创新创造种子基金(批准号: CX2020083)资助的课题
      Corresponding author: Fan Xiao-Li, xlfan@nwpu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFB0703800), the Natural Science Fund for Distinguished Yong Scholars of Shaanxi Province, China (Grant No. 2019JC-10), and the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University, China (Grant No. CX2020083)
    [1]

    Zhang F, Lu H P, Tong J H, Berry J J, Beard M C, Zhu K 2020 Energy Environ. Sci. 13 1154Google Scholar

    [2]

    Ajayan J, Nirmal D, Mohankumar P, Saravanan M, Jagadesh M, Arivazhagan L A 2020 Superlattices Microstruct. 143 106549Google Scholar

    [3]

    Wang L L, Fan B B, Zheng B, Yang Z B, Yin P G, Huo L J 2020 Sustainable Energy Fuels 4 2134Google Scholar

    [4]

    Chen W J, Li X Q, Li Y W, Li Y F 2020 Energy Environ. Sci. 13 1971Google Scholar

    [5]

    Wang Y, Sun H D 2018 Small Methods 21 700252

    [6]

    Xi J, Wu Z X, Jiao B, Dong H, Ran C X, Piao C C, Lei T, Song T B, Ke W J, Yokoyama T, Hou X, Kanatzidis M G 2017 Adv. Mater. 29 1606964Google Scholar

    [7]

    Cheng P F, Wu T, Zhang J W, Li Y J, Liu J X, Jiang L, Mao X, Lu R F, Deng W Q, Han K L 2017 J. Phys. Chem. Lett. 8 4402Google Scholar

    [8]

    Sumathi R, Johnson K, Viswanathan B, Varadarajan T K 1998 Appl. Catal., A 172 15Google Scholar

    [9]

    Zhu H X, Liu J M 2016 Sci. Rep. 6 37425Google Scholar

    [10]

    Peng L, Xie W 2020 RSC Adv. 10 14679Google Scholar

    [11]

    Jiao Y Q, Lv Y Y, Li J, Niu M, Yang Z Q 2017 Comput. Theor. Chem. 15 20

    [12]

    Zhang L, Liu C M, Lin Y 2019 J. Phys. Chem. Lett. 10 1676Google Scholar

    [13]

    Pa J, Bhunia A, Chakraborty S, Manna S, Das S, Dewan A, Datta S, Nag A 2018 J. Phys. Chem. C 122 10643Google Scholar

    [14]

    Sun S J, Tominaka S, Lee J H, Xie F, Bristowe P D, Cheetham A K 2016 APL Mater. 4 031101Google Scholar

    [15]

    Lu C J, Zhang J, Sun H R, Hou D G, Gan X L, Shang M H, Li Y Y, Hu Z Y, Zhu Y J, Han L Y 2018 ACS Appl. Energy Mater. 1 4485Google Scholar

    [16]

    Kulkarni A, Jena A K, Ikegami M 2019 Chem. Commun. 55 4031Google Scholar

    [17]

    Ramachandrana A A, Krishnana B D, Leal D A A, Martinez E G, Martinez J A A, Avellaneda D A, Shaji S 2020 Mater. Today Commun. 24 101092Google Scholar

    [18]

    Seo Y, Ha S R, Yoon S, Jeong S M, Choi H, Kang D W 2020 J. Power Sources 453 227903Google Scholar

    [19]

    Yi Z J, Zhang T, Ban H X, Shao H, Gong X, Wu M A, Liang G J, Zhang X L, Shen Y, Wang M K 2020 Sol. Energy 206 436Google Scholar

    [20]

    Fourcroy P H, Carré D, Thévet F, Rivet J 1991 Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 47 2023Google Scholar

    [21]

    Hu Z S, Wang Z, Kapil G, Ma T L, Iikubo S, Minemoto T, Yoshino K, Toyoda T, Shen Q, Hayase S 2018 ChemSusChem 11 2930Google Scholar

    [22]

    Zhang B S, Lei Y, Qi R J, Yu H L, Yang X G, Cai T, Zheng Z 2019 Sci. China Mater. 62 519Google Scholar

    [23]

    Bi L Y, Hu Y Q, Li M Q, Hu T L, Zhang H L, Yin X T, Que W X, Lassoued M S, Zheng Y Z 2019 J. Mater. Chem. A. 7 19662Google Scholar

    [24]

    Lyakhov A O, Oganov A R, Stokes H T, Zhu Q 2013 Comput. Phys. Commun. 184 1172Google Scholar

    [25]

    Li Y L, Wang S N, Oganov A R, Gou H, Smith J S, Strobel T 2015 Nat. Commun. 6 6974Google Scholar

    [26]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [28]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [29]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [30]

    Parlinski K, Li Z Q, Kawazoe Y 1997 Phys. Rev. Lett. 78 4063Google Scholar

    [31]

    Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J, Meng J 2007 Phys. Rev. B 76 054115Google Scholar

    [32]

    Félix M, Coudert F X 2014 Phys. Rev. B 90 224104Google Scholar

    [33]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244Google Scholar

    [34]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [35]

    Smith N V 1971 Phys. Rev. B 3 1862Google Scholar

    [36]

    Draxl C A, Sofo J O 2006 Comput. Phys. Commun. 175 1Google Scholar

    [37]

    Ju M G, Dai J, Ma L, Zeng X C 2017 Adv. Energy Mater. 7 1700216Google Scholar

    [38]

    Zhang Z, Liu D W, Wu K C 2020 Spectrochim. Acta A. 226 117638Google Scholar

    [39]

    Mayengbama R, Tripathya S K, Palai G 2020 Mater. Today Commun. 24 101216Google Scholar

    [40]

    Liu Y, Qian J Y, Zhang H, Xu B, Zhang Y P, Liu L J, Chen G, Tian W J 2018 Org. Electron. 62 269Google Scholar

  • 图 1  12个CuBiI三元化合物结构的声子色散谱图 (a) CuBi2I7-P1; (b) CuBi2I7-P1-II; (c) Cu2BiI5-P1; (d) Cu2BiI5-Cm; (e) Cu3BiI6-P3; (f) Cu3BiI6-R3; (g) Cu4BiI7-P1; (h) Cu4BiI7-P3; (i) Cu3Bi2I9-P1; (j) CuBi3I10-P1; (k) Cu2BiI7-P1; (l) Cu2BiI7-P1-II

    Fig. 1.  Phonon dispersion spectra for the 12 structures of CuBiI ternary compound: (a) CuBi2I7-P1; (b) CuBi2I7-P1-II; (c) Cu2BiI5-P1; (d) Cu2BiI5-Cm; (e) Cu3BiI6-P3; (f) Cu3BiI6-R3; (g) Cu4BiI7-P1; (h) Cu4BiI7-P3; (i) Cu3Bi2I9-P1; (j) CuBi3I10-P1; (k) Cu2BiI7-P1; (l) Cu2BiI7-P1-II.

    图 2  CuBi2I7-P1的晶体结构 (a) 主视图; (b) 俯视图. CuBi2I7-P1-II的晶体结构 (c) 主视图; (d) 俯视图

    Fig. 2.  Crystal structure of CuBi2I7-P1: (a) Front view; (b) top view. Crystal structure of CuBi2I7-P1-II: (c) Front view; (d) top view

    图 3  Cu2BiI5-P1的晶体结构 (a) 主视图; (b) 俯视图. Cu2BiI5-Cm的晶体结构 (c) 主视图; (d) 俯视图

    Fig. 3.  Crystal structure of Cu2BiI5-P1: (a) Front view; (b) top view. Crystal structure of Cu2BiI5-Cm: (c) Front view; (d) top view.

    图 4  Cu3BiI6-P3的晶体结构 (a) 主视图; (b) 俯视图. Cu3BiI6-R3的晶体结构 (c) 主视图; (d) 俯视图

    Fig. 4.  Crystal structure of Cu3BiI6-P3: (a) Front view; (b) top view. Crystal structure of Cu3BiI6-R3: (c) Front view; (d) top view.

    图 5  Cu4BiI7-P1的晶体结构 (a) 主视图; (b) 俯视图. Cu4BiI7-P3的晶体结构 (c) 主视图; (d) 俯视图

    Fig. 5.  Crystal structure of Cu4BiI7-P1: (a) Front view; (b) top view. Crystal structure of Cu4BiI7-P3: (c) Front view; (d) top view.

    图 6  Cu3Bi2I9-P1的晶体结构 (a) 主视图; (b) 俯视图. CuBi3I10-P1的晶体结构 (c) 主视图; (d) 俯视图

    Fig. 6.  Crystal structure of Cu3Bi2I9-P1: (a) Front view; (b) top view. Crystal structure of CuBi3I10-P1: (c) Front view; (d) top view

    图 7  Cu2BiI7-P1的晶体结构 (a) 主视图; (b) 俯视图. Cu2BiI7-P1-II的晶体结构 (c) 主视图; (d) 俯视图

    Fig. 7.  Crystal structure of Cu2BiI7-P1: (a) Front view; (b) top view. Crystal structure of Cu2BiI7-P1-II: (c) Front view; (d) top view

    图 8  12个CuBiI三元化合物结构的能带结构图 (红色, HSE06方法计算结果; 蓝色, PBE方法计算结果) (a) CuBi2I7-P1; (b) CuBi2I7-P1-II; (c) Cu2BiI5-P1; (d) Cu2BiI5-Cm; (e) Cu3BiI6-P3; (f) Cu3BiI6-R3; (g) Cu4BiI7-P1; (h) Cu4BiI7-P3; (i) Cu3Bi2I9-P1; (j) CuBi3I10-P1; (k) Cu2BiI7-P1; (l) Cu2BiI7-P1-II

    Fig. 8.  Band structure for the 12 structures of CuBiI ternary compound calculated by the PBE (blue lines) and HSE06 (red lines) methods: (a) CuBi2I7-P1; (b) CuBi2I7-P1-II; (c) Cu2BiI5-P1; (d) Cu2BiI5-Cm; (e) Cu3BiI6-P3; (f) Cu3BiI6-R3; (g) Cu4BiI7-P1; (h) Cu4BiI7-P3; (i) Cu3Bi2I9-P1; (j) CuBi3I10-P1; (k) Cu2BiI7-P1; (l) Cu2BiI7-P1-II.

    图 9  12个CuBiI三元化合物结构的总态密度、投影态密度图以及价带顶、导带底(从左到右或从上到下)的电荷密度分布图 (a) CuBi2I7-P1; (b) CuBi2I7-P1-II; (c) Cu2BiI5-P1; (d) Cu2BiI5-Cm; (e) Cu3BiI6-P3; (f) Cu3BiI6-R3; (g) Cu4BiI7-P1; (h) Cu4BiI7-P3; (i) Cu3Bi2I9-P1; (j) CuBi3I10-P1; (k) Cu2BiI7-P1; (l) Cu2BiI7-P1-II

    Fig. 9.  Total density of state (TDOS), projection density of state (PDOS) and charge density distribution (Left to right or top to bottom) at CBM and VBM for the 12 structures of CuBiI ternary compound: (a) CuBi2I7-P1; (b) CuBi2I7-P1-II; (c) Cu2BiI5-P1; (d) Cu2BiI5-Cm; (e) Cu3BiI6-P3; (f) Cu3BiI6-R3; (g) Cu4BiI7-P1; (h) Cu4BiI7-P3; (i) Cu3Bi2I9-P1; (j) CuBi3I10-P1; (k) Cu2BiI7-P1; (l) Cu2BiI7-P1-II.

    图 10  12个CuBiI三元化合物结构的电子局域函数分布图 (a) CuBi2I7-P1; (b) CuBi2I7-P1-II; (c) Cu2BiI5-P1; (d) Cu2BiI5-Cm; (e) Cu3BiI6-P3; (f) Cu3BiI6-R3; (g) Cu4BiI7-P1; (h) Cu4BiI7-P3; (i) Cu3Bi2I9-P1; (j) CuBi3I10-P1; (k) Cu2BiI7-P1; (l) Cu2BiI7-P1-II

    Fig. 10.  Electron localization function (ELF) for the 12 structures of CuBiI ternary compound: (a) CuBi2I7-P1; (b) CuBi2I7-P1-II; (c) Cu2BiI5-P1; (d) Cu2BiI5-Cm; (e) Cu3BiI6-P3; (f) Cu3BiI6-R3; (g) Cu4BiI7-P3; (h) Cu4BiI7-P1; (i) Cu3Bi2I9-P1; (j) CuBi3I10-P1; (k) Cu2BiI7-P1; (l) Cu2BiI7-P1-II.

    图 11  12个CuBiI三元化合物结构的光吸收谱, 灰色区域代表可见光能量范围(1.64—3.19 eV) (a) CuBi2I7-P1; (b) CuBi2I7-P1-II; (c) Cu2BiI5-P1; (d) Cu2BiI5-Cm; (e) Cu3BiI6-P3; (f) Cu3BiI6-R3; (g) Cu4BiI7-P1; (h) Cu4BiI7-P3; (i) Cu3Bi2I9-P1; (j) CuBi3I10-P1; (k) Cu2BiI7-P1; (l) Cu2BiI7-P1-II

    Fig. 11.  Optical absorption spectrum for the 12 structures of CuBiI ternary compound. The gray area represents the Visible energy range (1.64–3.19 eV): (a) CuBi2I7-P1; (b) CuBi2I7-P1-II;(c) Cu2BiI5-P1; (d) Cu2BiI5-Cm; (e) Cu3BiI6-P3; (f) Cu3BiI6-R3; (g) Cu4BiI7-P1; (h) Cu4BiI7-P3; (i) Cu3Bi2I9-P1; (j) CuBi3I10-P1; (k) Cu2BiI7-P1; (l) Cu2BiI7-P1-II.

    图 12  SLME方法预测的12个CuBiI三元化合物结构的光电转换效率与吸收层厚度的关系

    Fig. 12.  Photoelectric conversion efficiency of 12 structures of CuBiI ternary compound with respect to the absorption layer thickness predicted by SLME method.

    表 1  12个CuBiI三元化合物结构的结构名称、空间群、晶胞内原子数、体积及形成能

    Table 1.  Structure name, space group, number of atoms per unit cell, volume of the unit cell and formation energy for the 12 structures of CuBiI ternary compound.

    Structure
    name
    Space
    group
    Number of/
    (atoms·unit cell–1)
    Volume/
    3·unit cell–1)
    ${{E} }_{\rm{form} }$/
    (eV·atoms–1)
    Structure
    name
    Space
    group
    Number of/
    (atoms·unit cell–1)
    Volume/
    3·unit cell–1)
    ${{E} }_{\rm{form} }$/
    (eV·atoms–1)
    CuBi2I7-P1P110474.24–0.362 CuBi2I7-P1-IIP110465.35–0.385
    Cu2BiI5-P1P18295.03–0.287 Cu2BiI5-CmCm16742.54–0.290
    Cu3BiI6-P3P310404.63–0.265 Cu3BiI6-R3R3301318.62–0.244
    Cu4BiI7-P1P112428.29–0.237 Cu4BiI7-P3P312451.33–0.231
    Cu3Bi2I9-P1P114645.41–0.294 CuBi3I10-P1P114691.08–0.402
    Cu2BiI7-P1P110420.79–0.225 Cu2BiI7-P1-IIP110420.68–0.226
    下载: 导出CSV

    表 2  12个CuBiI三元化合物结构的弹性系数(Cij)

    Table 2.  Calculated elastic constants for the 12 structures of CuBiI ternary compound.

    Cij/GPaCuBi2I7-P1CuBi2I7-P1-IICu2BiI5-P1Cu2BiI5-CmCu3BiI6-P3Cu3BiI6-R3Cu4BiI7-P1Cu4BiI7-P3Cu3Bi2I9-P1CuBi3I10-P1Cu2BiI7-P1Cu2BiI7-P1-II
    C118.349.0339.904.7611.9917.5923.6332.2517.162.829.713.12
    C2212.6114.1629.9335.0918.3420.429.3414.1210.34
    C338.359.0035.715.645.925.0523.618.9011.868.6214.4326.51
    C443.523.6210.181.731.013.536.871.413.913.276.467.16
    C553.742.999.967.833.561.913.734.52
    C662.414.436.771.244.426.138.7211.266.011.933.133.18
    C124.734.459.131.633.015.224.569.716.131.964.713.19
    C132.612.5714.132.771.332.997.763.303.142.115.616.45
    C14–2.07–0.044.020.041.7–1.840.280.51–0.63–0.17–0.32
    C150.180.210.18–0.67–0.15–0.382.850.06–0.79–0.21–2.110.54
    C160.792.270.12–0.27–0.510.86–1.73–0.32
    C232.692.7614.942.425.496.792.987.517.18
    C24–2.530.125.64–0.992.280–0.05–2.432.11
    C250.280.160.17–0.122.680.49–0.09–3.121.54
    C260.491.72–0.020.040.411.471.351.01
    C34–1.69–0.275.74–0.562.53–0.89–1.510.36
    C35–1.760.390.12–0.903.43–0.21–2.38–3.431.76
    C361.471.17–0.041.720.800.810.13–0.48
    C45–0.410.830.13–0.470.210.851.260.19
    C46–0.100.420.010.121.750.34–0.62–2.13–0.69
    C56–0.58–0.291.485–1.070.94–0.530.820.72
    下载: 导出CSV

    表 3  12个CuBiI三元化合物结构的晶格常数以及Cu/Bi—I键长

    Table 3.  Lattice constants and Cu/Bi—I bond length for the 12 structures of CuBiI ternary compound.

    Structure nameabcα/(°)β/(°)γ/(°)Cu—I/ÅBi—I/Å
    CuBi2I7-P17.937.947.9297.6782.5876.982.53—2.553.02—3.32
    CuBi2I7-P1-II8.057.857.7597.64100.86100.782.54—2.553.03—3.22
    Cu2BiI5-P14.427.629.5795.94103.35106.822.59—2.673.09—3.18
    Cu2BiI5-Cm16.644.3312.2290.00122.5190.002.57—2.722.84—3.50
    Cu3BiI6-P37.897.897.5490.0090.00120.002.54—2.613.02—3.29
    Cu3BiI6-R311.4011.4011.7290.0090.00120.002.52—2.563.05—3.35
    Cu4BiI7-P17.617.797.64101.68100.5098.222.56—2.743.06—3.22
    Cu4BiI7-P38.328.327.5290.0090.00120.002.64—2.683.09—3.22
    Cu3Bi2I9-P17.678.599.8584.5888.9886.742.55—2.702.99—3.28
    CuBi3I10-P19.4610.127.85103.09106.7077.252.53—2.542.99—3.32
    Cu2BiI7-P17.337.907.92104.09108.4981.742.59—2.643.05—3.34
    Cu2BiI7-P1-II9.007.787.20109.9189.2464.612.58—2.702.98—3.34
    下载: 导出CSV

    表 4  12个CuBiI三元化合物结构的带隙值(HSE06和PBE方法计算结果), 价带顶与导带底位置, Bader电荷转移以及SLME (spectroscopic limited maximum efficiency)值

    Table 4.  Band gaps (Eg) calculated by the HSE06 and PBE method, positions of VBM and CBM, Bader charge and the spectroscopic limited maximum efficiency (SLME) values for the 12 structures of CuBiI ternary compound.

    Structure nameEg/eVVBMCBMBader chargeSLME/%
    HSE06PBECu/(e·atom–1)Bi/(e·atom–1)I/(e·atom–1)
    CuBi2I7-P12.391.480 0 00 0 00.331.08–0.3610.75
    CuBi2I7-P1-II2.131.210 0 00 0.5 00.331.09–0.369.50
    Cu2BiI5-P11.560.840 0 0.50 0.5 00.341.04–0.3422.20
    Cu2BiI5-Cm1.870.890 0 00 0 00.291.07–0.337.50
    Cu3BiI6-P33.091.970.05 0 00 0 0.50.291.08–0.332.86
    Cu3BiI6-R32.811.850 0 00.5 0 0.50.311.01–0.325.49
    Cu4BiI7-P12.191.220 0 00 0.5 00.301.03–0.3215.77
    Cu4BiI7-P32.211.210 0 0.060 0 0.50.321.06–0.3313.61
    Cu3Bi2I9-P12.031.170 0 0.50 0 0.50.341.02–0.3419.02
    CuBi3I10-P12.361.410 0.5 00 0.5 00.331.09–0.364.17
    Cu2BiI7-P11.130.500 0 00 0.5 00.371.09–0.2631.63
    Cu2BiI7-P1-II1.400.600 0 00 0.5 0.50.351.06–0.2528.30
    下载: 导出CSV
  • [1]

    Zhang F, Lu H P, Tong J H, Berry J J, Beard M C, Zhu K 2020 Energy Environ. Sci. 13 1154Google Scholar

    [2]

    Ajayan J, Nirmal D, Mohankumar P, Saravanan M, Jagadesh M, Arivazhagan L A 2020 Superlattices Microstruct. 143 106549Google Scholar

    [3]

    Wang L L, Fan B B, Zheng B, Yang Z B, Yin P G, Huo L J 2020 Sustainable Energy Fuels 4 2134Google Scholar

    [4]

    Chen W J, Li X Q, Li Y W, Li Y F 2020 Energy Environ. Sci. 13 1971Google Scholar

    [5]

    Wang Y, Sun H D 2018 Small Methods 21 700252

    [6]

    Xi J, Wu Z X, Jiao B, Dong H, Ran C X, Piao C C, Lei T, Song T B, Ke W J, Yokoyama T, Hou X, Kanatzidis M G 2017 Adv. Mater. 29 1606964Google Scholar

    [7]

    Cheng P F, Wu T, Zhang J W, Li Y J, Liu J X, Jiang L, Mao X, Lu R F, Deng W Q, Han K L 2017 J. Phys. Chem. Lett. 8 4402Google Scholar

    [8]

    Sumathi R, Johnson K, Viswanathan B, Varadarajan T K 1998 Appl. Catal., A 172 15Google Scholar

    [9]

    Zhu H X, Liu J M 2016 Sci. Rep. 6 37425Google Scholar

    [10]

    Peng L, Xie W 2020 RSC Adv. 10 14679Google Scholar

    [11]

    Jiao Y Q, Lv Y Y, Li J, Niu M, Yang Z Q 2017 Comput. Theor. Chem. 15 20

    [12]

    Zhang L, Liu C M, Lin Y 2019 J. Phys. Chem. Lett. 10 1676Google Scholar

    [13]

    Pa J, Bhunia A, Chakraborty S, Manna S, Das S, Dewan A, Datta S, Nag A 2018 J. Phys. Chem. C 122 10643Google Scholar

    [14]

    Sun S J, Tominaka S, Lee J H, Xie F, Bristowe P D, Cheetham A K 2016 APL Mater. 4 031101Google Scholar

    [15]

    Lu C J, Zhang J, Sun H R, Hou D G, Gan X L, Shang M H, Li Y Y, Hu Z Y, Zhu Y J, Han L Y 2018 ACS Appl. Energy Mater. 1 4485Google Scholar

    [16]

    Kulkarni A, Jena A K, Ikegami M 2019 Chem. Commun. 55 4031Google Scholar

    [17]

    Ramachandrana A A, Krishnana B D, Leal D A A, Martinez E G, Martinez J A A, Avellaneda D A, Shaji S 2020 Mater. Today Commun. 24 101092Google Scholar

    [18]

    Seo Y, Ha S R, Yoon S, Jeong S M, Choi H, Kang D W 2020 J. Power Sources 453 227903Google Scholar

    [19]

    Yi Z J, Zhang T, Ban H X, Shao H, Gong X, Wu M A, Liang G J, Zhang X L, Shen Y, Wang M K 2020 Sol. Energy 206 436Google Scholar

    [20]

    Fourcroy P H, Carré D, Thévet F, Rivet J 1991 Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 47 2023Google Scholar

    [21]

    Hu Z S, Wang Z, Kapil G, Ma T L, Iikubo S, Minemoto T, Yoshino K, Toyoda T, Shen Q, Hayase S 2018 ChemSusChem 11 2930Google Scholar

    [22]

    Zhang B S, Lei Y, Qi R J, Yu H L, Yang X G, Cai T, Zheng Z 2019 Sci. China Mater. 62 519Google Scholar

    [23]

    Bi L Y, Hu Y Q, Li M Q, Hu T L, Zhang H L, Yin X T, Que W X, Lassoued M S, Zheng Y Z 2019 J. Mater. Chem. A. 7 19662Google Scholar

    [24]

    Lyakhov A O, Oganov A R, Stokes H T, Zhu Q 2013 Comput. Phys. Commun. 184 1172Google Scholar

    [25]

    Li Y L, Wang S N, Oganov A R, Gou H, Smith J S, Strobel T 2015 Nat. Commun. 6 6974Google Scholar

    [26]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [28]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [29]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [30]

    Parlinski K, Li Z Q, Kawazoe Y 1997 Phys. Rev. Lett. 78 4063Google Scholar

    [31]

    Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J, Meng J 2007 Phys. Rev. B 76 054115Google Scholar

    [32]

    Félix M, Coudert F X 2014 Phys. Rev. B 90 224104Google Scholar

    [33]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244Google Scholar

    [34]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [35]

    Smith N V 1971 Phys. Rev. B 3 1862Google Scholar

    [36]

    Draxl C A, Sofo J O 2006 Comput. Phys. Commun. 175 1Google Scholar

    [37]

    Ju M G, Dai J, Ma L, Zeng X C 2017 Adv. Energy Mater. 7 1700216Google Scholar

    [38]

    Zhang Z, Liu D W, Wu K C 2020 Spectrochim. Acta A. 226 117638Google Scholar

    [39]

    Mayengbama R, Tripathya S K, Palai G 2020 Mater. Today Commun. 24 101216Google Scholar

    [40]

    Liu Y, Qian J Y, Zhang H, Xu B, Zhang Y P, Liu L J, Chen G, Tian W J 2018 Org. Electron. 62 269Google Scholar

  • [1] 王秀宇, 王涛, 崔雨昂, 吴溪广润, 王洋. 基于第一性原理研究杂质补偿对硅光电性能的影响. 物理学报, 2024, 73(11): 116301. doi: 10.7498/aps.73.20231814
    [2] 罗雄, 孟威威, 陈国旭佳, 管晓溪, 贾双凤, 郑赫, 王建波. 二维Nb2SiTe4基化合物稳定性、电子结构和光学性质的第一性原理研究. 物理学报, 2020, 69(19): 197102. doi: 10.7498/aps.69.20200848
    [3] 罗娅, 张耘, 梁金铃, 刘林凤. 铜铁镁三掺铌酸锂晶体的第一性原理研究. 物理学报, 2020, 69(5): 054205. doi: 10.7498/aps.69.20191799
    [4] 樊涛, 曾庆丰, 于树印. Hf-N体系的晶体结构预测和性质的第一性原理研究. 物理学报, 2016, 65(11): 118102. doi: 10.7498/aps.65.118102
    [5] 马振宁, 蒋敏, 王磊. Mg-Y-Zn合金三元金属间化合物的电子结构及其相稳定性的第一性原理研究. 物理学报, 2015, 64(18): 187102. doi: 10.7498/aps.64.187102
    [6] 彭军辉, 曾庆丰, 谢聪伟, 朱开金, 谭俊华. Hf-C体系的高压结构预测及电子性质第一性原理模拟. 物理学报, 2015, 64(23): 236102. doi: 10.7498/aps.64.236102
    [7] 何静芳, 郑树凯, 周鹏力, 史茹倩, 闫小兵. Cu-Co共掺杂ZnO光电性质的第一性原理计算. 物理学报, 2014, 63(4): 046301. doi: 10.7498/aps.63.046301
    [8] 廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮. 3d过渡金属Co掺杂核壳结构硅纳米线的第一性原理研究. 物理学报, 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [9] 石彦立, 韩伟, 卢铁城, 陈军. 含羟基结构熔石英光电性质的第一性原理研究. 物理学报, 2014, 63(8): 083101. doi: 10.7498/aps.63.083101
    [10] 胡洁琼, 谢明, 张吉明, 刘满门, 杨有才, 陈永泰. Au-Sn金属间化合物的第一性原理研究. 物理学报, 2013, 62(24): 247102. doi: 10.7498/aps.62.247102
    [11] 赵立凯, 赵二俊, 武志坚. 5d过渡金属二硼化物的结构和热、力学性质的第一性原理计算. 物理学报, 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
    [12] 李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜. 第一性原理研究稀土掺杂ZnO结构的光电性质. 物理学报, 2013, 62(4): 047101. doi: 10.7498/aps.62.047101
    [13] 王风, 王新强, 聂招秀, 程志梅, 刘高斌. 三元化合物ZnVSe2半金属铁磁性的第一性原理计算. 物理学报, 2011, 60(4): 046301. doi: 10.7498/aps.60.046301
    [14] 刘春华, 欧阳楚英, 嵇英华. 第一性原理计算Mg2Ni氢化物的电子结构及其稳定性分析. 物理学报, 2011, 60(7): 077103. doi: 10.7498/aps.60.077103
    [15] 刘凤丽, 蒋刚, 白丽娜, 孔凡杰. Bi2Te3-xSex(x≤3)同晶化合物电子结构的第一性原理研究. 物理学报, 2011, 60(3): 037104. doi: 10.7498/aps.60.037104
    [16] 程志梅, 王新强, 王风, 鲁丽娅, 刘高斌, 段壮芬, 聂招秀. 三元化合物ZnCrS2电子结构和半金属铁磁性的第一性原理研究. 物理学报, 2011, 60(9): 096301. doi: 10.7498/aps.60.096301
    [17] 罗礼进, 仲崇贵, 全宏瑞, 谭志中, 蒋青, 江学范. Heusler合金Mn2NiGe磁性形状记忆效应的第一性原理预测. 物理学报, 2010, 59(11): 8037-8041. doi: 10.7498/aps.59.8037
    [18] 于大龙, 陈玉红, 曹一杰, 张材荣. Li2NH晶体结构建模和电子结构的第一性原理研究. 物理学报, 2010, 59(3): 1991-1996. doi: 10.7498/aps.59.1991
    [19] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [20] 潘志军, 张澜庭, 吴建生. CoSi电子结构第一性原理研究. 物理学报, 2005, 54(1): 328-332. doi: 10.7498/aps.54.328
计量
  • 文章访问数:  6709
  • PDF下载量:  173
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-22
  • 修回日期:  2021-05-21
  • 上网日期:  2021-10-12
  • 刊出日期:  2021-10-20

/

返回文章
返回