搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压下三元半导体Al4In2N6结构、弹性及电子性质的第一性原理研究

陈美娟 郭佳芯 吴浩 郑潇然 闵楠 田辉 李全军 都时禹 沈龙海

引用本文:
Citation:

高压下三元半导体Al4In2N6结构、弹性及电子性质的第一性原理研究

陈美娟, 郭佳芯, 吴浩, 郑潇然, 闵楠, 田辉, 李全军, 都时禹, 沈龙海

First-principles study of structure, elasticity, and electronic properties of ternary semiconductor Al4In2N6 under high pressure

CHEN Meijuan, GUO Jiaxin, WU Hao, ZHENG Xiaoran, MIN Nan, TIAN Hui, LI Quanjun, DU Shiyu, SHEN Longhai
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 基于密度泛函理论的第一性原理, 系统研究了压力对Al4In2N6晶体结构、弹性性能及电子性质的影响. Al4In2N6晶格常数随压力增加逐渐减小, 同时表现出各向异性的压缩特性, 沿c轴方向具有较高的压缩率. 在力学性能方面, Al4In2N6的体积模量随压力增加而增大, 表明材料抗压缩性显著增强. 值得一提的是, Al4In2N6的维氏硬度随压力升高逐渐降低, 表明高压可能引发Al4In2N6塑性变形. 弹性常数与声子谱计算结果表明, Al4In2N6在0—30 GPa压力范围内具有良好的力学稳定性和动力学稳定性. 能带结构计算结果表明随着压力的增加, Al4In2N6的带隙几乎呈线性增长, 从0 GPa 时的3.35 eV增加到30 GPa 的4.24 eV, 表明压力对Al4In2N6的电子结构具有显著的调控能力. 本研究对Al-In-N化合物的晶体结构、稳定性及高压下的能带结构和力学性质的深入研究, 不仅拓宽了Ⅲ族氮化物材料的应用潜力, 还为开发新型功能材料提供了重要的理论参考.
    The effects of pressure on the crystal structure, elastic properties, and electronic characteristics of Al4In2N6 are systematically studied using first-principles density functional theory. The lattice constants of Al4In2N6 decrease with the increase of pressure, exhibiting anisotropic compression with greater compressibility along the c-axis. In terms of mechanical properties, the bulk modulus increases with the increase of pressure, indicating enhanced compressive resistance. Notably, the Vickers hardness decreases with the increase of pressure, indicating that high pressure can induce plastic deformation in Al4In2N6. The calculations of elastic constants and phonon spectra confirm that Al4In2N6 retains mechanical and dynamical stability in the pressure range of 0–30 GPa. Electronic structure calculations reveal that Al4In2N6 possesses a direct band gap, and non-overlapping conduction and valence bands at the Fermi level. The conduction band has a higher carrier mobility than the valence band. The band gap increases almost linearly with pressure rising from 3.35 eV at 0 GPa to 4.24 eV at 30 GPa, demonstrating significant pressure-induced modulation of the electronic structure. Furthermore, the analysis of differential charge densities reveals that increasing pressure can strengthen the Al-N and In-N bonds in Al4In2N6 through shortened interatomic distances and stronger atomic interactions, increasing its compression resistance. In summary, this study not only deepens our understanding of the high-pressure properties of Al4In2N6 but also provides theoretical guidance for its application in UV optoelectronics. Pressure-driven modulation of its mechanical and electronic characteristics highlights its potential in efficient high-pressure optoelectronic devices and materials.
  • 图 1  Al4In2N6的晶体结构

    Fig. 1.  Crystal structure of Al4In2N6.

    图 2  Al4In2N6的相对晶格参数和相对体积随压力的变化

    Fig. 2.  Pressure dependence of relative lattice parameters and relative unit cell volume for Al4In2N6.

    图 3  不同压力下Al4In2N6的差分电荷密度 (a) 0 GPa; (b) 15 GPa; (c) 30 GPa

    Fig. 3.  Differential charge density of Al4In2N6 under different pressures: (a) 0 GPa; (b) 15 GPa; (c) 30 GPa.

    图 4  不同压力下Al4In2N6的声子色散曲线 (a) 0 GPa; (b) 10 GPa; (c) 20 GPa; (d) 30 GPa

    Fig. 4.  Phonon dispersion curves for Al4In2N6 at different pressures: (a) 0 GPa; (b) 10 GPa; (c) 20 GPa; (d) 30 GPa.

    图 5  Al4In2N6的弹性常数(a)和弹性模量(b)随压力的变化

    Fig. 5.  The elastic constants (a) and elastic modulus (b) of Al4In2N6 change with pressure.

    图 6  在0, 10, 20, 30 GPa压力下Al4In2N6的三维体积模量((a)—(d))、剪切模量((e)—(h))、杨氏模量((i)—(l))

    Fig. 6.  The 3D plot of bulk modulus ((a)–(d)), shear modulus ((e)–(h)), and Young’s modulus ((i)–(l)) of Al4In2N6 under pressures of 0, 10, 20, and 30 GPa.

    图 7  Al4In2N6在(a) 0 GPa、(b) 5 GPa、(c) 10 GPa、(d) 15 GPa、(e) 20 GPa、(f) 25 GPa、(g) 30 GPa下的能带结构和(h)带隙随压强的变化趋势

    Fig. 7.  The band structures of Al4In2N6 at (a) 0 GPa, (b) 5 GPa, (c) 10 GPa, (d) 15 GPa, (e) 20 GPa, (f) 25 GPa, (g) 30 GPa, and (h) the variation trend of the band gap with pressure.

    图 8  Al4In2N6在(a) 0, (b) 20和(c) 30 GPa下的总态密度和分波态密度

    Fig. 8.  The total density of states and partial density of states of Al4In2N6 at (a) 0, (b) 20, and (c) 30 GPa.

    表 1  Al4In2N6在不同压力下的晶格参数

    Table 1.  Lattice parameters of Al4In2N6 under different pressures.

    Pressure/GPaab/Åc
    09.8325.6545.250
    59.7495.6035.195
    109.6695.5575.149
    159.6005.5165.107
    209.5355.4785.068
    259.4775.4455.032
    309.4225.4134.999
    下载: 导出CSV

    表 2  在0—30 GPa 压力 Al4In2N6的弹性常数

    Table 2.  Elastic constant of Al4In2N6 under 0–30 GPa pressures.

    Pressure/GPa C11/GPa C12/GPa C13/GPa C22/GPa C23/GPa C33/GPa C44/GPa C55/GPa C66/GPa
    0 318.606 113.886 89.017 305.200 92.444 311.408 84.739 84.903 95.602
    5 330.169 126.317 103.218 327.053 105.181 326.999 86.887 88.385 96.321
    10 340.077 143.266 118.822 337.579 124.623 338.138 85.186 87.028 94.397
    15 359.171 163.187 130.986 352.270 135.623 357.799 88.682 87.873 95.539
    20 375.952 175.971 146.621 363.912 151.179 361.684 89.566 86.445 93.548
    25 389.382 192.252 161.374 370.366 171.460 363.533 88.451 87.052 91.683
    30 402.037 207.158 171.490 379.130 181.476 381.927 86.653 84.002 90.021
    下载: 导出CSV

    表 3  0—30 GPa 压力下Al4In2N6的弹性模量(B, G, E, B/G)、硬度Hv和泊松比$\mu $

    Table 3.  The elastic modulus (B, G, E, B/G), hardness (Hv), and Poisson’s ratio ($\mu $) of Al4In2N6 under pressures of 0–30 GPa.

    Pressure/GPa B/GPa E/GPa G/GPa (B/G) $\mu $ HV/GPa
    0 169.443 240.336 95.099 1.782 0.264 11.998
    5 183.649 247.651 97.099 1.891 0.275 11.377
    10 198.718 245.38 94.800 2.096 0.294 9.952
    15 214.192 251.75 96.522 2.219 0.304 9.447
    20 227.465 250.967 95.344 2.386 0.316 8.625
    25 241.177 247.277 93.023 2.593 0.329 7.711
    30 253.426 245.888 91.866 2.759 0.338 7.123
    下载: 导出CSV
  • [1]

    Liu B, Chen D, Lu H, Tao T, Zhuang Z, Shao Z, Xu W, Ge H, Zhi T, Ren F, Ye J, Xie Z, Zhang R 2020 Adv. Mater. 32 1904354Google Scholar

    [2]

    Hahn C, Zhang Z, Fu A, Wu C H, Hwang Y J, Gargas D J, Yang P 2011 ACS Nano 5 3970Google Scholar

    [3]

    Yu J, Wang L, Hao Z, Luo Y, Sun C, Wang J, Han Y, Xiong B, Li H 2020 Adv. Mater. 32 1903407Google Scholar

    [4]

    Chen K, Kapadia R, Harker A, Desai S, Javey A 2016 Nat. Commun. 7 10502Google Scholar

    [5]

    仇鹏, 刘恒, 朱晓丽, 田丰, 杜梦超, 邱洪宇, 陈冠良, 胡玉玉, 孔德林, 杨晋, 卫会云, 彭铭曾, 郑新和 2024 物理学报 73 038102Google Scholar

    Qiu P, Liu H, Zhu X L, Tian F, Du M C, Qiu H Y, Chen G L, Hu Y Y, Kong D L, Yang J, Wei H Y, Peng M Z, Zheng X H 2024 Acta Phys. Sin. 73 038102Google Scholar

    [6]

    Manjón F J, Errandonea D, Garro N, Romero A H, Serrano J, Kuball M 2010 Phys. Status Solidi 244 42

    [7]

    E Abid A, Bensalem R, Sealy B J 1986 J. Mater. Sci. 21 1301Google Scholar

    [8]

    Yu R, Liu G, Wang G, Chen C, Xu M, Zhou H, Wang T, Yu J, Zhao G, Zhang L 2021 J. Mater. Chem. C 9 1852Google Scholar

    [9]

    Ibanez J, Segura A, Garcia-Domene B, Oliva R, Manjon F J, Yamaguchi T, Nanishi Y, Artus L 2012 Phys. Rev. B: Condens. Matter 86 999

    [10]

    Khan N, Sedhain A, Li J, Lin J Y, Jiang H X 2008 Appl. Phys. Lett. 92 172101Google Scholar

    [11]

    Davydov V Y, Klochikhin A, Seisyan R, Emtsev V, Ivanov S, Bechstedt F, Furthmüller J, Harima H, Mudryi A, Aderhold J 2002 Phys. Status Solidi B 229 r1Google Scholar

    [12]

    Tansley T L, Foley C P 1986 J. Appl. Phys. 59 3241Google Scholar

    [13]

    Liu X K, Lin Z C, Lin Y H, Chen J J, Zou P, Zhou J, Li B, Shen L H, Zhu D L, Liu Q, Yu W J, Li X H, Zhu H, Wang X Z, Huang S W 2023 Chin. Phys. B 32 117701Google Scholar

    [14]

    Wu J, Walukiewicz W, Yu K M, Ager J W, Haller E E, Lu H, Schaff W J, Saito Y, Nanishi Y 2002 Appl. Phys. Lett. 80 3967Google Scholar

    [15]

    Beladjal K, Kadri A, Zitouni K, Mimouni K 2021 Superlattices Microstruct. 155 106901Google Scholar

    [16]

    Guo Q G Q, Yoshida A Y A 1994 Jpn. J. Appl. Phys. 33 2453Google Scholar

    [17]

    Zhao F, Yao G R, Song J J, Ding B B, Xiong J Y, Su C, Zheng S W, Zhang T, Fan G H 2013 Chin. Phys. B 22 058503Google Scholar

    [18]

    Chen J J, Shen L H, Qi D L, Wu L J, Li X, Song J Y, Zhang X L 2022 Ceram. Int. 48 2802Google Scholar

    [19]

    Moussa R, Abdiche A, Khenata R, Wang X, Varshney D, Sun X W, Omran S B, Bouhemadou A, Rai D 2018 J. Phys. Chem. Solids 119 36Google Scholar

    [20]

    Mao W, Zhang J C, Xue J S, Hao Y, Ma X H, Wang C, Liu H X, Xu S R, Yang L A, Bi Z W, Liang X Z, Zhang J F, Kuang X W 2010 Chin. Phys. Lett. 27 128501Google Scholar

    [21]

    Wen X X, Yang X D, He M, Li Y, Wang G, Lu P Y, Qian W N, Li Y, Zhang W W, Wu W B, Chen F S, Ding L Z 2012 Chin. Phys. Lett. 29 097304Google Scholar

    [22]

    Zhang X F, Wang L, Liu J, Wei L, Xu J 2013 Chin. Phys. B 22 017202Google Scholar

    [23]

    Han T C, Zhao H D, Yang L, Wang Y 2017 Chin. Phys. B 26 107301Google Scholar

    [24]

    Zhan X M, Hao M L, Wang Q, Li W, Xiao H L, Feng C, Jiang L J, Wang C M, Wang X L, Wang Z G 2017 Chin. Phys. Lett. 34 047301Google Scholar

    [25]

    Dong Y, Son D H, Dai Q, Lee J H, Won C H, Kim J G, Chen D, Lee J H, Lu H, Zhang R, Zheng Y 2018 Sensors 18 1314

    [26]

    Li A, Wang C, Xu S, Zheng X, He Y, Ma X, Lu X, Zhang J, Liu K, Zhao Y Hao Y 2021 Appl. Phys. Lett. 119 122104Google Scholar

    [27]

    Robin Chang Y H, Yoon T L, Lim T L 2016 Curr. Appl. Phys. 16 1277Google Scholar

    [28]

    Borovac D, Sun W, Song R, Wierer J J, Tansu N 2020 J. Cryst. Growth 533 125469Google Scholar

    [29]

    Yonenaga I, Ohkubo Y, Deura M, Kutsukake K, Tokumoto Y, Ohno Y, Yoshikawa A, Wang X Q 2015 AIP Adv. 5 077131Google Scholar

    [30]

    Tan X, Xin Z Y, Liu X J, Mu Q G 2013 Adv. Mater. Res. 2735 841

    [31]

    Chen M, Guo G C, He L 2010 J. Phys. Condens. Matter 22 445501Google Scholar

    [32]

    Al-Khatatbeh Y, Lee K K M, Kiefer B 2009 Phys. Rev. B 79 134114Google Scholar

    [33]

    Man X X, Gong B C, Sun P H, Liu K, Lu Z Y 2022 Phys. Rev. B 106 035136Google Scholar

    [34]

    Yu F, Liu Y 2019 Computation 7 57Google Scholar

    [35]

    Velpula R T, Jain B, Philip M R, Nguyen H D, Wang R, Nguyen H P T 2020 Sci. Rep. 10 2547Google Scholar

    [36]

    Robin Chang Y H, Yoon T L, Lim T L, Rakitin M 2016 J. Alloys Compd. 682 338Google Scholar

    [37]

    Glass C W, Oganov A R, Hansen N 2006 Comput. Phys. Commun. 175 713Google Scholar

    [38]

    Oganov A R, Lyakhov A O, Valle M 2011 Acc. Chem. Res. 44 227Google Scholar

    [39]

    Lyakhov A O, Oganov A R, Stokes H T, Zhu Q 2013 Comput. Phys. Commun. 184 1172Google Scholar

    [40]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [41]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [42]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [43]

    Wu Z, Cohen R E 2006 Phys. Rev. B 73 235116Google Scholar

    [44]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [45]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106Google Scholar

    [46]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [47]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [48]

    Muscat J, Wander A, Harrison N M 2001 Chem. Phys. Lett. 342 397Google Scholar

    [49]

    Garza A J, Scuseria G E 2016 J. Phys. Chem. Lett. 7 4165Google Scholar

    [50]

    Sugita Y, Miyake T, Motome Y 2018 Phys. Rev. B 97 035125Google Scholar

    [51]

    Robin Chang Y H, Yoon T L, Lim T L, Tuh M H 2017 J. Alloys Compd. 704 160Google Scholar

    [52]

    Mouhat F, Coudert F X 2014 Phys. Rev. B 90 224104Google Scholar

    [53]

    Voigt W 1889 Ann. Phys. 274 573Google Scholar

    [54]

    Reuss A 1929 ZAMM - J. Appl. Math. Mech. Z. Für Angew. Math. Mech. 9 49

    [55]

    Hill R 1952 Proc. Phys. Soc. London, Sect. A 65 349Google Scholar

    [56]

    Frantsevich I N, Voronov F F and Bokuta S A 1983 Elastic constants and elastic moduli of metals and insulators handbook (Kiev: Naukova Dumka) pp60–180

    [57]

    Tian Y, Xu B, Zhao Z 2012 Int. J. Refract. Met. Hard Mater. 33 93Google Scholar

    [58]

    Meng J, Sun L, Zhang Y, Xue F, Chu C, Bai J 2020 Materials 13 427Google Scholar

  • [1] 魏巍, 管峰, 方鑫. 基于带隙阻波隔振的超材料梁吸隔振一体化设计方法. 物理学报, doi: 10.7498/aps.73.20241135
    [2] 丁怡, 盛雷梅. 扭转单壁碳纳米管的第一性原理研究. 物理学报, doi: 10.7498/aps.72.20230566
    [3] 时旭含, 李海燕, 姚震, 刘冰冰. Ca5N4高压新相的第一性原理研究. 物理学报, doi: 10.7498/aps.69.20191808
    [4] 姚盼盼, 王玲瑞, 王家祥, 郭海中. 高压下非铅双钙钛矿Cs2TeCl6的结构和光学性质. 物理学报, doi: 10.7498/aps.69.20200988
    [5] 王艳, 曹仟慧, 胡翠娥, 曾召益. Ce-La-Th合金高压相变的第一性原理计算. 物理学报, doi: 10.7498/aps.68.20182128
    [6] 郭静, 吴奇, 孙力玲. 高压下的铁基超导体:现象与物理. 物理学报, doi: 10.7498/aps.67.20181651
    [7] 段德芳, 马艳斌, 邵子霁, 谢慧, 黄晓丽, 刘冰冰, 崔田. 高压下富氢化合物的结构与奇异超导电性. 物理学报, doi: 10.7498/aps.66.036102
    [8] 董家君, 姚明光, 刘世杰, 刘冰冰. 高压下准一维纳米结构的研究. 物理学报, doi: 10.7498/aps.66.039101
    [9] 刘博, 王煊军, 卜晓宇. 高压下NH4ClO4结构、电子及弹性性质的第一性原理研究. 物理学报, doi: 10.7498/aps.65.126102
    [10] 王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春. 高压下RhB的相变、弹性性质、电子结构及硬度的第一性原理计算. 物理学报, doi: 10.7498/aps.63.186401
    [11] 颜小珍, 邝小渝, 毛爱杰, 匡芳光, 王振华, 盛晓伟. 高压下ErNi2B2C弹性性质、电子结构和热力学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.62.107402
    [12] 王海燕, 历长云, 高洁, 胡前库, 米国发. 高压下TiAl3结构及热动力学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.62.068105
    [13] 张品亮, 龚自正, 姬广富, 刘崧. α-Ti2Zr高压物性的第一性原理计算研究. 物理学报, doi: 10.7498/aps.62.046202
    [14] 周大伟, 卢成, 李根全, 宋金璠, 宋玉玲, 包刚. 高压下金属Ba的结构稳定性以及热动力学的第一原理研究. 物理学报, doi: 10.7498/aps.61.146301
    [15] 陈中钧. 高压下MgS的弹性性质、电子结构和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.61.177104
    [16] 明星, 王小兰, 杜菲, 陈岗, 王春忠, 尹建武. 菱铁矿FeCO3高压相变与性质的第一性原理研究. 物理学报, doi: 10.7498/aps.61.097102
    [17] 胡家光, 徐文, 肖宜明, 张丫丫. 晶格中心插入体的对称性及取向对二维声子晶体带隙的影响. 物理学报, doi: 10.7498/aps.61.234302
    [18] 邓杨, 王如志, 徐利春, 房慧, 严辉. 立方(Ba0.5Sr0.5)TiO3高压诱导带隙变化的第一性原理研究. 物理学报, doi: 10.7498/aps.60.117309
    [19] 牟中飞, 吴福根, 张 欣, 钟会林. 超元胞方法研究平移群对称性对声子带隙的影响. 物理学报, doi: 10.7498/aps.56.4694
    [20] 吴福根, 刘有延. 二维周期性复合介质中声波带隙结构及其缺陷态. 物理学报, doi: 10.7498/aps.51.1434
计量
  • 文章访问数:  601
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-07
  • 修回日期:  2025-04-05
  • 上网日期:  2025-05-14

/

返回文章
返回