搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压下三元半导体Al4In2N6结构、弹性及电子性质的第一性原理研究

陈美娟 郭佳芯 吴浩 郑潇然 闵楠 田辉 李全军 都时禹 沈龙海

引用本文:
Citation:

高压下三元半导体Al4In2N6结构、弹性及电子性质的第一性原理研究

陈美娟, 郭佳芯, 吴浩, 郑潇然, 闵楠, 田辉, 李全军, 都时禹, 沈龙海

First-principles study of the structure, elasticity, and electronic properties of the ternary semiconductor Al4In2N6 under high pressure

CHEN Meijuan, GUO Jiaxin, WU Hao, ZHENG Xiaoran, MIN Nan, TIAN Hui, LI Quanjun, DU Shiyu, SHEN Longhai
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 基于密度泛函理论的第一性原理,系统研究了压力对Al4In2N6晶体结构、弹性性能及电子性质的影响 Al4In2N6晶格常数随压力增加逐渐减小,同时表现出各向异性的压缩特性,沿c轴方向具有较高的压缩率 在力学性能方面,Al4In2N6的体积模量随压力增加而增大,表明材料抗压缩性显著增强 值得一提的是Al4In2N6的维氏硬度随压力升高逐渐降低,表明高压可能引发Al4In2N6塑性变形 弹性常数与声子谱计算结果表明,Al4In2N6在0-30 GPa压力范围内具有良好的力学稳定性和动力学稳定性 能带结构计算结果表明随着压力的增加,Al4In2N6的带隙几乎呈线性增长,从0 GPa时的3.35 eV增加到30 GPa的4.24 eV,表明压力对Al4In2N6的电子结构具有显著的调控能力 本研究对Al-In-N化合物的晶体结构、稳定性及高压下的能带结构和力学性质的深入研究,不仅拓宽了III族氮化物材料的应用潜力,还为开发新型功能材料提供了重要的理论参考.
    First-principles density functional theory was employed to systematically study the effects of pressure on the crystal structure, elastic properties, and electronic characteristics of Al4In2N6. The lattice constants of Al4In2N6 decrease with increasing pressure, exhibiting anisotropic compression with greater compressibility along the c-axis. In terms of mechanical properties, the bulk modulus increases with pressure, indicating enhanced compressive resistance. Notably, the Vickers hardness decreases with increasing pressure, suggesting that high pressure could induce plastic deformation in Al4In2N6. Calculations of elastic constants and phonon spectra confirm that Al4In2N6 retains mechanical and dynamical stability across the 0–30 GPa pressure range.
    Electronic structure calculations reveal that Al4In2N6 possesses a direct band gap, with non-overlapping conduction and valence bands at the Fermi level and higher carrier mobility in the conduction band compared to the valence band. The band gap increases nearly linearly with pressure, from 3.35 eV at 0 GPa to 4.24 eV at 30 GPa, demonstrating significant pressure-induced modulation of the electronic structure. Furthermore, differential charge density analysis reveals that increasing pressure strengthens Al-N and In-N bonds in Al4In2N6 through shortened interatomic distances and stronger atomic interactions, increasing its compression resistance.
    In conclusion, this study not only enhances our understanding of the high-pressure properties of Al4In2N6 but also provides theoretical guidance for its application in UV optoelectronics. Pressure-driven modulation of its mechanical and electronic characteristics highlights its potential for efficient high-pressure optoelectronic devices and materials.
  • [1]

    Liu B, Chen D, Lu H, Tao T, Zhuang Z, Shao Z, Xu W, Ge H, Zhi T, Ren F, Ye J, Xie Z, Zhang R 2020 Adv. Mater. 32 1904354

    [2]

    Hahn C, Zhang Z, Fu A, Wu C H, Hwang Y J, Gargas D J, Yang P 2011 Acs Nano 5 3970

    [3]

    Yu J, Wang L, Hao Z, Luo Y, Sun C, Wang J, Han Y, Xiong B, Li H 2020 Adv. Mater. 32 1903407

    [4]

    Chen K, Kapadia R, Harker A, Desai S, Javey A 2016 Nat. Commun. 7 10502

    [5]

    Qiu P, Liu H, Zhu X L, Tian F, Du M C, Qiu H Y, Chen G L, Hu Y Y, Kong D L, Yang J, Wei H Y, Peng M Z, Zheng X H 2024 Acta Phys. Sin. 73 038102 (in Chinese) [仇鹏,刘恒,朱晓丽,田丰,杜梦超,邱洪宇,陈冠良,胡玉玉,孔德林,杨晋,卫会云,彭铭曾,郑新和 2024 物理学报 73 038102]

    [6]

    F. J. Manjón, Errandonea D, Garro N, Romero A H, Serrano J, Kuball M 2010 Phys. Status Solidi 244 42

    [7]

    E Abid A, Bensalem R, Sealy B J 1986 J. Mater. Sci. 21 1301

    [8]

    Yu R, Liu G, Wang G, Chen C, Xu M, Zhou H, Wang T, Yu J, Zhao G, Zhang L 2021 J. Mater. Chem. C 9 1852

    [9]

    Ibanez J, Segura A, Garcia-Domene B, Oliva R, Manjon F J, Yamaguchi T, Nanishi Y, Artus L 2012 Phys. Rev. B Condens. Matter 86 999

    [10]

    Khan N, Sedhain A, Li J, Lin J Y, Jiang H X 2008 Appl. Phys. Lett. 92 172101

    [11]

    Davydov V Y, Klochikhin A, Seisyan R, Emtsev V, Ivanov S, Bechstedt F, Furthmüller J, Harima H, Mudryi A, Aderhold J 2002 Phys. Status Solidi B 229 r1

    [12]

    Tansley T L, Foley C P 1986 J. Appl. Phys. 59 3241

    [13]

    Liu X, Lin Z, Lin Y, Chen J, Zou P, Zhou J, Li B, Shen L, Zhu D, Liu Q, Yu W, Li X, Gu H, Wang X, Huang S 2023 Chin. Phys. B 32 117701

    [14]

    Wu J, Walukiewicz W, Yu K M, Ager J W, Haller E E, Lu H, Schaff W J, Saito Y, Nanishi Y 2002 Appl. Phys. Lett. 80 3967

    [15]

    Beladjal K, Kadri A, Zitouni K, Mimouni K 2021 Superlattices Microstruct. 155 106901

    [16]

    Guo Q G Q, Yoshida A Y A 1994 Jpn. J. Appl. Phys. 33 2453

    [17]

    Zhao F, Yao G R, Song J J, Ding B B, Xiong J Y, Su C, Zheng S W, Zhang T, Fan G H 2013 Chin. Phys. B 22 058503

    [18]

    Chen J J, Shen L H, Qi D L, Wu L J, Li X, Song J Y, Zhang X L 2022 Ceram. Int. 48 2802

    [19]

    Moussa R, Abdiche A, Khenata R, Wang X, Varshney D, Sun X W, Omran S B, Bouhemadou A, Rai D 2018 J. Phys. Chem. Solids 119 36

    [20]

    Mao W, Zhang J C, Xue J S, Hao Y, Ma X H, Wang C, Liu H X, Xu S R, Yang L A, Bi Z W, Liang X Z, Zhang J F, Kuang X W 2010 Chin. Phys. Lett. 27 128501

    [21]

    Wen X X, Yang X D, He M, Li Y, Wang G, Lu P Y, Qian W N, Li Y, Zhang W W, Wu W B, Chen F S, Ding L Z 2012 Chin. Phys. Lett. 29 097304

    [22]

    Zhang X F, Wang L, Liu J, Wei L, Xu J 2013 Chin. Phys. B 22 017202

    [23]

    Han T C, Zhao H D, Yang L, Wang Y 2017 Chin. Phys. B 26 107301

    [24]

    Zhan X M, Hao M L, Wang Q, Li W, Xiao H L, Feng C, Jiang L J, Wang C M, Wang X L, Wang Z G 2017 Chin. Phys. Lett. 34 047301

    [25]

    Dong Y, Son D H, Dai Q, Lee J H, Won C H, Kim J G, Chen D, Lee J H, Lu H, Zhang R, Zheng Y 2018 Sensors 18 1314

    [26]

    Li A, Wang C, Xu S, Zheng X, He Y, Ma X, Lu X, Zhang J, Liu K, Zhao Y Hao Y 2021 Appl. Phys. Lett. 119 122104

    [27]

    Robin Chang Y H, Yoon T L, Lim T L 2016 Curr. Appl. Phys. 16 1277

    [28]

    Borovac D, Sun W, Song R, Wierer J J, Tansu N 2020 J. Cryst. Growth 533 125469

    [29]

    Yonenaga I, Ohkubo Y, Deura M, Kutsukake K, Tokumoto Y, Ohno Y, Yoshikawa A, Wang X Q 2015 AIP Adv. 5 077131

    [30]

    Tan X, Xin Z Y, Liu X J, Mu Q G 2013 Adv. Mater. Res. 2735 841

    [31]

    Chen M, Guo G C, He L 2010 J. PhysicsCondensed Matter 22 445501

    [32]

    Al-Khatatbeh Y, Lee K K M, Kiefer B 2009 Phys. Rev. B 79 134114

    [33]

    Man X X, Gong B C, Sun P H, Liu K, Lu Z Y 2022 Phys. Rev. B 106 035136

    [34]

    Yu F, Liu Y 2019 Computation 7 57

    [35]

    Velpula R T, Jain B, Philip M R, Nguyen H D, Wang R, Nguyen H P T 2020 Sci. Rep. 10 2547

    [36]

    Robin Chang Y H, Yoon T L, Lim T L, Rakitin M 2016 J. Alloys Compd. 682 338

    [37]

    Glass C W, Oganov A R, Hansen N 2006 Comput. Phys. Commun. 175 713

    [38]

    Oganov A R, Lyakhov A O, Valle M 2011 Acc. Chem. Res. 44 227

    [39]

    Lyakhov A O, Oganov A R, Stokes H T, Zhu Q 2013 Comput. Phys. Commun. 184 1172

    [40]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [41]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15

    [42]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [43]

    Wu Z, Cohen R E 2006 Phys. Rev. B 73 235116

    [44]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [45]

    Togo A, Oba F, Tanaka I 2008 Phys.rev.b 78

    [46]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1

    [47]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207

    [48]

    Muscat J, Wander A, Harrison N M 2001 Chem. Phys. Lett. 342 397

    [49]

    Garza A J, Scuseria G E 2016 J. Phys. Chem. Lett. 7 4165

    [50]

    Sugita Y, Miyake T, Motome Y 2018 Phys. Rev. B 97 035125

    [51]

    Robin Chang Y H, Yoon T L, Lim T L, Tuh M H 2017 J. Alloys Compd. 704 160

    [52]

    Mouhat F, Coudert F X 2014 Phys. Rev. B 90 224104

    [53]

    Voigt W 1889 Ann. Phys. 274 573

    [54]

    Reuss A 1929 ZAMM - J. Appl. Math. Mech. Z. Für Angew. Math. Mech. 9 49

    [55]

    Hill R 1952 Proc. Phys. Soc. Sect. A 65 349

    [56]

    Frantsevich I N, Voronov F F and Bokuta S A 1983 Elastic constants and elastic moduli of metals and insulators handbook (Kiev: Naukova Dumka) pp. 60–180

    [57]

    Tian Y, Xu B, Zhao Z 2012 Int. J. Refract. Met. Hard Mater. 33 93

    [58]

    Meng J, Sun L, Zhang Y, Xue F, Chu C, Bai J 2020 Materials 13 427

  • [1] 魏巍, 管峰, 方鑫. 基于带隙阻波隔振的超材料梁吸隔振一体化设计方法. 物理学报, doi: 10.7498/aps.73.20241135
    [2] 丁怡, 盛雷梅. 扭转单壁碳纳米管的第一性原理研究. 物理学报, doi: 10.7498/aps.72.20230566
    [3] 时旭含, 李海燕, 姚震, 刘冰冰. Ca5N4高压新相的第一性原理研究. 物理学报, doi: 10.7498/aps.69.20191808
    [4] 姚盼盼, 王玲瑞, 王家祥, 郭海中. 高压下非铅双钙钛矿Cs2TeCl6的结构和光学性质. 物理学报, doi: 10.7498/aps.69.20200988
    [5] 王艳, 曹仟慧, 胡翠娥, 曾召益. Ce-La-Th合金高压相变的第一性原理计算. 物理学报, doi: 10.7498/aps.68.20182128
    [6] 郭静, 吴奇, 孙力玲. 高压下的铁基超导体:现象与物理. 物理学报, doi: 10.7498/aps.67.20181651
    [7] 段德芳, 马艳斌, 邵子霁, 谢慧, 黄晓丽, 刘冰冰, 崔田. 高压下富氢化合物的结构与奇异超导电性. 物理学报, doi: 10.7498/aps.66.036102
    [8] 董家君, 姚明光, 刘世杰, 刘冰冰. 高压下准一维纳米结构的研究. 物理学报, doi: 10.7498/aps.66.039101
    [9] 刘博, 王煊军, 卜晓宇. 高压下NH4ClO4结构、电子及弹性性质的第一性原理研究. 物理学报, doi: 10.7498/aps.65.126102
    [10] 王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春. 高压下RhB的相变、弹性性质、电子结构及硬度的第一性原理计算. 物理学报, doi: 10.7498/aps.63.186401
    [11] 颜小珍, 邝小渝, 毛爱杰, 匡芳光, 王振华, 盛晓伟. 高压下ErNi2B2C弹性性质、电子结构和热力学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.62.107402
    [12] 王海燕, 历长云, 高洁, 胡前库, 米国发. 高压下TiAl3结构及热动力学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.62.068105
    [13] 张品亮, 龚自正, 姬广富, 刘崧. α-Ti2Zr高压物性的第一性原理计算研究. 物理学报, doi: 10.7498/aps.62.046202
    [14] 周大伟, 卢成, 李根全, 宋金璠, 宋玉玲, 包刚. 高压下金属Ba的结构稳定性以及热动力学的第一原理研究. 物理学报, doi: 10.7498/aps.61.146301
    [15] 陈中钧. 高压下MgS的弹性性质、电子结构和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.61.177104
    [16] 明星, 王小兰, 杜菲, 陈岗, 王春忠, 尹建武. 菱铁矿FeCO3高压相变与性质的第一性原理研究. 物理学报, doi: 10.7498/aps.61.097102
    [17] 胡家光, 徐文, 肖宜明, 张丫丫. 晶格中心插入体的对称性及取向对二维声子晶体带隙的影响. 物理学报, doi: 10.7498/aps.61.234302
    [18] 邓杨, 王如志, 徐利春, 房慧, 严辉. 立方(Ba0.5Sr0.5)TiO3高压诱导带隙变化的第一性原理研究. 物理学报, doi: 10.7498/aps.60.117309
    [19] 牟中飞, 吴福根, 张 欣, 钟会林. 超元胞方法研究平移群对称性对声子带隙的影响. 物理学报, doi: 10.7498/aps.56.4694
    [20] 吴福根, 刘有延. 二维周期性复合介质中声波带隙结构及其缺陷态. 物理学报, doi: 10.7498/aps.51.1434
计量
  • 文章访问数:  11
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-05-14

/

返回文章
返回