-
基于密度泛函理论的第一性原理,系统研究了压力对Al4In2N6晶体结构、弹性性能及电子性质的影响 . Al4In2N6晶格常数随压力增加逐渐减小,同时表现出各向异性的压缩特性,沿c轴方向具有较高的压缩率 . 在力学性能方面,Al4In2N6的体积模量随压力增加而增大,表明材料抗压缩性显著增强 . 值得一提的是Al4In2N6的维氏硬度随压力升高逐渐降低,表明高压可能引发Al4In2N6塑性变形 . 弹性常数与声子谱计算结果表明,Al4In2N6在0-30 GPa压力范围内具有良好的力学稳定性和动力学稳定性 . 能带结构计算结果表明随着压力的增加,Al4In2N6的带隙几乎呈线性增长,从0 GPa时的3.35 eV增加到30 GPa的4.24 eV,表明压力对Al4In2N6的电子结构具有显著的调控能力 . 本研究对Al-In-N化合物的晶体结构、稳定性及高压下的能带结构和力学性质的深入研究,不仅拓宽了III族氮化物材料的应用潜力,还为开发新型功能材料提供了重要的理论参考.First-principles density functional theory was employed to systematically study the effects of pressure on the crystal structure, elastic properties, and electronic characteristics of Al4In2N6. The lattice constants of Al4In2N6 decrease with increasing pressure, exhibiting anisotropic compression with greater compressibility along the c-axis. In terms of mechanical properties, the bulk modulus increases with pressure, indicating enhanced compressive resistance. Notably, the Vickers hardness decreases with increasing pressure, suggesting that high pressure could induce plastic deformation in Al4In2N6. Calculations of elastic constants and phonon spectra confirm that Al4In2N6 retains mechanical and dynamical stability across the 0–30 GPa pressure range.
Electronic structure calculations reveal that Al4In2N6 possesses a direct band gap, with non-overlapping conduction and valence bands at the Fermi level and higher carrier mobility in the conduction band compared to the valence band. The band gap increases nearly linearly with pressure, from 3.35 eV at 0 GPa to 4.24 eV at 30 GPa, demonstrating significant pressure-induced modulation of the electronic structure. Furthermore, differential charge density analysis reveals that increasing pressure strengthens Al-N and In-N bonds in Al4In2N6 through shortened interatomic distances and stronger atomic interactions, increasing its compression resistance.
In conclusion, this study not only enhances our understanding of the high-pressure properties of Al4In2N6 but also provides theoretical guidance for its application in UV optoelectronics. Pressure-driven modulation of its mechanical and electronic characteristics highlights its potential for efficient high-pressure optoelectronic devices and materials.-
Keywords:
- Ternary semiconductor /
- high pressure /
- first-principles /
- band gap
-
[1] Liu B, Chen D, Lu H, Tao T, Zhuang Z, Shao Z, Xu W, Ge H, Zhi T, Ren F, Ye J, Xie Z, Zhang R 2020 Adv. Mater. 32 1904354
[2] Hahn C, Zhang Z, Fu A, Wu C H, Hwang Y J, Gargas D J, Yang P 2011 Acs Nano 5 3970
[3] Yu J, Wang L, Hao Z, Luo Y, Sun C, Wang J, Han Y, Xiong B, Li H 2020 Adv. Mater. 32 1903407
[4] Chen K, Kapadia R, Harker A, Desai S, Javey A 2016 Nat. Commun. 7 10502
[5] Qiu P, Liu H, Zhu X L, Tian F, Du M C, Qiu H Y, Chen G L, Hu Y Y, Kong D L, Yang J, Wei H Y, Peng M Z, Zheng X H 2024 Acta Phys. Sin. 73 038102 (in Chinese) [仇鹏,刘恒,朱晓丽,田丰,杜梦超,邱洪宇,陈冠良,胡玉玉,孔德林,杨晋,卫会云,彭铭曾,郑新和 2024 物理学报 73 038102]
[6] F. J. Manjón, Errandonea D, Garro N, Romero A H, Serrano J, Kuball M 2010 Phys. Status Solidi 244 42
[7] E Abid A, Bensalem R, Sealy B J 1986 J. Mater. Sci. 21 1301
[8] Yu R, Liu G, Wang G, Chen C, Xu M, Zhou H, Wang T, Yu J, Zhao G, Zhang L 2021 J. Mater. Chem. C 9 1852
[9] Ibanez J, Segura A, Garcia-Domene B, Oliva R, Manjon F J, Yamaguchi T, Nanishi Y, Artus L 2012 Phys. Rev. B Condens. Matter 86 999
[10] Khan N, Sedhain A, Li J, Lin J Y, Jiang H X 2008 Appl. Phys. Lett. 92 172101
[11] Davydov V Y, Klochikhin A, Seisyan R, Emtsev V, Ivanov S, Bechstedt F, Furthmüller J, Harima H, Mudryi A, Aderhold J 2002 Phys. Status Solidi B 229 r1
[12] Tansley T L, Foley C P 1986 J. Appl. Phys. 59 3241
[13] Liu X, Lin Z, Lin Y, Chen J, Zou P, Zhou J, Li B, Shen L, Zhu D, Liu Q, Yu W, Li X, Gu H, Wang X, Huang S 2023 Chin. Phys. B 32 117701
[14] Wu J, Walukiewicz W, Yu K M, Ager J W, Haller E E, Lu H, Schaff W J, Saito Y, Nanishi Y 2002 Appl. Phys. Lett. 80 3967
[15] Beladjal K, Kadri A, Zitouni K, Mimouni K 2021 Superlattices Microstruct. 155 106901
[16] Guo Q G Q, Yoshida A Y A 1994 Jpn. J. Appl. Phys. 33 2453
[17] Zhao F, Yao G R, Song J J, Ding B B, Xiong J Y, Su C, Zheng S W, Zhang T, Fan G H 2013 Chin. Phys. B 22 058503
[18] Chen J J, Shen L H, Qi D L, Wu L J, Li X, Song J Y, Zhang X L 2022 Ceram. Int. 48 2802
[19] Moussa R, Abdiche A, Khenata R, Wang X, Varshney D, Sun X W, Omran S B, Bouhemadou A, Rai D 2018 J. Phys. Chem. Solids 119 36
[20] Mao W, Zhang J C, Xue J S, Hao Y, Ma X H, Wang C, Liu H X, Xu S R, Yang L A, Bi Z W, Liang X Z, Zhang J F, Kuang X W 2010 Chin. Phys. Lett. 27 128501
[21] Wen X X, Yang X D, He M, Li Y, Wang G, Lu P Y, Qian W N, Li Y, Zhang W W, Wu W B, Chen F S, Ding L Z 2012 Chin. Phys. Lett. 29 097304
[22] Zhang X F, Wang L, Liu J, Wei L, Xu J 2013 Chin. Phys. B 22 017202
[23] Han T C, Zhao H D, Yang L, Wang Y 2017 Chin. Phys. B 26 107301
[24] Zhan X M, Hao M L, Wang Q, Li W, Xiao H L, Feng C, Jiang L J, Wang C M, Wang X L, Wang Z G 2017 Chin. Phys. Lett. 34 047301
[25] Dong Y, Son D H, Dai Q, Lee J H, Won C H, Kim J G, Chen D, Lee J H, Lu H, Zhang R, Zheng Y 2018 Sensors 18 1314
[26] Li A, Wang C, Xu S, Zheng X, He Y, Ma X, Lu X, Zhang J, Liu K, Zhao Y Hao Y 2021 Appl. Phys. Lett. 119 122104
[27] Robin Chang Y H, Yoon T L, Lim T L 2016 Curr. Appl. Phys. 16 1277
[28] Borovac D, Sun W, Song R, Wierer J J, Tansu N 2020 J. Cryst. Growth 533 125469
[29] Yonenaga I, Ohkubo Y, Deura M, Kutsukake K, Tokumoto Y, Ohno Y, Yoshikawa A, Wang X Q 2015 AIP Adv. 5 077131
[30] Tan X, Xin Z Y, Liu X J, Mu Q G 2013 Adv. Mater. Res. 2735 841
[31] Chen M, Guo G C, He L 2010 J. PhysicsCondensed Matter 22 445501
[32] Al-Khatatbeh Y, Lee K K M, Kiefer B 2009 Phys. Rev. B 79 134114
[33] Man X X, Gong B C, Sun P H, Liu K, Lu Z Y 2022 Phys. Rev. B 106 035136
[34] Yu F, Liu Y 2019 Computation 7 57
[35] Velpula R T, Jain B, Philip M R, Nguyen H D, Wang R, Nguyen H P T 2020 Sci. Rep. 10 2547
[36] Robin Chang Y H, Yoon T L, Lim T L, Rakitin M 2016 J. Alloys Compd. 682 338
[37] Glass C W, Oganov A R, Hansen N 2006 Comput. Phys. Commun. 175 713
[38] Oganov A R, Lyakhov A O, Valle M 2011 Acc. Chem. Res. 44 227
[39] Lyakhov A O, Oganov A R, Stokes H T, Zhu Q 2013 Comput. Phys. Commun. 184 1172
[40] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169
[41] Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15
[42] Blöchl P E 1994 Phys. Rev. B 50 17953
[43] Wu Z, Cohen R E 2006 Phys. Rev. B 73 235116
[44] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[45] Togo A, Oba F, Tanaka I 2008 Phys.rev.b 78
[46] Togo A, Tanaka I 2015 Scr. Mater. 108 1
[47] Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207
[48] Muscat J, Wander A, Harrison N M 2001 Chem. Phys. Lett. 342 397
[49] Garza A J, Scuseria G E 2016 J. Phys. Chem. Lett. 7 4165
[50] Sugita Y, Miyake T, Motome Y 2018 Phys. Rev. B 97 035125
[51] Robin Chang Y H, Yoon T L, Lim T L, Tuh M H 2017 J. Alloys Compd. 704 160
[52] Mouhat F, Coudert F X 2014 Phys. Rev. B 90 224104
[53] Voigt W 1889 Ann. Phys. 274 573
[54] Reuss A 1929 ZAMM - J. Appl. Math. Mech. Z. Für Angew. Math. Mech. 9 49
[55] Hill R 1952 Proc. Phys. Soc. Sect. A 65 349
[56] Frantsevich I N, Voronov F F and Bokuta S A 1983 Elastic constants and elastic moduli of metals and insulators handbook (Kiev: Naukova Dumka) pp. 60–180
[57] Tian Y, Xu B, Zhao Z 2012 Int. J. Refract. Met. Hard Mater. 33 93
[58] Meng J, Sun L, Zhang Y, Xue F, Chu C, Bai J 2020 Materials 13 427
计量
- 文章访问数: 11
- PDF下载量: 0
- 被引次数: 0