搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压下准一维纳米结构的研究

董家君 姚明光 刘世杰 刘冰冰

引用本文:
Citation:

高压下准一维纳米结构的研究

董家君, 姚明光, 刘世杰, 刘冰冰

Studies of quasi one-dimensional nanostructures at high pressures

Dong Jia-Jun, Yao Ming-Guang, Liu Shi-Jie, Liu Bing-Bing
PDF
导出引用
  • 准一维原子、分子链是一维纳米材料研究的终极目标,其独特的一维结构可能具有强的量子效应,新奇的光、电、磁等物理性质.如何合成原子/分子一维结构、以及在原子/分子尺度对其进行调控和操纵是目前人们极为关注的前沿课题.通过使用限域模板,如碳纳米管和分子筛等,已经成功地合成了可稳定限域在一维纳米孔道中的原子/分子链状结构.本文简要介绍了高压下一维纳米结构研究所取得的实验结果,以及文献报道的相关实验与理论研究工作,包括压力导致的原子/分子一维链增长及其转变机理,一维纳米孔道中压致分子旋转,碘分子链特有的光致发光现象以及压致发光增强、碳纳米管的压致转变引起的偏振拉曼退偏效应消失等.
    The ultimate goals of researches of one-dimensional (1D) nanomaterials, quasi-one-dimensional atomic/molecular chains are expected to exhibit their strong quantum effects and novel optical, electrical, magnetic properties due to their unique 1D structures. At present, synthesis and manipulation of 1D atomic/molecular chains on an atomic/molecular level in a controllable way have been the frontier subject of scientific research. The 1D atomic/molecular chains, which can be stable in ambient conditions, have been prepared successfully by using a confinement template, such as carbon nanotubes (CNTs), zeolite, etc. High pressure can effectively tune the interatomic and intermolecular interactions over a broad range of conditions and thus to change the structures of materials. High pressure techniques have been recently adopted to investigate the 1D nanomaterials. In this paper, we briefly review some recent progress in the high pressure studies of 1D nanostructures, including iodine chains (I2)n confined in the 1D nanochannels of zeolite, multiwalled carbon nanotube (MWNT) arrays, and 1D carbon chains confined in CNTs. Particularly, polarized Raman spectroscopy combined with theoretical simulations has been used in the high pressure studies of 1D nanostructures. These studies reveal many interesting phenomena, including pressure-induced population increase and growth of 1D atomic/molecular chains. The underlying driven mechanisms have also been uncovered. Induced by pressure, the I2 molecules in zeolite 1D nanochannels rotates to the channel axial direction and the compression of the channel length in turn leads to a concomitant decrease of the intermolecular distance such that the iodine molecules come sufficiently close to the formation of longer (I2)n polymers. The novel polarized photoluminescence (PL) from the iodine chains and the pressure-induced PL enhancement due to the growth of 1D iodine chains under pressure. The depolarization effect vanishing in the polarized Raman spectra of compressed MWNT arrays. These are related to the pressure-induced enhancement of intertube interactions and inter/intratube sp3 bonding. The results obtained by polarized Raman spectroscopy overcome the difficulty:MWNTs have no obvious fingerprints for identifying the structural transformation under pressure. Above all, the 1D nanostructures exhibit interesting and fantastic behaviors under pressure, which deserve further investigations in this research field. In addition, polarized Raman spectroscopy is an effective tool to study the structural transformations of 1D nanomaterials at high pressures, which can be extended to the studies of other analogous 1D nanostructures under pressure.
      通信作者: 姚明光, yaomg@jlu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11474121,51320105007,11634004)资助的课题.
      Corresponding author: Yao Ming-Guang, yaomg@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474121, 51320105007, 11634004).
    [1]

    Peng J, Gao W, Gupta B K, Liu Z, Rebeca R, Ge L, Song L, Alemany L B, Zhan X, Gao G, Vithayathil S A, Kaipparettu B A, Marti A, Hayashi T, Zhu J Ajayan P M 2012 Nano Lett. 12 844

    [2]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [3]

    Yanson A I, Bollinger G R, van den Brom H E, Agrait N, Ruitenbeek J M 1998 Nature 395 783

    [4]

    Ohnishi H, Kondo Y, Takayanagi K 1998 Nature 395 780

    [5]

    Maniwa Y, Maruka K, Kyakuno H, Ogasawara S, Hibi T, Kadowaki H, Suzuki S, Achiba Y, Kataura H 2007 Nat. Mater. 6 135

    [6]

    Zou Y, Liu B, Yao M, Hou Y, Wang L, Yu S, Wang P, Li B, Zou B, Cui T, Zou G, Wågberg T, Sundqvist B 2007 Phys. Rev. B 76 195417

    [7]

    Manning T J, Taylor L, Purcell J, Olsen K 2003 Carbon 41 2813

    [8]

    Jung Y, Hwang S J, Kim S J 2007 J. Phys. Chem. C 111 10181

    [9]

    Liu B, Cui Q, Yu M, Zou G, Carlsten J, Wågberg T, Sundqvist B 2002 J. Phys.:Condens. Matter 14 11255

    [10]

    Guan L, Suenaga K, Shi Z, Gu Z, Iijima S 2007 Nano Lett. 7 1532

    [11]

    Terasaki O, Yamazaki K, Thomas J M, Ohsuna T, Watanabe D, Sanders J V, Barry J C 1987 Nature 330 58

    [12]

    Poborchii V V 1996 Chem. Phys. Lett. 251 230

    [13]

    Ye J T, Tang Z K, Siu G G 2006 Appl. Phys. Lett. 88 073114

    [14]

    Ye J T, Iwasa Y, Tang Z K 2011 Phys. Rev. B 83 193409

    [15]

    Hu J, Wang D, Guo W, Du S, Tang Z K 2012 J. Phys. Chem. C 116 4423

    [16]

    Yao M, Cui W, Du M, Xiao J, Yang X, Liu S, Liu R, Wang F, Cui T, Sundqvist B, Liu B 2015 Adv. Mater. 27 3962

    [17]

    Cui W, Yao M, Liu S, Ma F, Li Q, Liu R, Liu B, Zou B, Cui T, Liu B 2014 Adv. Mater. 26 7257

    [18]

    Zou Y, Liu B, Wang L, Liu D, Yu S, Wang P, Wang T, Yao M, Li Q, Zou B, Cui T, Zou G, Wagberg T, Sundqvist B, Mao H K 2009 PNAS 106 22135

    [19]

    Venkateswaran U D, Brandsen E A, Katakowski M E, Harutyunyan A, Chen G, Loper A L, Eklund P C 2002 Phys. Rev. B 65 054102

    [20]

    Yang X G,Wu Q L 2008 Raman Spectroscopy Analysis and Application (Beijing:National Defence Industry Press) pp7, 8(in Chinese)[杨序钢, 吴琪琳2008拉曼光谱的分析与应用(北京:国防工业出版社)第7, 8页]

    [21]

    Zhu Z Y, Gu R A, Lu T H 2008 The Application of Raman Spectroscopy in Chemistry (Shenyang:Northeastern University Press) pp26-31(in Chinese)[朱自营, 顾仁傲, 陆天虹2008拉曼光谱在化学中的应用(沈阳:东北大学出版社)第26–31页]

    [22]

    Duesberg G S, Loa I, Burghard M, Syassen K, Roth S 2000 Phys. Rev. Lett. 85 5436

    [23]

    Magaa R J, Lannin J S 1985 Phys. Rev. B 32 3819

    [24]

    Shanabrook B V, Lannin J S, Hisatsune I C 1981 Phys. Rev. Lett. 46 130

    [25]

    Kiefer W, Bernstein H J 1972 Chem. Phys. Lett. 16 5

    [26]

    L H, Yao M, Li Q, Liu R, Liu B, Lu S, Jiang L, Cui W, Liu Z, Liu J, Chen Z, Zou B, Cui T, Liu B 2012 J. Appl. Phys. 111 112615

    [27]

    Takemura K, Minomura S, Shimomura O, Fujii Y, Axe J D 1982 Phys. Rev. B 26 998

    [28]

    Reichlin R, McMahan A K, Ross M, Martin S, Hu J, Hemley R J, Mao H K, Wu Y 1994 Phys. Rev. B 49 3725

    [29]

    Fujii Y, Hase K, Hamaya N, Ohishi Y, Onodera A, Shimomura O, Takemura K 1987 Phys. Rev. Lett. 58 796

    [30]

    Fujii Y, Hase K, Ohishi Y, Hamaya N, Onodera A 1986 Solid State Commun. 59 85

    [31]

    Yao M, Wang T, Yao Z, Duan D, Chen S, Liu Z, Liu R, Lu S, Yuan Y, Zou B, Cui T, Liu B 2013 J. Phys. Chem. C 117 25052

    [32]

    Olijnyk H, Li W, Wokaun A 1994 Phys. Rev. B 50 712

    [33]

    Kume T, Hiraoka T, Ohya Y, Sasaki S, Shimizu H 2005 Phys. Rev. Lett. 94 065506

    [34]

    Alvarez L, Bantignies J L, Le Parc R, Aznar R, Sauvajol J L, Merlen A, Machon D, San Miguel A 2010 Phys. Rev. B 82 205403

    [35]

    Vladimir V P, Alexander V K, Jrgen C, Victor V Z, Kazunobu T 1999 Phys. Rev. Lett. 82 1955

    [36]

    Byl O, Liu J, Wang Y, Yim W, Johnson J K, Yates J T J 2006 J. Am. Chem. Soc. 128 12090

    [37]

    Koga K, Gao G T, Tanaka H, Zeng X C 2001 Nature 412 802

    [38]

    Chen S, Yao M, Yuan Y, Ma F, Liu Z, Liu R, Cui W, Yang X, Liu B, Zou B, Cui T, Liu B 2014 Phys. Chem. Chem. Phys. 16 8301

    [39]

    Zhai J P, Li I L, Ruan S C, Lee H F, Tang Z K 2008 Appl. Phys. Lett. 92 043117

    [40]

    Zhai J P, Lee H F, Li I L, Ruan S C, Tang Z K 2008 Nanotechnology 19 175604

    [41]

    Jiang F Y, Liu R C 2007 J. Phys. Chem. Solids 68 1552

    [42]

    Yuan Y, Yao M, Chen S, Liu S, Yang X, Zhang W, Yao Z, Liu R, Liu B, Liu B 2016 Nanoscale 8 1456

    [43]

    Sercel P C, Vahala K J 1990 Appl. Phys. Lett. 57 545

    [44]

    Sercel P C, Vahala K J 1991 Phys. Rev. B 44 5681

    [45]

    McIntyre C R, Sham L J 1992 Phys. Rev. B 45 9443

    [46]

    Persson M P, Xu H Q 2004 Phys. Rev. B 70 161310

    [47]

    Califano M, Zunger A 2004 Phys. Rev. B 70 165317

    [48]

    Maslov A V, Ning C Z 2005 Phys. Rev. B 72 161310

    [49]

    Ruda H E, Shik A 2005 Phys. Rev. B 72 115308

    [50]

    Ruda H E, Shik A 2006 J. Appl. Phys. 100 024314

    [51]

    Baughman R H, Zakhidov A A, de Heer W A 2002 Science 297 787

    [52]

    Dresselhaus M S Jorio A, Hofmann M, Dresselhaus G, Saito R 2010 Nano Lett. 10 751

    [53]

    Yao M, Wang Z, Liu B, Zou Y, Yu S, Lin W, Hou Y, Pan S, Jin M, Zou B, Cui T, Zou G, Sundqvist B 2008 Phys. Rev. B 78 205411

    [54]

    Caillier C, Machon D, San-Miguel A, Arenal R, Montagnac G, Cardon H, Kalbac M, Zukalova M, Kavan L 2008 Phys. Rev. B 77 125418

    [55]

    Alencar R S, Aguiar A L, Paschoal A R, Freire P T C, Kim Y A, Muramatsu H, Endo M, Terrones H, Terrones M, San-Miguel A, Dresselhaus M S, Souza Filho A G 2014 J. Phys. Chem. C 118 8153

    [56]

    Aguiar A L, Barros E B, Capaz R B, Souza Filho A G, Freire P T C, Filho J M, Machon D, Caillier C, Kim Y A, Muramatsu H, Endo M, San-Miguel A 2011 J. Phys. Chem. C 115 5378

    [57]

    Arvanitidis J, Christofilos D, Papagelis K, Andrikopoulos K S, Takenobu T, Iwasa Y, Kataura H, Ves S, Kourouklis G A 2005 Phys. Rev. B 71 125404

    [58]

    Tang D S, Bao Z X, Wang L J, Chen L C, Sun L F, Liu Z Q, Zhou W Y, Xie S S 2000 J. Phys. Chem. Solids 61 1175

    [59]

    Peters M J, McNeil L E, Lu J P, Kahn D 2000 Phys. Rev. B 61 5939

    [60]

    Thomsen C, Reich S, Jantoljak H, Loa I, Syassen K, Burghard M, Duesberg G S, Roth S 1999 Appl. Phys. A 69 309

    [61]

    Schindler T L, Vohra Y K 1995 J. Phys.:Condens. Matter 7 637

    [62]

    Hanfland M, Beister H, Syassen K 1989 Phys. Rev. B 39 12598

    [63]

    Puech P, Hubel H, Dunstan D J, Bacsa R R, Laurent C Bacsa W S 2004 Phys. Rev. Lett. 93 095506

    [64]

    Yang X, Yao M, Lu W, Chen S, Du M, Zhu L, Li H, Liu R, Cui T, Sundqvist B, Liu B 2015 J. Phys. Chem. C 119 27759

    [65]

    Hwang J, Gommans H H, Ugawa A, Tashiro H, Haggenmueller R, Winey K I, Fischer J E, Tanner D B 2000 Phys. Rev. B 62 13310

    [66]

    Ren W, Li F, Cheng H M 2005 Phys. Rev. B 71 115428

    [67]

    Marinopoulos A G, Reining L, Rubio A, Vast N 2003 Phys. Rev. Lett. 91 046402

    [68]

    Mao W L, Mao H, Eng P J, Trainor T P, Newville M, Kao C, Heinz D L, Shu J, Meng Y, Hemley R J 2003 Science 302 425

    [69]

    Ni C, Bandaru P R 2009 Carbon 47 2898

    [70]

    Rao A M, Jorio A, Pimenta M A, Dantas M S S, Saito R, Dresselhaus G, Dresselhaus M S 2000 Phys. Rev. Lett. 84 1820

    [71]

    Liu M, Artyukhov V I, Lee H, Xu F, Yakobson B I 2013 ACS Nano 7 10075

    [72]

    Kertesz M, Yang S 2009 Phys. Chem. Chem. Phys. 11 425

    [73]

    Nishide D, Dohi H, Wakabayashi T, Nishibori E, Aoyagi S, Ishida M, Kikuchi S, Kitaura R, Sugai T, Sakata M, Shinohara H 2006 Chem. Phy. Lett. 428 356

    [74]

    Kitaura R, Imazu N, Kobayashi K, Shinohara H 2008 Nano Lett. 8 693

    [75]

    Chuvilin A, Bichoutskaia E, Gimenez-Lopez M C, Chamberlain T W, Rance G A, Kuganathan N, Biskupek J, Kaiser U, Khlobystov A N 2011 Nat. Mater. 10 687

    [76]

    Chalifoux W A, Tykwinski R R 2010 Nat. Chem. 2 967

    [77]

    Johnson T, Walton D 1972 Tetrahedron 28 5221

    [78]

    Gibtner T, Hampel F, Gisselbrecht J, Hirsch A 2002 Chem. Eur. J. 8 408

    [79]

    Zhao X, Ando Y, Liu Y, Jinno M, Suzuki T 2003 Phys. Rev. Lett. 90 187401

    [80]

    Andrade N F, Aguiar A L, Kim Y A, Endo M, Freire P T C, Brunetto G, Galvão D S, Dresselhaus M S, Souza Filho A G 2015 J. Phys. Chem. C 119 10669

    [81]

    Shi L, Rohringer P, Suenaga K, Niimi Y, Kotakoski J, Meyer J C, Peterlik H, Wanko M, Cahangirov S, Rubio A, Lapin Z J, Novotny L, Ayala P, Pichler T 2016 Nat. Mater. 15 634

  • [1]

    Peng J, Gao W, Gupta B K, Liu Z, Rebeca R, Ge L, Song L, Alemany L B, Zhan X, Gao G, Vithayathil S A, Kaipparettu B A, Marti A, Hayashi T, Zhu J Ajayan P M 2012 Nano Lett. 12 844

    [2]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [3]

    Yanson A I, Bollinger G R, van den Brom H E, Agrait N, Ruitenbeek J M 1998 Nature 395 783

    [4]

    Ohnishi H, Kondo Y, Takayanagi K 1998 Nature 395 780

    [5]

    Maniwa Y, Maruka K, Kyakuno H, Ogasawara S, Hibi T, Kadowaki H, Suzuki S, Achiba Y, Kataura H 2007 Nat. Mater. 6 135

    [6]

    Zou Y, Liu B, Yao M, Hou Y, Wang L, Yu S, Wang P, Li B, Zou B, Cui T, Zou G, Wågberg T, Sundqvist B 2007 Phys. Rev. B 76 195417

    [7]

    Manning T J, Taylor L, Purcell J, Olsen K 2003 Carbon 41 2813

    [8]

    Jung Y, Hwang S J, Kim S J 2007 J. Phys. Chem. C 111 10181

    [9]

    Liu B, Cui Q, Yu M, Zou G, Carlsten J, Wågberg T, Sundqvist B 2002 J. Phys.:Condens. Matter 14 11255

    [10]

    Guan L, Suenaga K, Shi Z, Gu Z, Iijima S 2007 Nano Lett. 7 1532

    [11]

    Terasaki O, Yamazaki K, Thomas J M, Ohsuna T, Watanabe D, Sanders J V, Barry J C 1987 Nature 330 58

    [12]

    Poborchii V V 1996 Chem. Phys. Lett. 251 230

    [13]

    Ye J T, Tang Z K, Siu G G 2006 Appl. Phys. Lett. 88 073114

    [14]

    Ye J T, Iwasa Y, Tang Z K 2011 Phys. Rev. B 83 193409

    [15]

    Hu J, Wang D, Guo W, Du S, Tang Z K 2012 J. Phys. Chem. C 116 4423

    [16]

    Yao M, Cui W, Du M, Xiao J, Yang X, Liu S, Liu R, Wang F, Cui T, Sundqvist B, Liu B 2015 Adv. Mater. 27 3962

    [17]

    Cui W, Yao M, Liu S, Ma F, Li Q, Liu R, Liu B, Zou B, Cui T, Liu B 2014 Adv. Mater. 26 7257

    [18]

    Zou Y, Liu B, Wang L, Liu D, Yu S, Wang P, Wang T, Yao M, Li Q, Zou B, Cui T, Zou G, Wagberg T, Sundqvist B, Mao H K 2009 PNAS 106 22135

    [19]

    Venkateswaran U D, Brandsen E A, Katakowski M E, Harutyunyan A, Chen G, Loper A L, Eklund P C 2002 Phys. Rev. B 65 054102

    [20]

    Yang X G,Wu Q L 2008 Raman Spectroscopy Analysis and Application (Beijing:National Defence Industry Press) pp7, 8(in Chinese)[杨序钢, 吴琪琳2008拉曼光谱的分析与应用(北京:国防工业出版社)第7, 8页]

    [21]

    Zhu Z Y, Gu R A, Lu T H 2008 The Application of Raman Spectroscopy in Chemistry (Shenyang:Northeastern University Press) pp26-31(in Chinese)[朱自营, 顾仁傲, 陆天虹2008拉曼光谱在化学中的应用(沈阳:东北大学出版社)第26–31页]

    [22]

    Duesberg G S, Loa I, Burghard M, Syassen K, Roth S 2000 Phys. Rev. Lett. 85 5436

    [23]

    Magaa R J, Lannin J S 1985 Phys. Rev. B 32 3819

    [24]

    Shanabrook B V, Lannin J S, Hisatsune I C 1981 Phys. Rev. Lett. 46 130

    [25]

    Kiefer W, Bernstein H J 1972 Chem. Phys. Lett. 16 5

    [26]

    L H, Yao M, Li Q, Liu R, Liu B, Lu S, Jiang L, Cui W, Liu Z, Liu J, Chen Z, Zou B, Cui T, Liu B 2012 J. Appl. Phys. 111 112615

    [27]

    Takemura K, Minomura S, Shimomura O, Fujii Y, Axe J D 1982 Phys. Rev. B 26 998

    [28]

    Reichlin R, McMahan A K, Ross M, Martin S, Hu J, Hemley R J, Mao H K, Wu Y 1994 Phys. Rev. B 49 3725

    [29]

    Fujii Y, Hase K, Hamaya N, Ohishi Y, Onodera A, Shimomura O, Takemura K 1987 Phys. Rev. Lett. 58 796

    [30]

    Fujii Y, Hase K, Ohishi Y, Hamaya N, Onodera A 1986 Solid State Commun. 59 85

    [31]

    Yao M, Wang T, Yao Z, Duan D, Chen S, Liu Z, Liu R, Lu S, Yuan Y, Zou B, Cui T, Liu B 2013 J. Phys. Chem. C 117 25052

    [32]

    Olijnyk H, Li W, Wokaun A 1994 Phys. Rev. B 50 712

    [33]

    Kume T, Hiraoka T, Ohya Y, Sasaki S, Shimizu H 2005 Phys. Rev. Lett. 94 065506

    [34]

    Alvarez L, Bantignies J L, Le Parc R, Aznar R, Sauvajol J L, Merlen A, Machon D, San Miguel A 2010 Phys. Rev. B 82 205403

    [35]

    Vladimir V P, Alexander V K, Jrgen C, Victor V Z, Kazunobu T 1999 Phys. Rev. Lett. 82 1955

    [36]

    Byl O, Liu J, Wang Y, Yim W, Johnson J K, Yates J T J 2006 J. Am. Chem. Soc. 128 12090

    [37]

    Koga K, Gao G T, Tanaka H, Zeng X C 2001 Nature 412 802

    [38]

    Chen S, Yao M, Yuan Y, Ma F, Liu Z, Liu R, Cui W, Yang X, Liu B, Zou B, Cui T, Liu B 2014 Phys. Chem. Chem. Phys. 16 8301

    [39]

    Zhai J P, Li I L, Ruan S C, Lee H F, Tang Z K 2008 Appl. Phys. Lett. 92 043117

    [40]

    Zhai J P, Lee H F, Li I L, Ruan S C, Tang Z K 2008 Nanotechnology 19 175604

    [41]

    Jiang F Y, Liu R C 2007 J. Phys. Chem. Solids 68 1552

    [42]

    Yuan Y, Yao M, Chen S, Liu S, Yang X, Zhang W, Yao Z, Liu R, Liu B, Liu B 2016 Nanoscale 8 1456

    [43]

    Sercel P C, Vahala K J 1990 Appl. Phys. Lett. 57 545

    [44]

    Sercel P C, Vahala K J 1991 Phys. Rev. B 44 5681

    [45]

    McIntyre C R, Sham L J 1992 Phys. Rev. B 45 9443

    [46]

    Persson M P, Xu H Q 2004 Phys. Rev. B 70 161310

    [47]

    Califano M, Zunger A 2004 Phys. Rev. B 70 165317

    [48]

    Maslov A V, Ning C Z 2005 Phys. Rev. B 72 161310

    [49]

    Ruda H E, Shik A 2005 Phys. Rev. B 72 115308

    [50]

    Ruda H E, Shik A 2006 J. Appl. Phys. 100 024314

    [51]

    Baughman R H, Zakhidov A A, de Heer W A 2002 Science 297 787

    [52]

    Dresselhaus M S Jorio A, Hofmann M, Dresselhaus G, Saito R 2010 Nano Lett. 10 751

    [53]

    Yao M, Wang Z, Liu B, Zou Y, Yu S, Lin W, Hou Y, Pan S, Jin M, Zou B, Cui T, Zou G, Sundqvist B 2008 Phys. Rev. B 78 205411

    [54]

    Caillier C, Machon D, San-Miguel A, Arenal R, Montagnac G, Cardon H, Kalbac M, Zukalova M, Kavan L 2008 Phys. Rev. B 77 125418

    [55]

    Alencar R S, Aguiar A L, Paschoal A R, Freire P T C, Kim Y A, Muramatsu H, Endo M, Terrones H, Terrones M, San-Miguel A, Dresselhaus M S, Souza Filho A G 2014 J. Phys. Chem. C 118 8153

    [56]

    Aguiar A L, Barros E B, Capaz R B, Souza Filho A G, Freire P T C, Filho J M, Machon D, Caillier C, Kim Y A, Muramatsu H, Endo M, San-Miguel A 2011 J. Phys. Chem. C 115 5378

    [57]

    Arvanitidis J, Christofilos D, Papagelis K, Andrikopoulos K S, Takenobu T, Iwasa Y, Kataura H, Ves S, Kourouklis G A 2005 Phys. Rev. B 71 125404

    [58]

    Tang D S, Bao Z X, Wang L J, Chen L C, Sun L F, Liu Z Q, Zhou W Y, Xie S S 2000 J. Phys. Chem. Solids 61 1175

    [59]

    Peters M J, McNeil L E, Lu J P, Kahn D 2000 Phys. Rev. B 61 5939

    [60]

    Thomsen C, Reich S, Jantoljak H, Loa I, Syassen K, Burghard M, Duesberg G S, Roth S 1999 Appl. Phys. A 69 309

    [61]

    Schindler T L, Vohra Y K 1995 J. Phys.:Condens. Matter 7 637

    [62]

    Hanfland M, Beister H, Syassen K 1989 Phys. Rev. B 39 12598

    [63]

    Puech P, Hubel H, Dunstan D J, Bacsa R R, Laurent C Bacsa W S 2004 Phys. Rev. Lett. 93 095506

    [64]

    Yang X, Yao M, Lu W, Chen S, Du M, Zhu L, Li H, Liu R, Cui T, Sundqvist B, Liu B 2015 J. Phys. Chem. C 119 27759

    [65]

    Hwang J, Gommans H H, Ugawa A, Tashiro H, Haggenmueller R, Winey K I, Fischer J E, Tanner D B 2000 Phys. Rev. B 62 13310

    [66]

    Ren W, Li F, Cheng H M 2005 Phys. Rev. B 71 115428

    [67]

    Marinopoulos A G, Reining L, Rubio A, Vast N 2003 Phys. Rev. Lett. 91 046402

    [68]

    Mao W L, Mao H, Eng P J, Trainor T P, Newville M, Kao C, Heinz D L, Shu J, Meng Y, Hemley R J 2003 Science 302 425

    [69]

    Ni C, Bandaru P R 2009 Carbon 47 2898

    [70]

    Rao A M, Jorio A, Pimenta M A, Dantas M S S, Saito R, Dresselhaus G, Dresselhaus M S 2000 Phys. Rev. Lett. 84 1820

    [71]

    Liu M, Artyukhov V I, Lee H, Xu F, Yakobson B I 2013 ACS Nano 7 10075

    [72]

    Kertesz M, Yang S 2009 Phys. Chem. Chem. Phys. 11 425

    [73]

    Nishide D, Dohi H, Wakabayashi T, Nishibori E, Aoyagi S, Ishida M, Kikuchi S, Kitaura R, Sugai T, Sakata M, Shinohara H 2006 Chem. Phy. Lett. 428 356

    [74]

    Kitaura R, Imazu N, Kobayashi K, Shinohara H 2008 Nano Lett. 8 693

    [75]

    Chuvilin A, Bichoutskaia E, Gimenez-Lopez M C, Chamberlain T W, Rance G A, Kuganathan N, Biskupek J, Kaiser U, Khlobystov A N 2011 Nat. Mater. 10 687

    [76]

    Chalifoux W A, Tykwinski R R 2010 Nat. Chem. 2 967

    [77]

    Johnson T, Walton D 1972 Tetrahedron 28 5221

    [78]

    Gibtner T, Hampel F, Gisselbrecht J, Hirsch A 2002 Chem. Eur. J. 8 408

    [79]

    Zhao X, Ando Y, Liu Y, Jinno M, Suzuki T 2003 Phys. Rev. Lett. 90 187401

    [80]

    Andrade N F, Aguiar A L, Kim Y A, Endo M, Freire P T C, Brunetto G, Galvão D S, Dresselhaus M S, Souza Filho A G 2015 J. Phys. Chem. C 119 10669

    [81]

    Shi L, Rohringer P, Suenaga K, Niimi Y, Kotakoski J, Meyer J C, Peterlik H, Wanko M, Cahangirov S, Rubio A, Lapin Z J, Novotny L, Ayala P, Pichler T 2016 Nat. Mater. 15 634

  • [1] 王月, 邵渤淮, 陈双龙, 王春杰, 高春晓. 高压下TiO2纳米线晶粒和晶界性质及电输运行为. 物理学报, 2022, 71(9): 096101. doi: 10.7498/aps.71.20212276
    [2] 秦成龙, 罗祥燕, 谢泉, 吴乔丹. 碳纳米管和碳化硅纳米管热导率的分子动力学研究. 物理学报, 2022, 71(3): 030202. doi: 10.7498/aps.71.20210969
    [3] 王春杰, 王月, 高春晓. 高压下纳米晶ZnS晶粒和晶界性质及相变机理. 物理学报, 2020, 69(14): 147202. doi: 10.7498/aps.69.20200240
    [4] 李瑞, 密俊霞. 界面接枝羟基对碳纳米管运动和摩擦行为影响的分子动力学模拟. 物理学报, 2017, 66(4): 046101. doi: 10.7498/aps.66.046101
    [5] 曹平, 罗成林, 陈贵虎, 韩典荣, 朱兴凤, 戴亚飞. 通量可控的双壁碳纳米管水分子泵. 物理学报, 2015, 64(11): 116101. doi: 10.7498/aps.64.116101
    [6] 杨成兵, 解辉, 刘朝. 锂离子进入碳纳米管端口速度的分子动力学模拟. 物理学报, 2014, 63(20): 200508. doi: 10.7498/aps.63.200508
    [7] 李威, 冯妍卉, 唐晶晶, 张欣欣. 碳纳米管Y形分子结的热导率与热整流现象. 物理学报, 2013, 62(7): 076107. doi: 10.7498/aps.62.076107
    [8] 吕晓静, 翁春生, 李宁. 高压环境下1.58 μm波段CO2吸收光谱特性分析. 物理学报, 2012, 61(23): 234205. doi: 10.7498/aps.61.234205
    [9] 彭德锋, 江五贵, 彭川. 碳纳米管从硅基板上剥离的拉伸分子动力学模拟研究. 物理学报, 2012, 61(14): 146102. doi: 10.7498/aps.61.146102
    [10] 徐葵, 王青松, 谭兵, 陈明璇, 缪灵, 江建军. 形变碳纳米管选择通过性的分子动力学研究. 物理学报, 2012, 61(9): 096101. doi: 10.7498/aps.61.096101
    [11] 左学云, 李中秋, 王伟, 孟利军, 张凯旺, 钟建新. 碳纳米管熔接金电极的分子动力学模拟. 物理学报, 2011, 60(6): 066103. doi: 10.7498/aps.60.066103
    [12] 李姝丽, 张建民. Ni原子链填充碳纳米管的能量、电子结构和磁性的第一性原理计算. 物理学报, 2011, 60(7): 078801. doi: 10.7498/aps.60.078801
    [13] 周密, 李占龙, 陆国会, 李东飞, 孙成林, 高淑琴, 里佐威. 高压拉曼光谱方法研究联苯分子费米共振. 物理学报, 2011, 60(5): 050702. doi: 10.7498/aps.60.050702
    [14] 马丽, 高勇. 半超结SiGe高压快速软恢复开关二极管. 物理学报, 2009, 58(1): 529-535. doi: 10.7498/aps.58.529
    [15] 孟利军, 张凯旺, 钟建新. 硅纳米颗粒在碳纳米管表面生长的分子动力学模拟. 物理学报, 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [16] 邵光杰, 秦秀娟, 刘日平, 王文魁, 姚玉书. 氧化锌纳米晶高压下的晶粒演化和性能. 物理学报, 2006, 55(1): 472-476. doi: 10.7498/aps.55.472
    [17] 蔡建臻, 朱宏伟, 吴德海, 刘 峰, 吕 力. 单壁碳纳米管微分电导在高压和强磁场下的实验研究. 物理学报, 2006, 55(12): 6585-6588. doi: 10.7498/aps.55.6585
    [18] 保文星, 朱长纯. 碳纳米管热传导的分子动力学模拟研究. 物理学报, 2006, 55(7): 3552-3557. doi: 10.7498/aps.55.3552
    [19] 李 瑞, 胡元中, 王 慧, 张宇军. 单壁碳纳米管在石墨基底上运动的分子动力学模拟. 物理学报, 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
    [20] 吴延昭, 于 平, 王玉芳, 金庆华, 丁大同, 蓝国祥. 非共振条件下单壁碳纳米管拉曼散射强度的计算. 物理学报, 2005, 54(11): 5262-5268. doi: 10.7498/aps.54.5262
计量
  • 文章访问数:  3831
  • PDF下载量:  261
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-09
  • 修回日期:  2016-11-08
  • 刊出日期:  2017-02-05

高压下准一维纳米结构的研究

  • 1. 吉林大学, 超硬材料国家重点实验室, 长春 130012;
  • 2. 吉林大学物理学院, 长春 130012
  • 通信作者: 姚明光, yaomg@jlu.edu.cn
    基金项目: 国家自然科学基金(批准号:11474121,51320105007,11634004)资助的课题.

摘要: 准一维原子、分子链是一维纳米材料研究的终极目标,其独特的一维结构可能具有强的量子效应,新奇的光、电、磁等物理性质.如何合成原子/分子一维结构、以及在原子/分子尺度对其进行调控和操纵是目前人们极为关注的前沿课题.通过使用限域模板,如碳纳米管和分子筛等,已经成功地合成了可稳定限域在一维纳米孔道中的原子/分子链状结构.本文简要介绍了高压下一维纳米结构研究所取得的实验结果,以及文献报道的相关实验与理论研究工作,包括压力导致的原子/分子一维链增长及其转变机理,一维纳米孔道中压致分子旋转,碘分子链特有的光致发光现象以及压致发光增强、碳纳米管的压致转变引起的偏振拉曼退偏效应消失等.

English Abstract

参考文献 (81)

目录

    /

    返回文章
    返回