搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

界面接枝羟基对碳纳米管运动和摩擦行为影响的分子动力学模拟

李瑞 密俊霞

引用本文:
Citation:

界面接枝羟基对碳纳米管运动和摩擦行为影响的分子动力学模拟

李瑞, 密俊霞

Influence of hydroxyls at interfaces on motion and friction of carbon nanotube by molecular dynamics simulation

Li Rui, Mi Jun-Xia
PDF
导出引用
  • 本文采用分子动力学模拟研究了界面间接枝羟基对碳纳米管在石墨基底上运动和摩擦行为的影响.结果表明:界面接枝羟基后碳纳米管所受的侧向力明显改变;仅石墨接枝羟基时碳纳米管侧向力波动增大;同时由于垂直碳纳米管与基底间接触面积小,碳纳米管所受的摩擦力随羟基含量的增加而增大;碳纳米管与石墨上均接枝羟基后体系中引入了氢键和库仑力作用,显著增加了界面间的摩擦,体系的滑移界面从碳纳米管与石墨间迅速转变为石墨层间,并且导致碳纳米管在垂直初始运动方向上也出现了滑移.
    Understanding how the groups at interface influence the friction of carbon nanotubes can provide reference for their applications. In this paper, we investigate the influences of hydroxyls on motion and friction of carbon nanotube on graphite substrate by molecular dynamics simulation. The simulation cases include the ideal vertical carbon nanotube on the ideal graphite substrate, the ideal vertical carbon nanotube on the graphite with hydroxyls on the top layer, the carbon nanotube and the graphite both with hydroxyls on the surface. The results show that the lateral force of carbon nanotube changes when hydroxyls are introduced into the interfaces. If hydroxyls are only on the graphite, the fluctuation of lateral force increases obviously. The reason can be attributed to the increase of atomic surface roughness. Moreover, due to the small contact area between vertical aligned carbon nanotube and substrate, the mean friction becomes raised with hydroxyl content increasing, which is different from the conclusion obtained from silicon tip sliding on graphene with hydrogen on the surface. In that case, owing to the large contact area, the mean friction of tip reaches a maximum value at hydrogen content in a range between 5 and 10% because of the competition between the increase in the number of hydrogen atoms and the weakening of the interlock due to the increase in separation of tip from substrate. Hydrogen bond and Coulomb force appear between interfaces when hydroxyls are both on carbon nanotube and on graphite, which significantly increases friction force on carbon nanotube. And slip interfaces translate rapidly from between carbon nanotube and graphite into between graphite layers. Like the case with hydroxyls only on the graphite, the sliding of carbon nanotube perpendicular to the initial velocity also occurs when carbon nanotube and graphite are both with hydroxyls. This phenomena can be explained as the fact that the introduction of hydroxyls breaks the equilibrium of the force on the carbon nanotube in the Y direction. Moreover, the random distribution of hydroxyls causes the random motion of the carbon nanotube.
      通信作者: 李瑞, lirui@ustb.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51475039)和国家自然科学基金青年项目(批准号:51105028)资助的课题.
      Corresponding author: Li Rui, lirui@ustb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.51475039) and the National Natural Science Foundation of China (Young Scholars Program)(Grant No.51105028).
    [1]

    Scarselli M, Castrucci P, de Crescenzi M 2012 J. Phys.:Condens. Matter 24 313202

    [2]

    Gofman I V, Abalov I V, Vlasova E N, Goikhman M J, Zhang B D 2015 Fibre Chem. 47 236

    [3]

    Falvo M R, Taylor R M, Helser A, Chi V, Brooks F P, Washburn S Jr, et al. 1999 Nature 397 236

    [4]

    Mylvaganam K, Zhang L C, Xiao K Q 2009 Carbon 47 1693

    [5]

    Li R, Hu Y Z, Wang H 2011 Acta Phys. Sin. 60 016106 (in Chinese)[李瑞, 胡之中, 王慧 2011 物理学报 60 016106]

    [6]

    Lucas M, Zhang X H, Palaci I, Klinke C, Tosatti E, Riedo E 2009 Nat Mater. 8 876

    [7]

    Li R, Sun D H 2014 Acta Phys. Sin. 63 056101 (in Chinese)[李瑞, 孙丹海 2014 物理学报 63 056101]

    [8]

    Dickrell P L, Pal S K, Bourne G R, Muratore C, Voevodin A A, Ajayan P M, et al. 2006 Tribol. Lett. 24 85

    [9]

    Miyoshi K, Street K W, van der Wal R L, Andrews R, Sayir A 2005 Tribol. Lett. 19 191

    [10]

    van der Wal R L, Miyoshi K, Street K W, Tomasek A J, Peng H, Liu Y, et al. 2005 Wear 259 738

    [11]

    Ler J G Q, Hao Y F, Thong J T L 2007 Carbon 45 2737

    [12]

    Chen J, Ratera I, Park J Y, Salmeron M 2006 Phys. Rev. Lett. 96 236102

    [13]

    Wang L F, Ma T B, Hu Y Z, Wang H 2012 Phys. Rev. B 86 125436

    [14]

    Dong Y L, Li Q Y, Martini A 2013 J. Vacuum Sci. Technol. A 31 030801

    [15]

    Hughes Z E, Shearer C J, Shapter J, Gale J D 2012 J. Phys. Chem. C 116 24943

    [16]

    Damm W, Frontera A, Tirado-Rives J, Jorgensen W L 1997 J. Comput. Chem. 18 1955

    [17]

    Ruoff R S, Hickman A P 1993 J. Phys. Chem. 97 2494

    [18]

    Mayo S L, Olafson B D, Goddard W A Ⅲ 1990 J. Phys. Chem. 94 8897

    [19]

    Dong Y L, Wu X W, Martini A 2013 Nanotechnology 24 375701

  • [1]

    Scarselli M, Castrucci P, de Crescenzi M 2012 J. Phys.:Condens. Matter 24 313202

    [2]

    Gofman I V, Abalov I V, Vlasova E N, Goikhman M J, Zhang B D 2015 Fibre Chem. 47 236

    [3]

    Falvo M R, Taylor R M, Helser A, Chi V, Brooks F P, Washburn S Jr, et al. 1999 Nature 397 236

    [4]

    Mylvaganam K, Zhang L C, Xiao K Q 2009 Carbon 47 1693

    [5]

    Li R, Hu Y Z, Wang H 2011 Acta Phys. Sin. 60 016106 (in Chinese)[李瑞, 胡之中, 王慧 2011 物理学报 60 016106]

    [6]

    Lucas M, Zhang X H, Palaci I, Klinke C, Tosatti E, Riedo E 2009 Nat Mater. 8 876

    [7]

    Li R, Sun D H 2014 Acta Phys. Sin. 63 056101 (in Chinese)[李瑞, 孙丹海 2014 物理学报 63 056101]

    [8]

    Dickrell P L, Pal S K, Bourne G R, Muratore C, Voevodin A A, Ajayan P M, et al. 2006 Tribol. Lett. 24 85

    [9]

    Miyoshi K, Street K W, van der Wal R L, Andrews R, Sayir A 2005 Tribol. Lett. 19 191

    [10]

    van der Wal R L, Miyoshi K, Street K W, Tomasek A J, Peng H, Liu Y, et al. 2005 Wear 259 738

    [11]

    Ler J G Q, Hao Y F, Thong J T L 2007 Carbon 45 2737

    [12]

    Chen J, Ratera I, Park J Y, Salmeron M 2006 Phys. Rev. Lett. 96 236102

    [13]

    Wang L F, Ma T B, Hu Y Z, Wang H 2012 Phys. Rev. B 86 125436

    [14]

    Dong Y L, Li Q Y, Martini A 2013 J. Vacuum Sci. Technol. A 31 030801

    [15]

    Hughes Z E, Shearer C J, Shapter J, Gale J D 2012 J. Phys. Chem. C 116 24943

    [16]

    Damm W, Frontera A, Tirado-Rives J, Jorgensen W L 1997 J. Comput. Chem. 18 1955

    [17]

    Ruoff R S, Hickman A P 1993 J. Phys. Chem. 97 2494

    [18]

    Mayo S L, Olafson B D, Goddard W A Ⅲ 1990 J. Phys. Chem. 94 8897

    [19]

    Dong Y L, Wu X W, Martini A 2013 Nanotechnology 24 375701

  • [1] 刘青阳, 徐青松, 李瑞. 氮掺杂对石墨烯摩擦学特性影响的分子动力学模拟. 物理学报, 2022, 71(14): 146801. doi: 10.7498/aps.71.20212309
    [2] 秦晓玲, 朱栩量, 曹靖雯, 王浩诚, 张鹏. 冰的氢键振动研究. 物理学报, 2021, 70(14): 146301. doi: 10.7498/aps.70.20210013
    [3] 李鹏程, 唐重阳, 程亮, 胡永明, 肖湘衡, 陈万平. TiO2纳米粉在水中通过摩擦还原CO2. 物理学报, 2021, 70(21): 214601. doi: 10.7498/aps.70.20210210
    [4] 潘登, 刘长鑫, 张泽洋, 高玉金, 郝秀红. 速度对聚四氟乙烯摩擦系数影响的分子动力学模拟. 物理学报, 2019, 68(17): 176801. doi: 10.7498/aps.68.20190495
    [5] 陈勇, 李瑞. 纳米尺度硼烯与石墨烯的相互作用. 物理学报, 2019, 68(18): 186801. doi: 10.7498/aps.68.20190692
    [6] 王世伟, 朱朋哲, 李瑞. 界面羟基对碳纳米管摩擦行为和能量耗散的影响. 物理学报, 2018, 67(7): 076101. doi: 10.7498/aps.67.20180311
    [7] 石彦立, 韩伟, 卢铁城, 陈军. 含羟基结构熔石英光电性质的第一性原理研究. 物理学报, 2014, 63(8): 083101. doi: 10.7498/aps.63.083101
    [8] 王志萍, 朱云, 吴亚敏, 张秀梅. 质子与羟基碰撞的含时密度泛函理论研究. 物理学报, 2014, 63(2): 023401. doi: 10.7498/aps.63.023401
    [9] 李瑞, 孙丹海. 缺陷对碳纳米管摩擦与运动行为的影响. 物理学报, 2014, 63(5): 056101. doi: 10.7498/aps.63.056101
    [10] 贾汝娟, 王苍龙, 杨阳, 苟学强, 陈建敏, 段文山. 二维Frenkel-Kontorova模型中六角对称结构的摩擦现象. 物理学报, 2013, 62(6): 068104. doi: 10.7498/aps.62.068104
    [11] 马丽莎, 张前程, 程琳. Zn吸附到含有氧空位(VO)以及羟基(-OH)的锐钛矿相TiO2(101)表面电子结构的第一性原理计算. 物理学报, 2013, 62(18): 187101. doi: 10.7498/aps.62.187101
    [12] 万进, 田煜, 周铭, 张向军, 孟永钢. 载荷对壁虎刚毛束的摩擦各向异性特性影响的实验研究. 物理学报, 2012, 61(1): 016202. doi: 10.7498/aps.61.016202
    [13] 杨阳, 王苍龙, 段文山, 石玉仁, 陈建敏. 基底势函数的无序性对静摩擦力的影响. 物理学报, 2012, 61(13): 130501. doi: 10.7498/aps.61.130501
    [14] 兰惠清, 徐藏. 掺硅类金刚石薄膜摩擦过程的分子动力学模拟. 物理学报, 2012, 61(13): 133101. doi: 10.7498/aps.61.133101
    [15] 张兆慧, 韩奎, 曹娟, 王帆, 杨丽娟. 有机分子超薄膜的结构对摩擦的影响. 物理学报, 2012, 61(2): 028701. doi: 10.7498/aps.61.028701
    [16] 李瑞, 胡元中, 王慧. Si表面间水平碳纳米管束的分子动力学模拟研究. 物理学报, 2011, 60(1): 016106. doi: 10.7498/aps.60.016106
    [17] 陈明, 闵锐, 周俊明, 胡浩, 林波, 缪灵, 江建军. 碳纳米胶囊中水分子的分子动力学研究. 物理学报, 2010, 59(7): 5148-5153. doi: 10.7498/aps.59.5148
    [18] 张兆慧, 韩 奎, 李海鹏, 唐 刚, 吴玉喜, 王洪涛, 白 磊. Langmuir-Blodgett膜摩擦分子动力学模拟和机理研究. 物理学报, 2008, 57(5): 3160-3165. doi: 10.7498/aps.57.3160
    [19] 袁剑辉, 袁晓博. 单壁碳纳米管弹性性质的羟基接枝效应. 物理学报, 2008, 57(6): 3666-3673. doi: 10.7498/aps.57.3666
    [20] 许中明, 黄 平. 摩擦微观能量耗散机理的复合振子模型研究. 物理学报, 2006, 55(5): 2427-2432. doi: 10.7498/aps.55.2427
计量
  • 文章访问数:  3572
  • PDF下载量:  297
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-24
  • 修回日期:  2016-11-28
  • 刊出日期:  2017-02-05

界面接枝羟基对碳纳米管运动和摩擦行为影响的分子动力学模拟

  • 1. 北京科技大学机械工程学院, 北京 100083
  • 通信作者: 李瑞, lirui@ustb.edu.cn
    基金项目: 国家自然科学基金(批准号:51475039)和国家自然科学基金青年项目(批准号:51105028)资助的课题.

摘要: 本文采用分子动力学模拟研究了界面间接枝羟基对碳纳米管在石墨基底上运动和摩擦行为的影响.结果表明:界面接枝羟基后碳纳米管所受的侧向力明显改变;仅石墨接枝羟基时碳纳米管侧向力波动增大;同时由于垂直碳纳米管与基底间接触面积小,碳纳米管所受的摩擦力随羟基含量的增加而增大;碳纳米管与石墨上均接枝羟基后体系中引入了氢键和库仑力作用,显著增加了界面间的摩擦,体系的滑移界面从碳纳米管与石墨间迅速转变为石墨层间,并且导致碳纳米管在垂直初始运动方向上也出现了滑移.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回